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1. Introduction. Currently, the most effective constructions of low-
discrepancy point sets and sequences, which are of great importance for
quasi-Monte Carlo methods in multidimensional numerical integration, are
based on the concept of (t,m, s)-nets and (t, s)-sequences. A detailed theory
was developed in Niederreiter [9] (see also [10, Chapter 4] for surveys of this
theory).

So-called digital nets and sequences are of special interest due to the
following two reasons. First, until now all construction methods for (t,m, s)-
nets and (t, s)-sequences which are relevant for applications in quasi-Monte
Carlo methods are digital methods over certain rings. Second, digital
(t,m, s)-nets behave extremely well for the numerical integration of func-
tions which are representable by an in some sense rapidly converging mul-
tivariate Walsh series. In a series of papers, Larcher and several co-authors
established lattice rules for the numerical integration of multivariate Walsh
series by digital nets. We refer to [5] for a concise introduction in the field
of Larcher’s lattice rules.

1.1. Definitions and notations. The concepts of (t,m, s)-nets and of
(t, s)-sequences in a base b provide point sets of bm points, respectively
infinite sequences, in the half-open s-dimensional unit cube Is := [0, 1)s,
s ≥ 1, which are extremely well distributed if the quality parameters t ∈ N0

are “small”. We follow [10] in our basic notation and terminology.

Definition 1. Let b ≥ 2, s ≥ 1, and 0 ≤ t ≤ m be integers. Then a
point set consisting of bm points of Is forms a (t,m, s)-net in base b if every
subinterval J =

∏s
i=1[aib−di , (ai + 1)b−di) of Is with integers di ≥ 0 and

0 ≤ ai < bdi for 1 ≤ i ≤ s and of volume bt−m contains exactly bt points of
the point set.
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Definition 2. Let b ≥ 2, s ≥ 1, and t ≥ 0 be integers. Then a sequence
y0,y1, . . . of points in Is is a (t, s)-sequence in base b if for all k ≥ 0 and
m ≥ t the point set consisting of the yn with kbm ≤ n < (k + 1)bm forms a
(t,m, s)-net in base b.

Definition 3. Let b ≥ 2, s ≥ 1, and m ≥ 1 be integers. We consider
the following construction principle for point sets P consisting of bm points
in Is. We choose:

(i) a commutative ring R with identity and card(R) = b;
(ii) bijections ψr : Zb = {0, 1, . . . , b− 1} → R for 0 ≤ r ≤ m− 1;

(iii) bijections η(i)
j : R→ Zb for 1 ≤ i ≤ s and 1 ≤ j ≤ m;

(iv) elements c(i)jr ∈ R for 1 ≤ i ≤ s, 1 ≤ j ≤ m, and 0 ≤ r ≤ m− 1.

For n = 0, 1, . . . , bm − 1 let

n =
m−1∑
r=0

ar(n)br with all ar(n) ∈ Zb

be the digit expansion of n in base b. We put

x(i)
n =

m∑

j=1

y
(i)
nj b
−j for 0 ≤ n < bm and 1 ≤ i ≤ s,

with

y
(i)
nj = η

(i)
j

(m−1∑
r=0

c
(i)
jr ψr(ar(n))

)
∈ Zb for 0≤n < bm, 1≤ i ≤ s, 1 ≤ j ≤m.

If for some integer t with 0 ≤ t ≤ m the point set

xn = (x(1)
n , . . . , x(s)

n ) ∈ Is for n = 0, 1, . . . , bm − 1

is a (t,m, s)-net in base b, then it is called a digital (t,m, s)-net constructed
over R.

In a quite similar way we define digital (t, s)-sequences constructed over
a finite ring R.

Definition 4. Let b ≥ 2 and s ≥ 1 be integers. We choose R, ψr for
r ≥ 0 with ψr(0) = 0 for all sufficiently large r, η(i)

j for 1 ≤ i ≤ s and j ≥ 1,

and c
(i)
jr for 1 ≤ i ≤ s, j ≥ 1, and r ≥ 0 as in Definition 3. For n = 0, 1, . . .

let

n =
∞∑
r=0

ar(n)br
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be the digit expansion of n in base b, where ar(n) ∈ Zb for r ≥ 0 and
ar(n) = 0 for all sufficiently large r. We put

x(i)
n =

∞∑

j=1

y
(i)
nj b
−j for n ≥ 0 and 1 ≤ i ≤ s,

with

y
(i)
nj = η

(i)
j

( ∞∑
r=0

c
(i)
jr ψr(ar(n))

)
∈ Zb for n ≥ 0, 1 ≤ i ≤ s, and j ≥ 1,

and we assume that for each n ≥ 0 and 1 ≤ i ≤ s we have y(i)
nj < b − 1 for

infinitely many j. If for some integer t ≥ 0 the sequence

xn = (x(1)
n , . . . , x(s)

n ) ∈ Is for n = 0, 1, . . .

is a (t, s)-sequence in base b, then it is called a digital (t, s)-sequence con-
structed over R.

R e m a r k. The condition on the y(i)
nj in Definition 4 is satisfied, for in-

stance, if η(i)
j (0) = 0 and, for r ≥ 0, c(i)jr = 0 for 1 ≤ i ≤ s and all sufficiently

large j (compare with [10, p. 72]). In most practical implementations we
actually have one fixed identification of the elements of R and Zb indepen-
dent of i, j, and r. Then the above construction method for nets can be
symbolically illustrated by the following scheme. (Here we do not explicitly
use the identification of the elements of R and Zb.) For 1 ≤ i ≤ s let C(i)

be the m×m matrix over R with rows

c(i)
j = (c(i)j,0, . . . , c

(i)
j,m−1) for j = 1, . . . ,m.

Every n with 0 ≤ n < bm and digit expansion n =
∑m−1
r=0 ar(n)br in base b

is identified with

n =




a0(n)
...

am−1(n)




over R, and each x ∈ [0, 1) with finite digit expansion x =
∑m
j=1 yj(x)b−j is

identified with

x =



y1(x)

...
ym(x)




over R. Then we have

x(i)
n = C(i) · n for 0 ≤ n < bm and 1 ≤ i ≤ s,
xn = (x(1)

n , . . . , x(s)
n ) for n = 0, . . . , bm − 1.
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1.2. Some properties of digital nets. For m ≥ 2 let C = {c(i)
j ∈ Rm :

1 ≤ i ≤ s, 1 ≤ j ≤ m} be a two-parameter system of elements of Rm. Again
(compare with the remark following Definition 4) we may also think of C as
an s-tuple (C(1), . . . , C(s)) of m ×m matrices over R, where c(i)

j is the jth
row of C(i).

Definition 5. For a system C = {c(i)
j ∈ Rm : 1 ≤ i ≤ s, 1 ≤ j ≤ m} we

define S(C, t,m) to be the set of all subsystems {c(i)
j ∈ C : 1 ≤ j ≤ di, 1 ≤

i ≤ s} of C for any integers d1, . . . , ds ≥ 0 with
∑s
i=1 di = m− t.

For a subsystem C ∈ S(C, t,m) with C = {c1, . . . , cm−t} we may also
think of C as an (m − t) ×m matrix over R, where cj is the jth row of C.
We now rephrase [10, Theorem 4.26], using this terminology:

Lemma 1 ([10, Theorem 4.26]). Suppose that for every subsystem C ∈
S(C, t,m) and for every f ∈ Rm−t the equation C · z = f has exactly bt

solutions z ∈ Rm. Then and only then the system C, used for the elements in
part (iv) of Definition 3, provides a digital (t,m, s)-net constructed over R.

Lemma 2. Suppose a system C provides a digital (t, t + k, s)-net con-
structed over R. Then any subsystem C ∈ S(C, t, t+k) (k elements of Rt+k)
is linearly independent over R.

P r o o f. Let C = {a1, . . . ,ak} be an arbitrary subsystem of S(C, t, t+k).
Let λ1, . . . , λk be arbitrary elements of R with λ1a1 + . . . + λkak = 0, and
let zj be a solution of C · zj = ej (ej = (0, . . . , 0, 1, 0, . . . , 0)T denotes the
jth unit element of Rk for j = 1, . . . , k). Since for every j = 1, . . . , k we have
0 = 0 · zj = (λ1a1 + . . . + λkak) · zj = λ1(a1 · zj) + . . . + λk(ak · zj) = λj ,
we get λ1 = . . . = λk = 0.

1.3. Propagation rules for digital nets. In [9, Lemmas 2.6–2.8] Nieder-
reiter has established some fundamental properties of (t,m, s)-nets in an
arbitrary base b ≥ 2, which were later called the “three propagation rules”
which allow one to obtain a new net from a given net. We show that these
propagation rules also hold for digital nets.

Lemma 3. Let t ≥ 0, m ≥ t, s ≥ 1, and b ≥ 2 be integers and let R be a
commutative ring with identity and of order b.

(a) Every digital (t,m, s)-net over R is a digital (u,m, s)-net over R for
t ≤ u ≤ m.

(b) If there exists a digital (t,m, s)-net over R, then for each s′ with
1 ≤ s′ ≤ s there exists a digital (t,m, s′)-net over R.

(c) If there exists a digital (t,m, s)-net over R, then for each u with
t ≤ u ≤ m there exists a digital (t, u, s)-net over R.
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The proof of (a) is the same as for (t,m, s)-nets in [9, Lemma 2.6]. For (b)
we just have to use any s′ of the s matrices defining the digital (t,m, s)-net.
This fact was already mentioned in [4].

(c) The proof for t = 0 was done in Schmid [15]. One problem for a
generalization to t > 0 was: is it possible to complete an arbitrary number
(≤ m) of linearly independent elements of Rm to m linearly independent
elements of Rm?

In [8] Nashier and Nichols defined a ring R̃ with identity to be weakly left
semi-Steinitz if any finite linearly independent subset of a finitely generated
free left R-module F can be extended to a basis of F . In Corollary 2.5 they
show that a commutative noetherian ring R̃ is weakly semi-Steinitz if and
only if every non-zero-divisor of R̃ is a unit. Clearly this meets the conditions
of our finite commutative rings R with identity and therefore we have: An
(m−t)×m row-regular matrix in R can be completed (by adding additional
rows) to an m×m row-regular square matrix in R which therefore is regular
and invertible.

P r o o f o f L e m m a 3(c). Let C = (C(1), . . . , C(s)) be the system
providing the digital (t,m, s)-net over R. From Lemma 2 it follows that
the first m − t rows of each of the s matrices are linearly independent
over R. Since only these rows are of significance for the net (Lemma 1),
we can omit the other rows and complete C to a system of regular matrices
(X(1), . . . , X(s)). In particular, there exists a regular m×m matrix Z such
that X(s)Z = I ′m := (em, em−1, . . . , e1). Furthermore, the s regular matri-
ces X(1)Z, . . . ,X(s)Z provide the same net as C(1), . . . , C(s). (Multiplication
with a regular matrix Z only causes a permutation of the net points.)

In the following we suppose that each of them×mmatrices C(1), . . . , C(s)

is regular, and C(s) = I ′m. Let c(i)
j be the jth row of C(i) and let γv : Rm →

Rm−v be such that

γv(r1, . . . , rm−v, rm−v+1, . . . , rm) = (r1, . . . , rm−v).

We construct a new system X = (X(1), . . . , X(s)) of u× u matrices over R,
where x(i)

j is the jth row of X(i), 1 ≤ j ≤ u, in the following way:

x(i)
j := γm−u(c(i)

j ) for 1 ≤ i ≤ s− 1,

x(s)
j := γm−u(c(s)

m−u+j) = eu+1−j ∈ Ru,
and we show that X provides a digital (t, u, s)-net over R.

Let X be an arbitrary subsystem of S(X, t, u) with
∑s
i=1 di = u − t.

Now we consider the subsystem C of S(C, t,m) with
∑s
i=1 d

′
i = m− t where

d′i = di, for 1 ≤ i < s, and d′s = ds + m − u. Without loss of generality we
consider the last d′s elements of C, originating from C(s) = I ′m, in reverse
order.
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The equation C · z = (f1, . . . , fu, 0, . . . , 0)T with arbitrary f1, . . . , fu ∈ R
has bt solutions z1, . . . , zbt ∈ Rm. By the definition of C(s) we find that,
for 1 ≤ j ≤ bt, the last m − u coordinates of each solution zj all are 0
(moreover, if ds > 0, we have zj,u−(ds−v) = fj,u−(ds−v) for 1 ≤ v ≤ ds where
z = (zj,1, . . . , zj,m)T ).

Therefore it follows that the equation X · z′ = (f1, . . . , fu)T also has
exactly bt solutions z′1, . . . , z

′
bt with z′j = γm−u(zj) ∈ Ru.

Since X and f1, . . . , fu are arbitrary the proof is finished by Lemma 1.

2. Best bounds for the dimension of digital nets and sequences
over F2 with small quality parameter. In [12] Niederreiter and Xing
introduced a new way for the construction of digital (t, s)-sequences. The
key idea is to work with global function fields containing many places of de-
gree 1 instead of working with rational function fields as was done in earlier
construction methods (see for example [10]). The new method yields signifi-
cantly better results than all previous methods. Table 1 gives a comparison,
in the case of F2, of their t-values (NX2(s)) with the best values of the
quality parameter (M2(s)) obtained from all previous constructions.

Table 1. Quality parameters of binary (t, s)-sequences

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14

M2(s) 0 0 1 3 5 8 11 14 18 22 26 30 34 38
NX2(s) 0 0 1 1 2 3 4 5 6 8 9 10 11 13

Niederreiter and Xing show that for any integers s ≥ 1 and b ≥ 2 there
exists a digital (t, s)-sequence in base b with quality parameter t = O(s) (see
for example [12, Corollary 2]). This result is asymptotically best possible,
in the sense that t must grow at least linearly with s. In [13] they improve
the lower bound for the quality parameter to:

[13, Theorem 8] If for some integers s ≥ 1, t ≥ 0, and b ≥ 2 there exists
a general (t, s)-sequence in base b, then we must have

t ≥ s

b
− logb

(b− 1)s+ b+ 1
2

.

This improvement was based on a result of Lawrence [6], who used a
new lower bound, established by Bierbrauer [1, Theorem 1], for the num-
ber of rows in an orthogonal array. We will give the key ideas of the proof
(OA(bt+k, s + 1, b, k) denotes an orthogonal array of size bt+k, s + 1 con-
straints, b levels, and strength k):

(1) Suppose ∃ (t, s)-sequence in base b.
(2) ⇒ ∃ (t, t+ k, s+ 1)-net in base b for all k ≥ 0 [9, Lemma 5.15].
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(3) ⇒ ∃ OA(bt+k, s+ 1, b, k) for s+ 1 ≥ k ≥ 2 [15, Corollary 15].

(4) ⇒ bt+k ≥ bs+1

(
1− (b− 1)(s+ 1)

b(k + 1)

)
[1, Theorem 1].

(5) ⇒ t ≥ max
s+1≥k≥b(b−1)(s+1)/bc

s− k + logb

(
b− (b− 1)(s+ 1)

k + 1

)
.

(6) Following the proof of [13, Theorem 8], inserting the value k = bs−
s/bc+ 1 yields the desired result.

R e m a r k. This bound clearly holds for digital sequences. For an in-
dependent proof in the digital case over Fq, the following arguments are
sufficient:

(2) Use [12, Lemma 1].
(3) The existence of a digital (t, t + k, s + 1)-net over Fq implies, for

s+ 1 ≥ t+ k, the existence of a linear [s+ 1, s+ 1− (t+ k), k+ 1]-code over
Fq (see for example the next section).

(4) Using the Plotkin bound [16, Theorem 5.2.4] we obtain

qs+1−(t+k) ≤ k + 1

k + 1− (s+ 1) q−1
q

and therefore the same result as before.

In the binary case we have computed lower bounds on the quality pa-
rameters provided by [13, Theorem 8]. Using these results we have tabulated
(Table 2) upper bounds st on the dimension of binary (t, s)-sequences.

Table 2. Upper bounds for the dimension of binary (t, s)-sequences

t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13

st ≤ 3 6 9 11 14 16 18 21 23 25 27 30 32 34

From (4) in the above sketch of a proof of [13, Theorem 8] (see also
Lawrence [6, Theorem 4.4.14]) we clearly have a lower bound for the quality
parameters of general nets (and therefore also for digital nets): A (t, t+k, s)-
net in base b can exist only if

(∗) t ≥ s− 1− k + logb

(
b− (b− 1)s

k + 1

)
.

But as seen above, this bound only works for s ≥ k ≥ b(b− 1)s/bc.
In the following we will provide an upper bound for the dimension (and

therefore a lower bound for the quality parameter) of arbitrary digital nets
over Fq without the above restriction on k.
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2.1. Improved upper bound for the dimension of digital nets over Fq

Proposition 1. Suppose that for some integers s ≥ 1, t ≥ 0, and k ≥ 2
there exists a digital (t, t+ k, s)-net over Fq. Then we must have

bk/2c∑
u=1

u∑

l=1

(
s

l

)(
u− 1
l − 1

)
(q − 1)lqu−l +Ak < qt+k,

where

Ak =





0 for k even,
(k+1)/2∑

l=1

(
s− 1
l − 1

)(
(k + 1)/2− 1

l − 1

)
(q − 1)lq(k+1)/2−l for k odd .

P r o o f. Let C be the system providing the digital (t, t + k, s)-net over
Fq. By Lemma 2 any subsystem C ∈ S(C, t, t + k) is linearly independent
over Fq.

For u ∈ {1, . . . , bk/2c} we consider linear combinations of u vectors from
C. Let l ∈ {1, . . . ,min(u, s)} be the number of matrices from which we take
these vectors. Let 1 ≤ s1 < s2 < . . . < sl ≤ s be the numbering of these
matrices. Then we choose integers 0 ≤ d1, . . . , dl ≤ u with

∑l
i=1 di = u and

consider any linear combinations of the vectors

c(si)
j , j = 1, . . . , di, i = 1, . . . , l,

with coefficients from Fq for j 6= di and with coefficients from Fq \ {0} for
j = di. Any two such combinations with different parameters have to be
different, and for k even the result follows. (Since

(
s
l

)
= 0 for l > s, we sum

up l to u instead of to min(u, s).)
If k is odd we additionally consider all linear combinations of (k + 1)/2

vectors such that at least one vector is taken from one fixed matrix. There-
fore we only have

(
s−1
l−1

)
instead of

(
s
l

)
possibilities to choose the matrices.

The further arguments are the same as above.

R e m a r k s. • We have checked by computer that Ak, for k odd, seems
to be too small to improve the numerical results. Until now in all of our
calculations we obtained the same results when we evaluated Proposition 1
for k − 1 even and applied Lemma 3(c).
• The result of Proposition 1 is the best possible result that can be

obtained by the method of linear combinations.
• Niederreiter and Xing [11, Proposition 1] obtained a similar, but a little

weaker estimate by using a bound from coding theory. However, they used
only the first row vectors c(i)

1 of each of the matrices. Our improvement was
possible by considering the first bk/2c row vectors of each matrix.
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Table 3. Upper bounds for s̃(t, t+ k, 2) from Proposition 1

2 4 6 8 10 12 14 16 18 20 22 24
k=

3 5 7 9 11 13 15 17 19 21 23 25

t = 0 22 − 1 3 4 4 5 5 6 6 6 7 7 8
t = 1 23 − 1 5 5 6 6 6 7 7 8 8 9 9
t = 2 24 − 1 9 8 7 8 8 8 8 9 9 10 10
t = 3 25 − 1 13 10 10 9 9 10 10 10 11 11 11
t = 4 26 − 1 20 14 12 12 11 11 12 12 12 12 13
t = 5 27 − 1 29 19 16 14 14 13 13 13 14 14 14
t = 6 28 − 1 42 25 20 17 16 16 15 15 15 15 16
t = 7 29 − 1 61 32 24 21 19 18 17 17 17 17 17
t = 8 210 − 1 88 42 30 25 22 21 20 19 19 19 19
t = 9 211 − 1 125 54 36 29 26 24 22 22 21 21 21
t = 10 212 − 1 178 69 44 35 30 27 25 24 23 23 23
t = 11 213 − 1 253 88 54 41 34 31 28 27 26 25 25

In Table 3 we provide upper bounds for the dimension s of binary digital
(t, t+ k, s)-nets deduced from Proposition 1. Here and in the following sec-
tions, s̃(t, t + k, q) denotes the maximal dimension s for which there exists
a digital (t, t+ k, s)-net over Fq.

As mentioned above, the bound for odd k is provided either by Proposi-
tion 1, or by taking the bound for k − 1 even and applying Lemma 3(c).

To date, Proposition 1 provides the best upper bounds for s̃(t, t + k, q)
which are deduced from a closed formula. Clearly for special values of t, k,
and q, this bound can be improved (see for example the following sections).

2.2. Best bounds for small quality parameters. It is the aim of this section
to close the gap between the results given in Tables 1 and 2 for the values t =
0, 1, 2 and therefore to show that in these cases the method of Niederreiter
and Xing is best possible.

By Proposition 1, a digital (2, 8, 9)-net (and therefore a digital (2, 8)-
sequence) over F2 cannot exist. We have the following improvement for the
upper bound of s:

Lemma 4. For s ≥ 7, a digital (2, 8, s)-net over F2 cannot exist.

For the proof we make use of Lemma 5. First it is convenient (also for
the next sections) to give the following definition:

Definition 6. Let t ≥ 0, k ≥ 2, s ≥ 1, and t + k ≥ d ≥ 1 be integers.
A system {c(i)

j ∈ Ft+kq : 1 ≤ j ≤ t+ k, 1 ≤ i ≤ s} is called a (k, t+ k, d, s)-

system over Fq if any subsystem {c(i)
j ∈ Ft+kq : 1 ≤ j ≤ di, 1 ≤ i ≤ s} with∑s

i=1 di = k and 0 ≤ d1, . . . , ds ≤ d is linearly independent over Fq.
R e m a r k. C provides a digital (t, t + k, s)-net over Fq if and only if C

is a (k, t+ k, k, s)-system over Fq.
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For the proofs of Lemmas 4, 5 and of Proposition 2 we use the following
notation: Let m ∈ N. We identify the linear space Fm2 with P(1, . . . ,m),
the class of all subsets of {1, . . . ,m} (indicating the coordinates which are
1), equipped with the symmetric difference 4. For convenience we write +
instead of 4. [. . .] denotes the linear hull in P(1, . . . ,m).

Lemma 5. Let 1 ≤ k ≤ 6. A system

Ak =




x
s1 x1
...

...
sk xk




of subsets x, x1, . . . , xk of {1, . . . , 6} and elements s1, . . . , sk of {1, . . . , 6} is
said to have property (∗) if

• |x| ≤ 2, |xi| ≤ 3, and si 6= sj for 1 ≤ i 6= j ≤ k,
• si 6∈ xi, x+ xi 6∈ [si, r, s], xi + xj 6∈ [si, sj , r, s] for all 1 ≤ r, s ≤ 6 and

1 ≤ i 6= j ≤ k.

Now we have:
(1) For k = 3 there are modS6 (up to permutations) exactly three sys-

tems A1
3, A

2
3, A

3
3 with property (∗):

A1
3 =




∅
1 356
2 145
3 246


 , A2

3 =




46
1 345
2 1
3 256


 , A3

3 =




34
1 236
2 456
3 15


 .

(2) If k ≥ 4 there exists no system Ak with property (∗).
(3) For 1 ≤ k, l ≤ 3 a system Bk,l = (Ak, A′l) with

Ak =




x
s1 x1
...

...
sk xk


 , A′l =




x
t1 y1
...

...
tl yl




is said to have property (∗∗) if both Ak and A′l have property (∗) and if
si 6= tj , xi + yj 6∈ [si, tj , r] for all 1 ≤ r ≤ 6, 1 ≤ i ≤ k, and 1 ≤ j ≤ l. Then
we have:

(i) For k = l = 3 there is exactly one system B3,3 = (A1
3, A

′
3) with

property (∗∗) modS6, with A1
3 being the system of part (1) and

A′3 =




∅
4 235
5 126
6 134


 .
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(ii) For k = 3, l = 2 there are exactly three systems B1
3,2 = (A1

3, A
1
2),

B2
3,2 = (A2

3, A
2
2), and B3

3,2 = (A3
3, A

3
2) with property (∗∗) modS6 with A1

3,
A2

3, A3
3 being the systems of part (1) and

A1
2 =




∅
4 235
5 126


 , A2

2 =




46
4 32
5 136


 , A3

2 =




34
4 61
5 2


 .

P r o o f. ad (1). Since xi + xj 6∈ [si, sj , r, s] we get |xi + xj | ≥ 3 for all
1 ≤ i 6= j ≤ 3.

(a) x = ∅. Since xi 6∈ [si, r, s] and |xi| ≤ 3 we have |xi| = 3 for all
1 ≤ i ≤ 3. Then we get modS6: x1 = 356, x2 = 145, and x3 = 246.

(i) s1 = 4. Since 1346 = x1 +x2 6∈ [4, s2, r, s] and s2 6∈ x2 we get s2 = 2.
From 1256 = x2 + x3 6∈ [2, s3, r, s] and s3 6∈ x3 it follows that s3 = 3, which
contradicts 2345 = x1 + x3 6∈ [4, 3, r, s].

(ii) s1 = 1. As in case (i) we get s2 = 2 and s3 = 3.
(iii) s1 = 2. We get s3 = 1 and s2 = 3. Notice that τ ∈ S6, τ = (54)(32)

transforms the system (iii) into the system of (ii).
Therefore we have

A1
3 =




∅
1 356
2 145
3 246


 .

(b) |x| = 1. Since x + xi 6∈ [si, r, s] we get |xi| ≥ 2 for all 1 ≤ i ≤ 3.
Looking at x1, x2, x3 there are eight cases modS6:

x1 : 12 12 12 123 123 123 123 123
x2 : 34 34 34 145 145 145 145 456
x3 : 56 135 156 16 24 26 246 14

Considering the first case x1 = 12, x2 = 34, and x3 = 56 it follows from
|x| = 1 and |x + xi| ≥ 3 (since x + xi 6∈ [si, r, s]) that there is no subset x
of {1, . . . , 6} with |x| = 1 to generate a system with the desired property.
In an analogous way it is easy to see that none of the remaining seven cases
leads to a system with property (∗).

(c) |x| = 2. As in case (a) and (b) we obtain the systems A2
3 and A3

3.
ad (2). Since 1 ≤ |xi| ≤ 3 for all 1 ≤ i ≤ 4 we see from part (1) that

|xi| = 3 for all 1 ≤ i ≤ 4, contrary to |xi + xj | ≥ 3 for all 1 ≤ i 6= j ≤ 4.
ad (3). Starting with the three systems of part (1) it is easy to see that

they lead to the desired systems with property (∗∗).
P r o o f o f L e m m a 4. By Lemma 3(b) it suffices to show that there

is no digital (2, 8, 7)-net over F2.
Assume that there is a system providing a digital (2, 8, 7)-net over F2.

Then there exists a subsystem S which is a (6, 8, 3, 7)-system over F2. We
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identify a row vector in F8
2 with a subset of {0, 1, . . . , 7} indicating the coordi-

nates which are 1, and write S = ((x0/y0/z0), (x1/y1/z1), . . . , (x6/y6/z6)),
where xi, yi, zi are subsets of {0, 1, . . . , 7} for 0 ≤ i ≤ 6. It follows that
dim[x0, . . . , x6] ≥ 6.

(1) dim[x0, . . . , x6] = 6. Without loss of generality, we get x0 = 0, . . .
. . . , x5 = 5 and x6 = 012345. Assume that there is some yj (0 ≤ j ≤ 5) such
that yj is a subset of {0, 1, . . . , 5}. We can let j = 0. Since y0 6∈ [0, r, s, t, u]
for all 1 ≤ r, s, t, u ≤ 5 we get y0 = 012345 or y0 = 12345, contrary to S
being a (6, 8, 3, 7)-system. So for each yi, 0 ≤ i ≤ 5, there are three possible
cases:

I. 6, 7 ∈ yi,
II. 6 ∈ yi, 7 6∈ yi,

III. 6 6∈ yi, 7 ∈ yi.
We can assume that y0 and y1 are of the same type (I or II or III).

Then y0 + y1 is a subset of {0, 1, . . . , 5}. Since y0 + y1 6∈ [0, 1, r, s] for
all 2 ≤ r, s ≤ 5 we have |y0 + y1| ≥ 3. If |y0 + y1| = 3 we have 0, 1 6∈
y0 + y1 and so without loss of generality, y0 + y1 = 234. So for the subset
((0/y0), (1/y1), (2), (3), (4), (5), (012345)) of S we have x0 + x1 + y0 + y1 +
x5 + x6 = ∅, which is a contradiction.

The cases |y0 + y1| = 4, 5, 6 are treated in the same manner.
(2) dim[x0, . . . , x6] = 7. Without loss of generality, let x0 = 0, . . . , x6 = 6.

Assume that there are j1, j2 ∈ {0, 1, . . . , 6}, j1 6= j2, such that yj1 , yj2 are
subsets of {0, 1, . . . , 6}. We can assume j1 = 0 and j2 = 1. Then we get y0 6∈
[0, r, s, t, u], y1 6∈ [1, r, s, t, u], and y0 + y1 6∈ [0, 1, r, s] for all 0 ≤ r, s, t, u ≤ 6.
Since yi 6∈ [i, r, s, t, u] if and only if yi + i 6∈ [i, r, s, t, u], 0 ≤ i ≤ 1, we can
assume that 0 ∈ y0 and 1 ∈ y1. Hence, with α = 0123456, we get y0 = α
or y0 = α + i and y1 = α or y1 = α + j for some i ∈ {1, 2, . . . , 6} and
j ∈ {0, 2, . . . , 6}. All these cases lead to a contradiction. Therefore we get
two cases:

(a) 7 ∈ yi for all 0 ≤ i ≤ 6.
(b) Without loss of generality, 7 6∈ y6 and 7 ∈ yi for all 0 ≤ i ≤ 5.
Assume that 7 6∈ z0. By looking at the cases 7 ∈ zi or 7 6∈ zi for 1 ≤ i ≤ 5

it is easy to see that in both cases (a) and (b) the system S is a (6, 8, 3, 7)-
system if and only if S′ = ((0/y0/z0 + y0), (1/y1/z1), . . . , (6/y6/z6)) is a
(6, 8, 3, 7)-system. So we can assume 7 ∈ z0. If we continue in the same way
we get 7 ∈ z0, z1, . . . , z5 and hence we can assume

S = ((0/y0/v0 + 7), (1/y1/v1 + 7), . . . , (5/y5/v5 + 7), (6/y6/z6))

with v0, . . . , v5 subsets of {0, . . . , 6}.
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Now we consider the system

S′ = ((0/y0 + v0/7), (1/y1 + v0/v1 + v0 + 7), . . . ,

(5/y5 + v0/v5 + v0 + 7), (6/y′6/z
′
6))

with y′6 = y6 + v0 in case (a), y′6 = y6 in case (b), and with

z′6 =
{
z6 + v0 if 7 ∈ z6,
z6 otherwise.

S′ is a (6, 8, 3, 7)-system if and only if S is a (6, 8, 3, 7)-system. Hence we
get, without loss of generality,

S = ((0/u0 + 7/7), (1/u1 + 7/v1 + 7), . . . , (5/u5 + 7/v5 + 7), (6/y6/z6))

with u0, . . . , u5, v1, . . . , v5 subsets of {0, . . . , 6}.
Now take

u′i =
{
ui + i if i 6∈ ui,
ui otherwise,

for 0 ≤ i ≤ 5,

v′i =
{
vi + i if i 6∈ vi,
vi otherwise,

for 1 ≤ i ≤ 5,

and

y′6 =
{
y6 + 6 if 6 6∈ y6,
y6 otherwise.

It is easy to check that

S′ = ((0/u′0 + 7/7), (1/u′1 + 7/v′1 + 7), . . . , (5/u′5 + 7/v′5 + 7), (6/y′6/z6))

is a (6, 8, 3, 7)-system if and only if S is a (6, 8, 3, 7)-system. Summing up
we get

S = ((0/u0 + 7/7), (1/u1 + 7/v1 + 7), . . . , (5/u5 + 7/v5 + 7), (6/y6/z6))

with 6 ∈ y6, 0 ∈ u0, i ∈ ui, vi, and u0, ui, vi subsets of {0, . . . , 6} for
1 ≤ i ≤ 5.

Now we take a detailed look at cases (a) and (b):
(a) 7 ∈ y6. Write y6 = u6 + 7 with u6 a subset of {0, . . . , 6}. We can

assume 0 ∈ u1, . . . , uk and 0 6∈ uk+1, . . . , u6 for some 0 ≤ k ≤ 6. Now it is
easy to see that

Bk,6−k =




α+ u0 α+ u0

1 α+ u1 k + 1 α+ uk+1 + 0
...

...
...

...
k α+ uk 6 α+ u6 + 0



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meets the conditions of Lemma 5 (α = 0123456). Hence we can assume

S = ((0/0123456 + 7/7), (1/0124 + 7/v1 + 7),

(2/0236 + 7/v2 + 7), (3/0135 + 7/v3 + 7),

(4/146 + 7/v4 + 7), (5/345 + 7/v5 + 7), (6/256 + 7/z6)).

It is easy to check that there is no subset v5 of {0, . . . , 6} such that

((0/0123456 + 7/7), (1/0124 + 7), (2/0236 + 7),

(3/0135 + 7), (4/146 + 7), (5/345 + 7/v5 + 7), (6/256 + 7))

is a subsystem of S.
(b) 7 6∈ y6. We can assume 0 ∈ u1, . . . , uk and 0 6∈ uk+1, . . . , u5 for some

0 ≤ k ≤ 5. As in case (a), it is easy to see that

Bk,5−k =




α+ u0 α+ u0

1 α+ u1 k + 1 α+ uk+1 + 0
...

...
...

...
k α+ uk 5 α+ u5 + 0




meets the conditions of Lemma 5 (α = 0123456). Therefore we get:

S = ((0/0123456 + 7/7), (1/0124 + 7/v1 + 7),(i)

(2/0236 + 7/v2 + 7), (3/0135 + 7/v3 + 7),

(4/146 + 7/v4 + 7), (5/345 + 7/v5 + 7), (6/y6/z6)), or

S = ((0/01235 + 7/7), (1/0126 + 7/v1 + 7),(ii)

(2/023456 + 7/v2 + 7), (3/0134 + 7/v3 + 7),

(4/1456 + 7/v4 + 7), (5/245 + 7/v5 + 7), (6/y6/z6)), or

S = ((0/01256 + 7/7), (1/0145 + 7/v1 + 7),(iii)

(2/0123 + 7/v2 + 7), (3/02346 + 7/v3 + 7),

(4/2345 + 7/v4 + 7), (5/13456 + 7/v5 + 7), (6/y6/z6)).

The following is easy to check:

(i) There is no subset y6 (containing 6) of {0, . . . , 6} such that

((0/0123456 + 7/7), (1/0124 + 7), (2/0236 + 7),

(3/0135 + 7), (4/146 + 7), (5/345 + 7), (6/y6))

is a subsystem of S.
(ii) There is no subset y6 (containing 6) of {0, . . . , 6} such that

((0/01235 + 7/7), (1/0126 + 7), (2/023456 + 7),

(3/0134 + 7), (4/1456 + 7), (5/245 + 7), (6/y6))

is a subsystem of S.
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(iii) The subsystem

((0/01256 + 7/7), (1/0145 + 7), (2/0123 + 7),

(3/02346 + 7), (4/2345 + 7), (5/13456 + 7/v5 + 7), (6/y6))

implies y6 = 0123456. But no subset v5 (containing 5) of {0, . . . , 6} exists
with the desired property.

Theorem 1. (a) There exists a digital (0, s)-sequence over F2 if and only
if s ≤ 2.

(b) There exists a digital (1, s)-sequence over F2 if and only if s ≤ 4.
(c) There exists a digital (2, s)-sequence over F2 if and only if s ≤ 5.

P r o o f. (a) was already shown in [4, Theorem 2b)]. The existence of dig-
ital (1, 4)- and (2, 5)-sequences follows from the construction using global
function fields which was introduced by Niederreiter and Xing [12] (see
Table 1). From Proposition 1 we deduce that for the existence of a digi-
tal (1, 5, s)-net over F2 we must have s ≤ 5. Combining this result resp.
Lemma 4 with [12, Lemma 1] completes the proof.

3. Improved construction of digital (t, t+ 4, s)-nets over Fq from
linear codes. In [7] a new method for the construction of digital nets in
prime power bases was discussed which makes use of sets of independent
vectors over finite fields.

An (n, k)-set in Ft+kq is a set of n vectors in Ft+kq with the property that
any k of them are linearly independent over Fq. Further, let maxk(t+ k, q)
be the maximal number of vectors of length t+ k over Fq with the property
that any k of the vectors are linearly independent over Fq. (maxk(t+k, q) :=
max{n ∈ N : ∃(n, k)-set in Ft+kq }.)

[7, Theorem 1] Let q be a prime power , and let n, t ≥ 0, and k ≥ 2
be integers. Given an (n, k)-set in Ft+kq , a digital (t, t + k, s)-net can be
constructed over Fq with

s =





⌊
n− 1
h

⌋
if k = 2h+ 1,

⌊
n

h

⌋
if k = 2h.

A well known upper bound for the dimension of digital (t,m, s)-nets over
Fq is s ≤ (qt+2 − 1)/(q − 1). By using max2(t + 2, q) = (qt+2 − 1)/(q − 1)
(see [3, Theorem 14.4]) and max3(t+ 3, 2) = 2t+2 (see [3, Corollary 14.12]),
this upper bound can be achieved by [7, Theorem 1]. As pointed out in [7],
there is a small gap between the lower and upper bound for the maximal
dimension s already for digital (t, t + 3, s)-nets over Fq with q > 2. The
following improvement has closed this gap (for a detailed proof see [15]).
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[7, Theorem 4] Let q be a prime power and t ≥ 0 be an integer. Then a
digital (t, t+ 3, s)-net can be constructed over Fq if and only if

s ≤




max3(t+ 3, q)− 1 =
qt+2 − 1
q − 1

if q = 2, or if q is even and t = 0,

max3(t+ 3, q) else.

R e m a r k. In the theory of error-correcting codes it is well known that
the existence of an (n, k)-set in Ft+kq is equivalent to the existence of a linear
[n, n − (t + k), k + 1]-code over Fq. (We refer to [3] for an introduction to
linear coding theory.) Therefore [7, Theorem 4] provides a complete solution,
in terms of linear codes, for the existence of digital (t, t+ 3, s)-nets over Fq.

An upper bound for maxk(t+k, q) is an upper bound for the dimension s
of a digital (t, t+k, s)-net over Fq, which is easily seen by the following fact:
if C(1), . . . , C(s) are the matrices providing a digital (t, t+ k, s)-net over Fq
then the first row vectors of each of the matrices provide an (s, k)-set in Ft+kq .

Brouwer [2] has made available a data base of bounds for the mini-
mum distance for binary, ternary and quaternary codes. We have used
this data base and improved values of Bierbrauer and Edel (for the var-
ious manuscripts see the homepage of J. Bierbrauer under URL http://
www.math.mtu.edu/home/math/jbierbra/Home.html) to compute upper
and lower bounds for max4(t+ 4, q) (see Table 4).

If we use these bounds, we find by the above mentioned fact and by [7,
Theorem 1], that there are large differences between the lower and upper
bounds for the maximal dimension s̃(t, t + 4, q) of digital (t, t + 4, s)-nets
over Fq. For example, we have 8 ≤ s̃(4, 8, 2) ≤ 17, 11 ≤ s̃(5, 9, 2) ≤ 23, or
21 ≤ s̃(3, 7, 4) ≤ 59 (see Table 4).

There is the following considerable improvement:

Theorem 2. Let q be a prime power , and let s and t ≥ 0 be integers.
Given an (s, 4)-set in Ft+4

q with

q(q − 1)2

2
s2 − q(q − 1)(q − 5)

2
s− q(2q − 3) < qt+4,

a digital (t, t+ 4, s)-net can be constructed over Fq.

P r o o f. Let {c(1)
1 , . . . , c(s)

1 } be an (s, 4)-set in Ft+4
q with

c(s) :=
q(q − 1)2

2
s2 − q(q − 1)(q − 5)

2
s− q(2q − 3) < qt+4.

Notice that S := ((c(1)
1 ), . . . , (c(s)

1 )) is, in our terminology, a (4, t + 4, 1, s)-
system over Fq if and only if all vectors of

A1 := {0, λc(i)
1 , λc(j1)

1 + µc(j2)
1 : λ, µ ∈ Fq \ 0, 1 ≤ i ≤ s, 1 ≤ j1 < j2 ≤ s}

are different (then |A1| = 1 + (q − 1)s+ (q − 1)2
(
s
2

)
).
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For each α ∈ Fq define f1
α : Ft+4

q → Ft+4
q , f1

α(x) = x+ αc(1)
1 . Let

A1 := {0, λc(i)
1 , λc(1)

1 + µc(j)
1 : λ, µ ∈ Fq \ 0, 1 ≤ i ≤ s, 2 ≤ j ≤ s} ⊆ A1.

Note that f1
α(A1) = A1 for all α ∈ Fq, |A1| = 1 + (q − 1)s+ (q − 1)2(s− 1),

and f1
α(Ft+4

q \A1) = Ft+4
q \A1. Since c(s) < qt+4 we find that f1

α(Ft+4
q \A1),

α ∈ Fq, are q subsets of Ft+4
q \A1 such that

|f1
α(Ft+4

q \A1)| = |Ft+4
q \A1| > q − 1

q
|Ft+4
q \A1|.

Therefore we have
⋂
α∈Fq f

1
α(Ft+4

q \A1) 6= ∅.
So we get some c(1)

2 in Ft+4
q with c(1)

2 ∈ f1
α(Ft+4

q \ A1) for all α ∈ Fq.
Hence f1

α(c(1)
2 ) = c(1)

2 + αc(1)
1 6∈ A1 for all α ∈ Fq. So we have found some

c(1)
2 such that ((c(1)

1 /c(1)
2 ), (c(2)

1 ), . . . , (c(s)
1 )) is a subsystem of the desired

(4, t+ 4, 2, s)-system.
Now let 1 ≤ k ≤ s and assume that we have found c(1)

2 , . . . , c(k−1)
2 such

that ((c(1)
1 /c(1)

2 ), . . . , (c(k−1)
1 /c(k−1)

2 ), (c(k)
1 ), . . . , (c(s)

1 )) is a subsystem of the
desired (4, t+ 4, 2, s)-system.

For Ak := A1 ∪ {λc(i)
2 , λc(i)

1 + µc(i)
2 : λ, µ ∈ Fq \ 0, 1 ≤ i ≤ k − 1} we

have |Ak| = |A1|+ (k − 1)(q − 1 + (q − 1)2).
For each α ∈ Fq define fkα : Ft+4

q → Ft+4
q , fkα(x) = x+ αc(k)

1 . Let

Ak := {0, λc(i)
1 , λc(k)

1 + µc(j)
1 : λ, µ ∈ Fq \ 0, 1 ≤ i ≤ s, 1 ≤ j 6= k ≤ s},

Ak ⊆ Ak. As before we get fkα(Ak) = Ak for all α ∈ Fq, |Ak| = 1+(q−1)s+
(q− 1)2(s− 1), and fkα(Ft+4

q \Ak) = Ft+4
q \Ak. Since k ≤ s and c(s) < qt+4

the same arguments as before lead to
⋂
α∈Fq f

k
α(Ft+4

q \Ak) 6= ∅.
Hence there is some c(k)

2 in Ft+4
q such that c(k)

2 +αc(k)
1 6∈ Ak for all α ∈ Fq

and so ((c(1)
1 /c(1)

2 ), . . . , (c(k)
1 /c(k)

2 ), (c(k+1)
1 ), . . . , (c(s)

1 )) is a subsystem of a
(4, t+ 4, 2, s)-system.

We now extend the above constructed (4, t + 4, 2, s)-system to a (4, t +
4, 3, s)-system. For fixed 1 ≤ i ≤ s let

S(i) := {0, λc(j)
1 , λc(i)

2 , λc(i)
1 + µc(k)

1 , λc(i)
2 + µc(j)

1 , λc(i)
1 + µc(i)

2 + νc(k)
1 }

for 1 ≤ j ≤ s , 1 ≤ k 6= i ≤ s, and λ, µ, ν ∈ Fq \ 0. All these vectors ∈ Ft+4
q

are different. For s ≥ 3 we have |S(i)| = 1+(q−1)(s+1)+(q−1)2(2s−1)+
(q− 1)3(s− 1) ≤ c(s) < qt+4, and therefore there exists a vector c(i)

3 ∈ Ft+4
q

with c(i)
3 6∈ S. c(1)

3 , . . . , c(s)
3 extend our system to a (4, t+ 4, 3, s)-system.

c(1)
4 := c(2)

1 and c(i)
4 := c(1)

1 , 2 ≤ i ≤ s, extend, for example, this system
to a (4, t + 4, 4, s)-system over Fq and therefore to a digital (t, t + 4, s)-net
over Fq.
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R e m a r k. If we compute N := N(t, q) to be the largest integer for which
we have c(N) < qt+4, then, for s ≤ min(N(t, q),max4(t + 4, q)), a digital
(t, t+ 4, s)-net over Fq exists.

In Table 4 we compare the lower bounds for s̃(t, t + 4, q) deduced from
Theorem 2 (min(N(t, q),max4(t + 4, q))) with the results deduced from [7,
Theorem 1] (max4(t + 4, q)/2). Note that “max4(t + 4, q): upp” is also an
upper bound for s̃(t, t+ 4, q).

Table 4. Lower bounds for s̃(t, t+ 4, q)

t 1 2 3 4 5 6 7 8 9 10

N(t, 2) 4 6 9 14 21 30 43 62 89 126
max4(t+ 4, 2): low 6 8 11 17 23 33 47 65 81 128

[7, Theorem 1] 3 4 5 8 11 16 23 32 40 64
Theorem 2 4 6 9 14 21 30 43 62 81 126

max4(t+ 4, 2): upp 6 8 11 17 23 37 61 88 124 179

N(t, 3) 5 10 18 32 56 98 171 297 514 892
max4(t+ 4, 3): low 11 14 27 41 86 122 130 – – –

[7, Theorem 1] 5 7 13 20 43 61 65 – – –
Theorem 2 5 10 18 32 56 98 130 – – –

max4(t+ 4, 3): upp 9 14 31 55 97 – – – – –

N(t, 4) 7 14 30 60 120 241 482 965 1930 3861
max4(t+ 4, 4): low 11 21 43 65 82 126 128 156 – –

[7, Theorem 1] 5 10 21 32 41 63 64 78 – –
Theorem 2 7 14 30 60 82 126 128 156 – –

max4(t+ 4, 4): upp 11 29 59 119 – – – – – –

4. Best bounds for the dimension of digital (t, t+ k, s)-nets over
F2 with small k. In this section we give a survey of lower and upper bounds
for the maximal dimension s̃(t, t+ k, 2) of digital nets and close some gaps
between these bounds.

Table 5. Best bounds for s̃(t, t+ k, 2)

t = 1 t = 2 t = 3

s̃(t, t + 4, 2) low shift–net 5 “by hand” 8 “by hand” 11
s̃(t, t+ 4, 2) upp Prop. 1 5 max4(6, 2) 8 max4(7, 2) 11
s̃(t, t + 5, 2) low Nied.–Xing 5 shift–net 7 Lemma 3(c) 9
s̃(t, t+ 5, 2) upp Lemma 3(c) 5 Prop. 2 7 Lemma 3(c) 11
s̃(t, t + 6, 2) low Nied.–Xing 5 “by hand” 6 shift–net 9
s̃(t, t+ 6, 2) upp Lemma 3(c) 5 Lemma 4 6 Prop. 1 10

Explanations to Table 5:
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• “shift–net” means that the net is provided by the so-called shift method
of Schmid [14]. This method improves many of the best known values. The
article [14] is in preparation so we enclose the concrete matrices in the
appendix.
• “by hand” means that the matrices providing this net were found by

trying and using linear properties — see the appendix.
• “Nied.–Xing” refers to the method of Niederreiter and Xing which

we have mentioned in the section on digital sequences. We also have found
matrices providing such nets “by hand” but we have resigned to include
them in the appendix. We remark that the lower bound for s̃(t, t+ 4, 2) can
also be deduced by their method.
• As mentioned in the previous section, an upper bound for maxk(t+k, q)

is also an upper bound for s̃(t, t+ k, q).

R e m a r k. We want to point out that the lower bounds in Table 5 are
not only existence results. All of the matrices providing the digital nets with
the given parameters can be obtained from the authors.

Proposition 2. For s ≥ 8, a digital (2, 7, s)-net over F2 cannot exist.

P r o o f. By Lemma 3(b) it suffices to show that there is no digital
(2, 7, 8)-net over F2. Assume that there is a system providing a digital
(2, 7, 8)-net over F2. Then there exists a subsystem S which is a (5, 7, 2, 8)-
system over F2. We identify a row vector in F7

2 with a subset of {0, 1, . . . , 6}
indicating the coordinates which are 1, and write S = ((x0/y0), (x1/y1), . . .
. . . , (x7/y7)) where xi, yi are subsets of {0, 1, . . . , 6} for 0 ≤ i ≤ 7. It follows
that dim[x0, . . . , x7] ≥ 5.

(1) dim[x0, . . . , x7] = 5. We can assume x0 = 0, . . . , x4 = 4 and x5, x6, x7

∈ [0, 1, . . . , 4]. It follows that x5 = x6 = 01234, which is a contradiction.
(2) dim[x0, . . . , x7] = 6. We can assume x0 = 0, . . . , x5 = 5 and x6, x7 ∈

[0, 1, . . . , 5]. It follows that x6, x7 ∈ {α, α + i : 0 ≤ i ≤ 5} with α = 012345,
which leads to a contradiction.

(3) dim[x0, . . . , x7] = 7. We can assume S = ((0/y0), . . . , (6/y6), (x7/y7))
where x7, yi are subsets of {0, 1, . . . , 6} for 0 ≤ i ≤ 7. Now let

y′i =
{
yi if i 6∈ yi,
yi + i otherwise,

for 0 ≤ i ≤ 6.

It is easy to check that S is a (5, 7, 2, 8)-system if and only if S′ = ((0/y′0), . . .
. . . , (6/y′6), (x7/y7)) is a (5, 7, 2, 8)-system. So without loss of generality we
get the above system S with i 6∈ yi, 0 ≤ i ≤ 6. It follows that 5 ≤ |x7| ≤ 7.

(a) |x7| = 7. Hence x7 = 0123456. It follows that there is no y7 such that
((0), (1), . . . , (6), (0123456/y7)) is a subsystem of S.

(b) |x7| = 6. We can assume x7 = 012345. For ((0), (1), . . . , (6),
(012345/y7)) is a subsystem of S it follows that |y7| = 4; we can assume y7 =
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0126. But now we conclude that there is no y6 such that ((0), (1), . . . , (5),
(6/y6), (012345/y7)) is a subsystem of S.

(c) |x7| = 5. We can assume x7 = 01234. Searching for some y7 we get
|y7| = 4 or 5. It follows that 5, 6 ∈ y7 and that there is no 0 ≤ i ≤ 4 such
that |yi| = 6.

(i) |y7| = 5. We can assume y7 = 01256. Now take a look at the subsys-
tem ((0/y0), (1), (2), (3/y3), (4/y4), (5), (6), (01234/01256)) of S. It is easy to
see that |y3| = |y4| = 5 and 4, 5, 6 ∈ y3 and 3, 5, 6 ∈ y4. Furthermore, we
get y3 ∈ {01456, 02456, 12456} and y4 ∈ {01356, 02356, 12356} and, without
loss of generality, y3 = 01456. Hence we have y4 = 02356 or y4 = 12356
and, without loss of generality, y4 = 02356. Looking at the cases |y0| = 4
or 5 it is easy to see that no y0 exists such that ((0/y0), (1), (2), (3/01456),
(4/02356), (5), (6), (01234/01256)) is a subsystem of S.

(ii) |y7| = 4. We can assume y7 = 0156. We find that the system S has
the form S = ((0/y0), . . . , (6/y6), (01234/0156)) with i 6∈ yi and |yi| = 4
or 5 for 0 ≤ i ≤ 6. Looking at y0 and y1 we get |y0| = |y1| = 5 and
1, 5, 6 ∈ y0 and 0, 5, 6 ∈ y1. It follows that y0 ∈ {12356, 12456, 13456}
and y1 ∈ {02356, 02456, 03456}. We can assume y0 = 12356 and therefore
y1 ∈ {02456, 03456}. We can assume y1 = 02456. Looking at several cases
we find that there is no y2 such that ((0/12356), (1/02456), (2/y2), 3, 4, 5, 6,
(01234/0156)) is a subsystem of S.

R e m a r k. In [15] it is conjectured that for prime powers q the existence
of a digital net over Fq is equivalent to the existence of a general net in base
q. But there are also many opinions against this (private communication).
The sharp bounds (for the dimension of digital nets) of the last sections will
make it easier to find counterexamples to this conjecture (if they exist).

Acknowledgements. We would like to thank Jürgen Bierbrauer and
the referee, who both independently gave us the essential hint to improve
Proposition 1 to its final form.

Appendix

A1. Digital (2, 6, 8)-net over F2



100000
101110
000011
010000







010000
010111
001100
100000







001000
101101
000110
100000







000100
011101
000011
100000







000010
101011
001100
100000







000001
011011
000110
100000







111100
101010
000011
100000







110011
010101
000011
100000



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A2. Digital (3, 7, 11)-net over F2




1000000
0100110
0000011
0100000







0100000
1010010
0000011
1000000







0010000
1101000
0000011
1000000







0001000
0110001
0000101
1000000







0000100
1011000
0000011
1000000







0000010
0101100
0000101
1000000







0000001
0010110
0001100
1000000







1110100
1010001
0000011
1000000







0111010
1100001
0000011
1000000







0011101
1001010
0000011
1000000







1111111
1001100
0000011
1000000




A3. Digital (2, 8, 6)-net over F2




10000000
01001110
10000011
00000001
00010100
01000000







01000000
10101011
00100010
00010001
00000011
10000000







00100000
11010010
00010011
00000101
00000010
10000000







00010000
01100111
00000110
00001001
00000011
10000000







00001000
10010111
00000010
00000001
00100100
10000000







00000100
00111010
00001011
10000001
00000010
10000000




B1. Digital (1, 5, 5)-net over F2 (shift method)



00001
01110
10010
00010







00010
11100
00101
00100







00100
11001
01010
01000







01000
10011
10100
10000







10000
00111
01001
00001




B2. Digital (2, 7, 7)-net over F2 (shift method)



0000001
0101110
0011010
0000110
0000010







0000010
1011100
0110100
0001100
0000100







0000100
0111001
1101000
0011000
0001000







0001000
1110010
1010001
0110000
0010000



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


0010000
1100101
0100011
1100000
0100000







0100000
1001011
1000110
1000001
1000000







1000000
0010111
0001101
0000011
0000001




B3. Digital (3, 9, 9)-net over F2 (shift method)




000000001
001011110
010110010
000100110
000001010
000000010







000000010
010111100
101100100
001001100
000010100
000000100







000000100
101111000
011001001
010011000
000101000
000001000







000001000
011110001
110010010
100110000
001010000
000010000







000010000
111100010
100100101
001100001
010100000
000100000







000100000
111000101
001001011
011000010
101000000
001000000







001000000
110001011
010010110
110000100
010000001
010000000







010000000
100010111
100101100
100001001
100000010
100000000







100000000
000101111
001011001
000010011
000000101
000000001



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