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1. Introduction. Let fk(x) be an integral-valued polynomial of degree
k with positive leading coefficient. Let G(fk(x)) be the least s such that the
Diophantine equation

(1.1) fk(x1) + . . .+ fk(xs) = n, xi ≥ 0,

is solvable for all sufficiently large integers n. Then fk(x) must satisfy the
condition that there do not exist integers c and q > 1 such that fk(x) ≡ c
(mod q) identically. This condition is equivalent ([5]) to fk(x) being of the
form

(1.2) fk(x) = akFk(x) + . . .+ a1F1(x)

(without loss of generality we have supposed that fk(0) = 0), where a1, . . .
. . . , ak are integers satisfying

(1.3) (a1, . . . , ak) = 1 and ak > 0

and

(1.4) Fi(x) =
x(x− 1) . . . (x− i+ 1)

i!
(1 ≤ i ≤ k).

The above problem was investigated by many authors (see [11] and
the references therein). The best results were obtained by L. K. Hua and
V. I. Nechaev. In [8, 9] Hua proved that

G(f3(x)) ≤ 8 and G(fk(x)) ≤ (k − 1)2k+1 for k ≥ 4.

He also announced [7] that G(f4(x)) ≤ 24 + 1 and G(f5(x)) ≤ 25 − 1, but
the proof seems never to be published (cf. [10, §27]). For the case k = 6
Nechaev [11] improved Hua’s result to G(f6(x)) ≤ 26 + 1.

In [8] Hua also proved that whenever k ≥ 4, if

(1.5) Hk(x) = 2k−1Fk(x)− 2k−2Fk−1(x) + . . .+ (−1)k−1F1(x),
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then G(Hk(x)) = 2k − 1 for odd k and 2k for even k. Then he conjectured
further (see also [10, §27]) that generally

G(fk(x)) ≤
{

2k − 1 for odd k ≥ 3,
2k for even k ≥ 4.

The purpose of this paper is to prove that the above conjecture is true
for k = 4, 5 and 6 (see Corollary 1 below). The difficulty of the work is arith-
metical rather than analytical. In fact, let G∗(fk(x)) be the least number
such that if s ≥ G∗(fk(x)) and if the singular series corresponding to the
equation (1.1) (see [6]) is positive for every n, then (1.1) has solutions in
integers xi ≥ 0. Then by a standard application of Davenport’s iteration
method we have (cf. [10, §27]):

Theorem 1A. G∗(f4(x)) ≤ 14, G∗(f5(x)) ≤ 24 and G∗(f6(x)) ≤ 37.

Furthermore, we define S∗(fk(x)) to be the least number such that if
s ≥ S∗(fk(x)) then the singular series corresponding to the equation (1.1)
is positive for every n. Hua [9, §4] actually proved that S∗(f3(x)) ≤ 23 − 1.
In this paper, we prove:

Theorem 1. S∗(f4(x)) ≤ 24, S∗(f5(x)) ≤ 25 − 1 and S∗(f6(x)) ≤ 26.

Combining this with Theorem 1A we have:

Corollary 1. G(f4(x)) ≤ 24, G(f5(x)) ≤ 25 − 1 and G(f6(x)) ≤ 26.

In the case k = 5, we prove a slightly more precise result which may be
of independent interest:

Theorem 2. Let H5(x) be as in (1.5). If

(1.6) 2 - f5(1) and f5(x) ≡ f5(1)H5(x) (mod 25) for all x,

then G(f5(x)) = 25 − 1; otherwise, we have

(1.7) S∗(f5(x)) ≤ 24 and max
f5

G(f5(x)) ≥ 24.

In view of the first assertion of (1.7), the methods of Davenport [2] and
[3] are readily adapted to give the following result.

Corollary 2. If f5(x) does not satisfy (1.6), then almost all positive
integers are representable as the sum of 16 positive values of f5(x).

R e m a r k. By the second inequality of Lemma 5.3(i), the result in Corol-
lary 2 is the best possible, in the sense that the number 16 cannot be replaced
by a smaller one.

Our results mentioned above pose two obvious questions. First, can we
establish the asymptotic formula for the number of solutions of the equation
(1.1) when s = 31 (for k = 5) or s = 2k (for k = 4 or 6)? (Cf. Theorem 1
of Hua [8].) Second, is it true that G∗(f3(x)) ≤ 7 and G∗(f5(x)) ≤ 24? By
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adapting the method of Vaughan [14], G. Yu and the author have proved,
among other things, that G∗(f5(x)) ≤ 21. On the other hand, for the clas-
sical Waring problem many achievements have recently been made by Bok-
lan [1], Heath-Brown [4], Vaughan [13, 15–17], and Vaughan and Wooley [18].
However, their methods do not appear to be applicable to the present prob-
lems.

2. Notation and preliminary results. The following notation will be
used throughout.

Let fk(x) be as in (1.2), and let d be the least common denominator
of the coefficients of fk(x). Then d | k!. For each prime p, we define pt to
be the highest power of p dividing d, and write ptfk(x) = ϕk(x). Then the
denominators of the coefficients of ϕk(x) are not divisible by p. Let θ(i) be
the greatest integer such that the ith derivative of ϕk(x) satisfies

ϕ
(i)
k (x) ≡ 0 (mod pθ

(i)
)

for all x, and let f∗k (x) = p−θ
′
ϕ′k(x). Let

(2.1) δ = max
1≤i≤k−1

(θ(i) − θ(i+1)).

We note that pδ ≤ k − 1 (see [6, Lemma 7.4]). Let

(2.2) γ =
{
θ′ − t+ δ + 2 for p = 2,
θ′ − t+ δ + 1 for p > 2.

Of course, γ depends on both p and fk(x). We define Γ ∗(fk(x), pγ) to be
the least s such that the congruence

fk(x1) + . . .+ fk(xs) ≡ n (mod pγ)

has a primitive solution, that is, a solution with the f∗k (xi) not all divisible
by p, for every n. Also, for any l > 0 we define Γ (fk(x), pl) to be the least
s for which the congruence

fk(x1) + . . .+ fk(xs) ≡ n (mod pl)

has a solution for every n. It follows from the definition that (cf. [6,
Lemma 7.8])

(2.3) Γ (fk(x), pγ) ≤ Γ ∗(fk(x), pγ) ≤ Γ (fk(x), pγ) + 1

and

(2.4) G(fk(x)) ≥ max
p,l

Γ (fk(x), pl).

By Theorem 2 of Hua [8], Theorem 1A (with k = 5) and (2.4), we see
that in order to establish Theorems 1 and 2, it will suffice to prove the
following results.
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Theorem 3. (i) For k = 4 and 6 we have Γ ∗(fk(x), pγ) ≤ 2k.
(ii) If f5(x) satisfies (1.6), then

Γ ∗(f5(x), pγ) ≤ 25 − 1 and Γ (f5(x), 2γ) = 25 − 1;

otherwise

Γ ∗(f5(x), pγ) ≤ 24 and max
f5

Γ (f5(x), 25) ≥ 24.

It is easily seen that the first assertion of (i) (i.e. for k = 4) is a straight-
forward consequence of the second one of (ii). Moreover, we note that the
case p > k of Theorem 3 follows readily from Lemma 2.1 below.

Lemma 2.1 (Hua [8]). For p > k we have Γ ∗(fk(x), pγ) ≤ 2k.

Therefore, to prove Theorem 3 it will suffice to consider the cases when
k = 5 and 6 and p ≤ k.

The proof of Theorem 3 (see Sections 3 to 6) is elementary but very
delicate. The main difficulty of the argument lies in that when p ≤ k, in
particular when p = 2, we generally lack in understanding the behaviour of
the value set {fk(x) mod pγ} which depends on θ(i) (i ≥ 1) defined previ-
ously. This makes it very difficult and complicated to compute Γ ∗(fk(x), pγ),
even if k is fairly small.

Before proceeding further we record some results that will be useful later.
Firstly, we need the following well-known result (cf. [8, Lemma 2.1]).

Lemma 2.2. Let α1, . . . , αr be r different residue classes modh, and
β1, . . . , βs be s different residue classes modh, and (β1, . . . , βs, h) = 1. Then
the number of different residue classes represented by

αi or αi + βj (1 ≤ i ≤ r, 1 ≤ j ≤ s)
is greater than or equal to min(r + s, h).

Secondly, let p be prime. For integers x1, . . . , xr with (x1, . . . , xr, p) = 1
and l > 0, we denote by R(x1, . . . , xr; pl) the least number of summands
x1, . . . , xr sufficient to represent every residue class mod pl. The following
result is obvious (see [11, Lemma 2.5]).

Lemma 2.3. If u ≥ v > 0, and (α1, . . . , αr, p) = (β1, . . . , βs, p) = 1, then

R(α1, . . . , αr, β1p
v, . . . , βsp

v; pu) ≤ R(α1, . . . , αr; pv) +R(β1, . . . , βs; pu−v).

Finally, we have (see the proof of Hua [8, Lemma 3.2])

Lemma 2.4. The derivatives of f6(x) are given by

f ′6(x) = a6F5(x) +
(
− a6

2
+ a5

)
F4(x) +

(
a6

3
− a5

2
+ a4

)
F3(x)(2.5)

+
(
− a6

4
+
a5

3
− a4

2
+ a3

)
F2(x)
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+
(
a6

5
− a5

4
+
a4

3
− a3

2
+ a2

)
F1(x)

+
(
− a6

6
+
a5

5
− a4

4
+
a3

3
− a2

2
+ a1

)
,

f ′′6 (x) = a6F4(x) + (−a6 + a5)F3(x) +
(

11
12
a6 − a5 + a4

)
F2(x)(2.6)

+
(
− 5

6
a6 +

11
12
a5 − a4 + a3

)
F1(x)

+
(

137
180

a6 − 5
6
a5 +

11
12
a4 − a3 + a2

)
,

f ′′′6 (x)= a6F3(x)+
(
−3

2
a6 + a5

)
F2(x)+

(
7
4
a6 − 3

2
a5 + a4

)
F1(x)(2.7)

+
(
− 15

8
a6 +

7
4
a5 − 3

2
a4 + a3

)
,

f
(4)
6 (x) = a6F2(x) + (−2a6 + a5)F1(x) +

(
17
6
a6 − 2a5 + a4

)
,(2.8)

f
(5)
6 (x) = a6F1(x) +

(
− 5

2
a6 + a5

)
.(2.9)

3. Proof of Theorem 3(i) for k = 6 and p = 2. From Section 2 we
have

(3.1) 0 ≤ t ≤ 4 and 0 ≤ δ ≤ 2.

First of all, it is easy to see that θ′ ≤ 3 when t = 1 or 2 and that θ′ ≤ 4
when t = 3 or 4. Thus, by (2.2) we have γ ≤ 6 for the case t > 0. Since
f6(x) assumes both odd and even values modulo 2γ , therefore, by (2.3) and
repeated application of Lemma 2.2 we have

Γ ∗(f6(x), 2γ) ≤ Γ (f6(x), 26) + 1 ≤ 26.

Henceforward we assume that t = 0. Then f6(x) = ϕ6(x), 24 | a6,
23 | (a4, a5) and 2 | (a2, a3). For convenience we put

(3.2)
ai
i!
≡ bi (mod 2γ) (i = 2, . . . , 6).

Now a1 must be odd; without loss of generality we may assume that a1 = 1
(see the remarks following Lemma 16.3 of Hua [9]). Moreover, it is easy to
see that

(3.3) 0 ≤ θ′ ≤ 5 when t = 0.

Lemma 3.1. If t = 0 and 0 ≤ θ′ ≤ 3, then Γ ∗(f6(x), 2γ) ≤ 26.

P r o o f. See the proof of Nechaev [11, Lemma 2.6].
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Lemma 3.2. If t = 0 and θ′ = 4, then Γ ∗(f6(x), 2γ) ≤ 26.

P r o o f. Clearly γ ≤ 8. By (2.5) and (3.2) we can deduce that

(3.4) 2 | b6, 2 ‖ b5, 2 - b4, b3 ≡ −2 (mod 23), b2 ≡ −1 (mod 22).

Moreover, we record for future use that

(3.5) 23 | (2b6 + 2b4 − b3) and 24 | (−6b4 + 2b3 − b2 + 1),

which are easily seen from (2.5), (3.2) and (3.4). Let bi = 2b′i (i = 5, 6). We
consider two cases.

(I) 2 | b′6. Then by (3.4) and (3.5), b4 ≡ −1 (mod 22) and b2 ≡ 3 (mod 23).
Thus f6(2) ≡ 23c (mod 28) with 2 - c. It follows from Lemma 2.3 that

Γ (f6(x), 2γ) ≤ R(f6(0), f6(1), f6(2); 28) ≤ R(0, 1; 25) +R(0, c; 23) ≤ 25 + 23,

which is more than is required.
(II) 2 - b′6. Then b4 ≡ 1 (mod 22) and b2 ≡ −1 (mod 23). Further, in

view of γ ≤ 8, we may suppose that

(3.6) b2 ≡ −1 (mod 25), i.e. f6(2) ≡ 0 (mod 26),

for in the contrary case the lemma follows as above. Then, by (3.4)–(3.6),
b4 ≡ 5 (mod 23). Now, by Lemma 2.4, we find that

f ′′6 (x) ≡ −22(b′5 + 1)x+ 23 (mod 24),(3.7)

f ′′′6 (x) ≡ 23x+ 22(b′5 + b′6) (mod 24),(3.8)

(3.9) f
(4)
6 (x) ≡ 23 (mod 24), and θ(5) = θ(6) = 5.

It follows from (2.1) that δ = 1 and so γ = 7. Finally, by Taylor’s expansion
we have, for any x,

(3.10) f ′6(x+ 2)− f ′6(x) ≡ 23(b′5 − 1)x+ 23(b′5 + b′6 − 2) (mod 25).

We are now in a position to prove the lemma. When 4 | (b′5− 1), we have

(3.11) f6(3) ≡
4∑

i=0

f
(i)
6 (1)2i

i!
≡ 1 +

f
(4)
6 (1)24

4!
≡ 1 + 24 (mod 25).

From this it is easily seen that Γ (f6(x), 27) ≤ 24 + 25, and the lemma
thus follows. Hence, recalling that 2 - b′5, we may assume from now on that
2 ‖ (b′5 − 1). Then, by (3.7) to (3.9) and Taylor’s expansion, we have

(3.12) either 2 - f∗6 (x) or f6(x+ 4) ≡ f6(x) + 26 (mod 27) for any x.

Suppose first that 2 ‖ (b′6 − 1). Then (3.10) becomes

f ′6(x+ 2)− f ′6(x) ≡ 24x (mod 25) for any x.
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It follows that either 25 | f ′6(1) or 25 | f ′6(3). If 25 | f ′6(1), then 24 ‖ f ′6(3). Also,
we may suppose now that

f6(3) ≡ 1 or 1 + 26 (mod 27),

for in the contrary case, in view of (3.12) with x = 1, f6(x) takes at least
three distinct odd values modulo 27, and then the lemma follows from γ = 7
and Lemma 2.2. Therefore, it is now easily seen that one of the following
four cases holds:

f6(0) ≡ 0, f6(3) ≡ 1, f6(5) ≡ 1 + 26 (mod 27), 2 - f∗6 (0)f∗6 (3);

f6(0) ≡ 0, f6(1) ≡ 1, f6(3) ≡ 1 + 26 (mod 27), 2 - f∗6 (0)f∗6 (3);

f6(3) ≡ 1, f6(4) ≡ 26, f6(5) ≡ 1 + 26 (mod 27), 2 | f∗6 (0), 2 - f∗6 (3);

f6(1) ≡ 1, f6(4) ≡ 26, f6(3) ≡ 1 + 26 (mod 27), 2 | f∗6 (0), 2 - f∗6 (3);

and the lemma can be verified directly. When 25 | f ′6(3), by the same argu-
ment, the lemma also follows.

Suppose now that 4 | (b′6 − 1). Then (3.10) becomes

f ′6(x+ 2)− f ′6(x) ≡ 24x+ 24 (mod 25) for any x.

From this, (3.6) and (3.12), the lemma follows in a similar manner to the
above.

The proof of Lemma 3.2 is now complete.

Lemma 3.3. If t = 0 and θ′ = 5, then Γ ∗(f6(x), 2γ) ≤ 26.

P r o o f. Clearly γ ≤ 9 and (3.4) still holds. Further, by the hypothesis
of the lemma and (2.5), we have (retaining the notation of the proof of
Lemma 3.2), in particular,

(3.13) 2 - b′6, 4 | (b′5 − b4).

Hence b2 ≡ −1 (mod 23) and b4 ≡ 1 (mod 22) (see the beginning of Lemma
3.2(II)), so that, by (3.13),

(3.14) 4 | (b′5 − 1).

Moreover, in view of γ ≤ 9 and b2 ≡ −1 (mod 23), we may suppose now
that b2 ≡ −1 (mod 25) (see (3.6)), thus (3.7) to (3.9) are valid in the present
situation. Therefore, on noting that (3.14), 2 - b′6 and 25 | f ′6(x), we have (cf.
(3.11))

f6(3) ≡ 1 + 24 (mod 25) and f6(4) ≡ 26 (mod 27),

and the lemma follows from Lemmas 2.2 and 2.3 easily.

In view of (3.3), the proof of Theorem 3(i) for k = 6 and p = 2 is now
complete.



138 H. B. Yu

4. Proof of Theorem 3(i) for k = 6. In view of the remark following
Lemma 2.1 and the result of Section 3, we see that to complete the proof of
Theorem 3(i) for k = 6 we need only prove the following two lemmas.

Lemma 4.1. Γ ∗(f6(x), 3γ) ≤ 41.

P r o o f. We have 0 ≤ t ≤ 2 and δ ≤ 1. When t > 0 the lemma is trivial.
If t = 0, then 32 | a6, 3 | (a3, a4, a5) and θ′ ≤ 2. If θ′ ≤ 1, the lemma is again
trivial. Hence, it remains to consider the case of θ′ = 2. We then have γ ≤ 4
and (using (2.5))

32 | a5, 32

∣∣∣∣
(
a6

3
+ a4

)
, 3

∣∣∣∣
(
a4

3
+ a2

)
,

which, together with Lemma 2.4, implies that θ(i) ≥ 1 (2 ≤ i ≤ 6).
If 33 | a6, then 3 | a2 and so 3 - a1 by (1.3). Thus

f6(x) ≡ a1x (mod 3) for any x.

From this and Lemma 2.2 the lemma follows easily.
If 32 ‖ a6, then by contradiction it is easy to prove that there exists x0

such that

(4.1) f6(x0 + 3) 6≡ f6(x0) (mod 34).

On the other hand, by Taylor’s expansion we have

(4.2) f6(x0 + 3) ≡ f6(x0) (mod 32).

Thus, if 3 - f6(x0) then 3 - f6(x0 + 3), and the lemma follows from γ ≤ 4,
(4.1) and Lemma 2.2. If 3 | f6(x0) then 3 | f6(x0 + 3). Also, from (4.1) we see
that at least one of f6(x0) and f6(x0 + 3) is not divisible by 34, and then
the lemma follows from Lemma 2.3.

Lemma 4.2. Γ ∗(f6(x), 5γ) ≤ 32.

P r o o f. Clearly, t ≤ 1 and δ ≤ 1. If t = 1, the result is trivial. If t = 0,
then 5 | (a5, a6) and θ′ ≤ 1. We may assume that θ′ = 1; then γ ≤ 3 and

(4.3) 5 | (a3, a4), 5
∣∣∣∣
(
a6

5
+ a2

)
.

If 5 | a2, then 5 - a1 and the lemma follows as in the proof of Lemma 4.1.
If 5 - a2, then it is easily seen by (4.3) that 5 - f ′′6 (0). Moreover, we have

f ′6(5x)− f ′6(5(x− 1)) ≡ 5f ′′6 (0) (mod 52), x = 1, . . . , 4.

From this we deduce that there exists l (0 ≤ l ≤ 4) such that 52 | f ′6(5l).
Therefore f6(5) ≡ 52c (mod 53) with 5 - c, and the lemma follows.
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5. Proof of Theorem 3(ii) for p = 2. We have

(5.1) 0 ≤ t ≤ 3 and 0 ≤ δ ≤ 2.

When t > 0, our result can be proved easily (see the beginning of Sec-
tion 3).

Henceforward we assume that t = 0. Then a1 must be odd, and we may
assume that a1 = 1. We again put

(5.2)
ai
i!
≡ bi (mod 2γ) (i = 2, . . . , 5).

Also, it is easy to see that

(5.3) 0 ≤ θ′ ≤ 4 when t = 0.

Lemma 5.1. If t = 0 and θ′ = 1, then Γ ∗(f5(x), 2γ) ≤ 24.

P r o o f. Clearly, γ ≤ 5 and θ(i) ≥ 1 (i = 2, . . . , 5). By Taylor’s expansion
we have

f ′5(x+ 2)− f ′5(x) ≡ 0 (mod 22) for any x.

Thus, if 22 | f ′5(0), then 22 | f ′5(x) for any even x. It follows that there exists
an odd x0 such that 2 ‖ f ′5(x0), which implies 2 ‖ f ′5(1), and therefore

f5(5) ≡ f5(1)+4f ′5(1) ≡ 1+23 (mod 24) and f5(9) ≡ 1+24 (mod 25).

The lemma follows from γ ≤ 5 and Lemma 2.2 immediately.
If 2 ‖ f ′5(0), then f5(4) ≡ 23 (mod 24), and the lemma also follows.

Lemma 5.2. If t = 0 and θ′ = 2, then Γ ∗(f5(x), 2γ) ≤ 24.

P r o o f. By (2.5) and (5.2), we have

(5.4) 2 | b3, 22 | (2b5 + b3 + 2b2), 22 | (2b4 − b2 + 1).

When 2 | b4, it is easily verified that γ = 5 and f5(2) ≡ 22 (mod 23), and
then the lemma follows at once. Hence we may assume from now on that
2 - b4. Then, by (5.4),

(5.5) b2 ≡ −1 (mod 22), i.e. f5(2) ≡ 0 (mod 23).

Suppose first that 2 | b5. Then 2 ‖ b3 by (5.4). By Lemma 2.4 we now have

(5.6) 2 ≤ θ′′ ≤ 3, 2 ≤ θ′′′ ≤ 3 ≤ θ(4) ≤ θ(5).

Thus γ ≤ 5 and (by using Taylor’s expansion)

f ′5(x+ 2)− f ′5(x) ≡ 0 (mod 23) for any x.

Hence, if 23 | f ′5(1), then 22 ‖ f ′5(x) for any even x, and so

f5(4) ≡ f5(0) + 4f ′5(0) ≡ 24 (mod 25).

If 22 ‖ f ′5(1), then 22 ‖ f ′5(5) and f5(5) ≡ 1 + 24 (mod 25). In both cases the
lemma can be verified directly.
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Suppose now that 2 - b5. Then it is easily seen that γ = 5. Also, we have
22 | f ′′5 (x) and 2 ‖ f ′′′5 (x) for any even x, and therefore,

f ′5(x+ 2)− f ′5(x) ≡ 22 (mod 23) for any even x.

From this and (5.5), the lemma follows in the same way as above.

Lemma 5.3. (i) Suppose that t = 0 and θ′ = 3. If f5(x) does not satisfy
(1.6), then

Γ ∗(f5(x), 2γ) ≤ 24 and max
f5

Γ (f5(x), 25) ≥ 24.

(ii) If f5(x) satisfies (1.6), then

Γ ∗(f5(x), 2γ) = Γ (f5(x), 2γ) = 25 − 1.

P r o o f o f (i). From (2.5) we can deduce that 2 - b2b4, 2 | b5 and 2 ‖ b3.
Hence (5.5) and (5.6) still hold (see the proof of Lemma 5.2). Thus γ ≤ 6.
Moreover, if b2 ≡ 3 (mod 23), then the lemma follows easily. Hence by (5.5)
we may assume from now on that

(5.7) b2 ≡ −1 (mod 23), i.e. f5(2) ≡ 0 (mod 24).

We divide into cases:

(I) 4 | b5. Then, from the hypothesis of the lemma, (2.5) and (5.7), we
further have b3 ≡ 2 (mod 23) and b4 ≡ 1 (mod 22). Now it is easily verified
that θ′′′ = 3 and 22 ‖ f ′′5 (x) for any odd x. Thus, by using Taylor’s expansion
and (5.6), we have

(5.8) f5(3) ≡ 1 + 23 (mod 24)

and

(5.9) f ′5(x+ 2)− f ′5(x) ≡ 23 (mod 24) for any odd x.

We will show that the congruence

(5.10) f5(x1) + . . .+ f5(xs) ≡ m (mod 26), 0 ≤ m ≤ 26 − 1,

has a solution for s = 15, and then, in view of (2.3), the first assertion of (i)
follows.

We write m = 24u+ v with 0 ≤ u ≤ 3 and 0 ≤ v ≤ 24− 1. When v 6= 23,
by (5.8) we see that 7 summands f5(0), f5(1) and f5(3) are sufficient for
representing v mod 24. Hence, in order to establish the desired result, it will
suffice to verify that 8 summands f5(1), f5(3), f5(5) and f5(7) are sufficient
for representing 24u and m = 24u+ 23 (1 ≤ u ≤ 3) mod 26.

Indeed, if 23 ‖ f ′5(1), then 24 | f ′5(3) by (5.9) and therefore (noting that
22 ‖ f ′′5 (3))

(5.11) f5(7) ≡ f5(3) + 4f ′5(3) +
f ′′5 (3)42

2!
≡ f5(3) + 25 (mod 26).
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From this and (5.8) we may suppose that f5(3) ≡ 1 + 23 or 1 + 23 + 24

(mod 26). It follows that 7f5(1) + f5(7) or 5f5(1) + 3f5(7) is congruent
modulo 26 to 3 · 24. Furthermore, it is easy to check that 7f5(1) + f5(3),
6f5(1) + 2f5(3), 5f5(1) + 3f5(3), 4f5(1) + 4f5(3) and 6f5(1) + f5(3) + f5(7)
are congruent modulo 26 to 24u (u = 1, 2) and 24u+ 23 (u = 1, 2, 3). Hence
the desired result follows.

If 24 | f ′5(1), then f5(5) ≡ 1 + 25 (mod 26) and so

f5(5) + f5(3)− f5(1) ≡ f5(3) + 25 (mod 26).

Hence, we can replace f5(7) by f5(5) + f5(3)− f5(1) in the above argument
(see (5.11)), and then the desired result follows easily.

(II) 2 ‖ b5. Similar to case (I), we have

(5.12) b3 ≡ −2 (mod 23) and b4 ≡ 1 (mod 22).

Also, it is easily verified that θ′′ = 3 and 22 ‖ f ′′′5 (x) for any x. Then

(5.13) f5(3) ≡ 1 (mod 24),

(5.14) f ′5(x+ 2)− f ′5(x) ≡ 23 (mod 24) for any x,

and

(5.15) f5(x+ 4y) ≡ f5(x) + 4yf ′5(x) (mod 26) for any x and y.

Because f5(x) does not satisfy (1.6) (note that we have supposed that
f5(1) = a1 = 1), we see from (1.6), (5.2), (5.12) and 2 ‖ b5 that at least one of
b2 ≡ −1 (mod 24) and b3 ≡ 6 (mod 24) cannot be satisfied, or equivalently,
the following two congruences:

(5.16) f5(2) ≡ 0 (mod 25) and f5(3) ≡ 1 (mod 25)

cannot both hold. We will show that when s = 16 the congruence (5.10) has
a primitive solution.

In fact, if f5(2) 6≡ 0 (mod 25), then by (5.7), f5(2) ≡ 24 or 3 · 24

(mod 26). From this, (5.14) and (5.15), the following is easily seen:
There are xi (1 ≤ i ≤ 4), 0 ≤ xi ≤ 7, such that 2 - f∗5 (xi) and that

the values of f5(xi) are congruent modulo 26 to either 1, 24, 1 + 25, 3 · 24 or
24, 1 + 24, 3 · 24, 1 + 3 · 24 or 0, 1, 25, 1 + 25 or 0, 1 + 24, 25, 1 + 3 · 24.

Hence, recalling that f5(2) ≡ 24 or 3 · 24 (mod 26), the first assertion of
(i) can now be verified directly.

If f5(3) 6≡ 1 (mod 25), then f5(3) ≡ 1 + 24 or 1 + 3 · 24 (mod 26) by
(5.13). In this case we have the same result as above, and the first assertion
of (i) also follows.

Furthermore, when f5(2) ≡ 0 and f5(3) 6≡ 1 (mod 25), it is easy to see
that (using (5.15)) f5(x) takes only three different values, 0, 1 and 1 + 24,
mod 25. Thus Γ (f5(x), 25) ≥ 24. This proves the second assertion of (i).

The proof of (i) is now complete.
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P r o o f o f (ii). If f5(x) satisfies (1.6), it is easily seen that t = 0, θ′ = 3
and γ = 6. Further, (5.14)–(5.16) hold. Then, by an argument similar to the
above, the desired results can be verified directly.

Lemma 5.4. If t = 0 and θ′ = 4, then Γ ∗(f5(x), 2γ) ≤ 24.

P r o o f. From the proof of Lemma 3.2 (taking b6 = 0), we have

2 ‖ b5, b4 ≡ −1 (mod 22), b3 ≡ −2, b2 ≡ 3 (mod 23).

It follows by Lemma 2.4 that

22 ‖ f ′′5 (x) for any x, θ′′′ = 2 and 3 ≤ θ(4) ≤ θ(5).

Thus γ = 8. Further, on applying Taylor’s expansion, we have

(5.17) f5(x+ 4) ≡ f5(x), f ′5(x+ 4)− f ′5(x) ≡ 24 (mod 25) for any x.

Similarly,

(5.18) f5(2) ≡ 23, f5(3) ≡ 1+23 (mod 24) and f5(4) ≡ 25 (mod 26).

Let f5(2) ≡ 23c1, f5(3) ≡ 1 + 23c2 (mod 25) and f5(4) ≡ 25c3 (mod 28),
where c1, c2 = 1 or 3 and 2 - c3. It is easily verified that 9 summands 0, 1, 23c1
and 1+23c2 are sufficient for representing every residue classes mod 25. Thus

Γ (f5(x), 28) ≤ R(f5(0), f5(1), f5(2), f5(3), f5(4); 28)(5.19)

≤ R(0, 1, 23c1, 1 + 23c2; 25) +R(0, c3; 23)

≤ 9 + 7 = 24.

On the other hand, replacing f5(l) by f5(l + 4) (see (5.17)) if necessary,
we may suppose that 2 - f∗5 (l) (l = 0, 1, 2, 3). Then the lemma follows from
this and (5.19) immediately.

In view of (5.3), the proof of Theorem 3(ii) for p = 2 is now complete.

6. Proof of Theorem 3(ii). By Lemma 2.1 and the result of Section 5,
we see that to complete the proof of Theorem 3(ii), it suffices to prove the
following two lemmas.

Lemma 6.1. Γ ∗(f5(x), 3γ) ≤ 24.

P r o o f. Clearly, t ≤ 1 and δ ≤ 1. When t = 1 the result is trivial. If t = 0
then θ′ ≤ 2. For the case θ′ = 1 the lemma can be proved by an argument
similar to that used in Lemma 4.2. If θ′ = 2, then we have

(6.1) 32 ‖ a5, 32 | a4, 3 ‖ a3, 3 | a2, 3 - a1,

(6.2) 32

∣∣∣∣
(
a5

3
+ a3

)
, 32

∣∣∣∣
(
a4

3
− a3

2
+ a2

)
, 32

∣∣∣∣
(
a3

3
− a2

2
+ a1

)
.

Without loss of generality we may assume that a1 = 1, so that

(6.3) f5(x) ≡ x (mod 3) for any x.
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From (6.1) and (6.2) we have θ(i) ≥ 1 (2 ≤ i ≤ 5) and γ = 4. Also, for any l,

(6.4) f ′′5 (3l) ≡ 2(a2 − a3), f ′′5 (3l) + f ′′′5 (3l) ≡ 2(a2 + a3) (mod 32),

(6.5) f ′′5 (3l + 1) ≡ 2a2, f ′′5 (3l + 1) + f ′′′5 (3l + 1) ≡ 2(a2 − a3) (mod 32),

and

(6.6) f ′′5 (3l + 2) ≡ 2(a2 + a3), f ′′5 (3l + 2) + f ′′′5 (3l + 2) ≡ 2a2 (mod 32).

We divide into cases:

(I) 3 ‖ (a2 − a3). By (6.4) and an argument similar to that used in
Lemma 4.2, we infer that there exist l1 and l2 (0 ≤ l1, l2 ≤ 2) such that
32 ‖ f ′5(3l1) and 33 | f ′5(3l2). Therefore, by using Taylor’s expansion and (6.4),
we find that either f5(3) or f5(6) is congruent mod 34 to 33c with 3 - c, and
the lemma follows from (6.3) easily.

(II) 32 | (a2 − a3). Then by (6.2) we have (noting that a1 = 1)

(6.7) a2 ≡ 6 (mod 32).

Moreover, in view of 3 ‖ a3, we have 3 ‖ a2 and 3 ‖ (a2 + a3). Hence, similar
to case (I), we deduce that there exist l3 and l4 (1 ≤ l3, l4 ≤ 2) such that

(6.8) f5(3l3 + 1) ≡ f5(1) + 33c1 ≡ 1 + 33c1 (mod 34), c1 = 1 or 2,

and

(6.9) f5(3l4 + 2) ≡ f5(2) + 33c2 (mod 34), c2 = 1 or 2.

We now complete the proof of the lemma by showing that the congruence

(6.10) f5(x1) + . . .+ f5(x15) ≡ m (mod 34), 0 ≤ m ≤ 34 − 1,

has a solution.
We write m = 33u + v with 0 ≤ u ≤ 2 and 0 ≤ v ≤ 33 − 1. We note

first that, by (6.3) and Lemma 2.2, 13 summands f5(0), f5(1) and f5(2) are
sufficient for representing every residue class mod 33, and 2 summands f5(1)
and f5(3l3 + 1) are sufficient for representing 33 + 2 and 2 · 33 + 2 mod 34.
Thus, when v ≥ 2 the congruence (6.10) has a solution.

Next we verify the solubility of (6.10) when m = 33u + v (0 ≤ u ≤ 2,
v = 0, 1). From a1 = 1 and (6.7) we see that

f5(2) ≡ 33i+ 32j − 1 (mod 34) (0 ≤ i ≤ 2, 1 ≤ j ≤ 3).

If i = 0 the result is trivial. If i = 1, without loss of generality we may
assume that c2 = 1 in (6.9). Then

f5(3l3 + 1) + f5(2) ≡ 32j or f5(3l3 + 1) + f5(3l4 + 2) ≡ 32j (mod 34).

Now the desired result can be verified directly. If i = 2, the argument is
similar. This completes the proof of Lemma 6.1.

Lemma 6.2. Γ ∗(f5(x), 5γ) ≤ 7.
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P r o o f. Clearly, t ≤ 1 and δ = 0. It is easily seen that we need only
consider the case t = 0. Then θ′ ≤ 1 and so γ ≤ 2. Further, from (2.5) we
have 5 | (a2, a3, a4, a5), so that 5 - a1. The lemma follows at once.
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