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1. Introduction. In 1920’s, Hardy and Littlewood introduced an ana-
lytic method for solving Waring’s problem: That is, they showed that every
sufficiently large natural number can be expressed as a sum of at most s
kth powers, where s depends only on k. Let Rs(n) denote the number of
representations of n as the sum of s kth powers. The idea of the Hardy–
Littlewood method is to show that there is an asympotic formula for Rs(n)
when n is sufficiently large, i.e.

(1) Rs(n) = (Ss(n) + o(1))Γ
(

1 +
1
k

)s

Γ

(
s

k

)−1

ns/k−1,

where Ss(n) is called the singular series and defined by

(2) Ss(n) =
∞∑

q=1

q∑
a=1

(a,q)=1

(S(q, a)/q)se(−an/q),

with

S(q, a) =
q∑

m=1

e(amk/q).

Let G̃(k) denote the least integer t such that (1) holds for all s ≥ t.
Hardy and Littlewood [3] also obtained G̃(k) ≤ (k − 2)2k−1 + 5 for k ∈ N.
Hua [5] obtained G̃(k) ≤ 2k + 1 for small k, and Vaughan [10, 11] improved
this to G̃(k) ≤ 2k for k ≥ 3. In 1988, Heath-Brown [4] showed that G̃(k) ≤
7 · 2k−3 + 1 for k ≥ 6 and Boklan [1] recently obtained G̃(k) ≤ 7 · 2k−3. For
large k Vinogradov [12] proved that G̃(k) ≤ 183k9(log k +1)2 and then Hua
[6] showed that G̃(k) ≤ (4 + o(1))k2 log k as k →∞. Recently, Wooley [13]
obtained G̃(k) ≤ (2 + o(1))k2 log k as k →∞ by using an improved form of
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Vinogradov’s Mean Value Theorem. It seems likely that G̃(k) = O(k), and
Vaughan has conjectured that (1) holds whenever s ≥ max(k + 1, Γ0(k))
where Γ0(k) is the least s such that for every n and q the congruence xk

1 +
. . . + xk

s ≡ n (mod q) has a solution with (x1, q) = 1.
In this paper, we wish to show that the usual approximation to Rs(n)

cannot always be very precise. We will obtain some analogues of the theo-
rems in [7].

First of all, we restrict ourselves to k > 2.

Theorem 1. Suppose that 1/2 ≤ r < 1 and k + 1 ≤ s < 2k. Then

(3)
∞∑

n=1

(
Rs(n)− Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(n)ns/k−1

)2

rn � Rs/k,

where R = (1− r)−1.

Corollary 1. Suppose that k + 1 ≤ s < 2k. As x →∞, we have

(4)
∑
n≤x

(
Rs(n)− Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(n)ns/k−1

)2

= Ω(xs/k).

Theorem 2. Suppose that s ≥ k + 2 is fixed and 1/2 ≤ r < 1. Then

(5)
∞∑

n=1

(
Rs(n)− Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(n)ns/k−1

)
rn

= −s

2
Γ

(
1 +

1
k

)s−1

R(s−1)/k + O(R(s−2)/k),

where R = (1− r)−1.

Corollary 2. Suppose that s ≥ k + 2 is fixed and 1/2 ≤ r < 1. Then
∞∑

n=1

(
Rs(n)− Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(n)ns/k−1

)2

rn

≥ s2

4
Γ

(
1 +

1
k

)2s−2

R(2s−2)/k−1 + O(R(2s−3)/k−1).

Corollary 3. Suppose that s is fixed and s ≥ k + 2. As x → ∞, we
have∑

n≤x

(
Rs(n)− Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(n)ns/k−1

)2

= Ω(x(2s−2)/k−1).

R e m a r k. Note that when k = 2, Theorem 2 and Corollaries 2 and 3
hold for s ≥ 5. The proofs of these results are exactly the same as in the
case k > 2, except that the condition s ≥ k + 2 is replaced by s ≥ 5.
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The following corollary shows that the approximation of Rs(n) by the
asymptotic formula cannot be very precise.

Corollary 4. For k ≥ 3,

Rk+1(n)− Γ

(
1 +

1
k

)k

Sk+1(n)n1/k = Ω(n1/(2k)),

and for s ≥ k + 2 and k ≥ 3,

Rs(n)− Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(n)ns/k−1 = Ω−(n(s−1)/k−1).

When k = 2, the analogue of Theorem 2 cannot apply for s = 4. How-
ever, we can use some elementary arguments to obtain a similar result.

Theorem 3. For k = 2,

R4(n)− π2

16
S4(n)n = Ω−(n1/2),

and for k = 2 and s ≥ 5,

Rs(n)− πs/2

2s
Γ

(
s

2

)−1

Ss(n)ns/2−1 = Ω−(ns/2−3/2).

Note that r4(n) = card{(x1, . . . , x4) ∈ Z4 : x2
1 + . . . + x2

4 = n} satisfies
r4(n) = π2S4(n)n.

2. Preliminary lemmas

Lemma 1. Suppose that 1/2 ≤ r < 1 and R = (1 − r)−1. Then, as
r → 1−,
(6) f(r) ∼ L(r),

where f(r) =
∑∞

n=1 rnk

and

(7) L(r) = Γ

(
1 +

1
k

)
(1− r)−1/k.

In addition,
(8) f(r)− L(r) = −1/2 + O((1− r)1/k),
where k ≥ 2.

P r o o f. Suppose that Φ has a continuous second derivative on [0,∞).
Then, by the Euler–Maclaurin summation formula, we have∑

1≤n≤x

Φ(n) =
x∫

1

Φ(y) dy + 1
2Φ(1)−B1(x)Φ(x)(9)

+
x∫

1

B1(y)Φ′(y) dy
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=
x∫

1

Φ(y) dy + 1
2Φ(1)−B1(x)Φ(x) + [B2(y)Φ′(y)]x1

−
x∫

1

B2(y)Φ′′(y) dy,

where Bj(x) = bj({x}), b1(y) = y− 1
2 , b2(y) = 1

2y2− 1
2 + 1

12 . Put Φ(y) = ryk

.
Then

Φ′(y) = −kyk−1ryk

(
log

1
r

)
,(10)

Φ′′(y) = −k(k − 1)yk−2ryk

(
log

1
r

)
+ (kyk−1)2ryk

(
log

1
r

)2

,(11)

and Φ(1) = r.

Let y0 =
(

k−1
k log(1/r)

)1/k. Then, by (11), Φ′′(y) ≤ 0 for y ≤ y0, and
Φ′′(y) ≥ 0 for y ≥ y0. Hence, assuming r ≥ 1/

√
e,∣∣∣ ∞∫

1

B2(y)Φ′′(y) dy
∣∣∣ ≤ 1

12

y0∫
1

− Φ′′(y) dy +
1
12

∞∫
y0

Φ′′(y) dy(12)

=
1
12

Φ′(1)− 1
6
Φ′(y0)

=
−kr

12
log

1
r

+
1
6
kyk−1

0 ryk
0

(
log

1
r

)
(by (10))

=
−kr

12
log

1
r

+
1
6
y−1
0

k − 1
log(1/r)

ryk
0

(
log

1
r

)
=
−kr

12
log

1
r

+
k − 1

6
ryk

0

(
k log(1/r)

k − 1

)1/k

.

Put Φ(y) = ryk

in (9). By (12), we have

(13)
∞∑

n=1

rnk

=
∞∫

1

ryk

dy +
r

2
+ O

((
log

1
r

)1/k)
.

By changing variable u = yk log(1/r), this is

(14)
∞∫

log(1/r)

(
log

1
r

)−1/k 1
k

u1/k−1e−u du +
r

2
+ O

((
log

1
r

)1/k)
.

We will extend the range of the integral, so we need to estimate the value
of the integral from 0 to log(1/r), and note that then e−y = 1+O(y). Thus
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log(1/r)∫
0

(
log

1
r

)−1/k 1
k

y1/k−1e−y dy

=
(

log
1
r

)−1/k log(1/r)∫
0

1
k

y1/k−1e−y dy

=
(

log
1
r

)−1/k log(1/r)∫
0

1
k

y1/k−1(1 + O(y)) dy

=
(

log
1
r

)−1/k(
log

1
r

)1/k

+ O

(
log

1
r

)
= 1 + O

(
log

1
r

)
.

Combine this with (14). Then we have

(15)
∞∑

n=1

rnk

=
∞∫

0

(
log

1
r

)−1/k 1
k

y1/k−1e−y dy − 1 + r/2 + O

((
log

1
r

)1/k)
.

Obviously,

log
1
r

= log
1

1− (1− r)
.

By Taylor’s expansion, this is (1− r) + O((1− r)2). Hence(
log

1
r

)−1/k

= (1− r)−1/k(1 + O(1− r)) = (1− r)−1/k + O((1− r)1/k),

provided that k ≥ 2. Combine this with (15) to get

(16)
∞∑

n=1

rnk

= (1− r)−1/kΓ

(
1 +

1
k

)
− 1

2
+ O((1− r)1/k)

as r → 1−.

Lemma 2. Suppose that s ≥ k + 1. Then∑
q≤Q

q1/k|Sn(q)| � (nQ)ε,

where

Sn(q) =
q∑

a=1
(a,q)=1

(S(q, a)/q)se(−an/q).
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P r o o f. See Lemma 4.8 of [9].

Lemma 3. Suppose y ≥ 1, ε > 0 and s ≥ k + 1. Let

Ss(n, y) =
∑
q≤y

q∑
a=1

(a,q)=1

(S(q, a)/q)se(−an/q),

and

Es(n, y) = Ss(n)−Ss(n, y).

Then Es(n, y) � nεyε−1/k.

P r o o f. By Lemma 2, we have∑
R<q≤2R

q1/k|Sn(q)| � nεRε.

Also ∑
R<q≤2R

|Sn(q)| ≤
(

1
R

)1/k ∑
R<q≤2R

q1/k|Sn(q)| � nεRε−1/k.

Sum over R = y, 2y, 4y, 8y, . . . to get∑
q>y

|Sn(q)| � nεyε−1/k.

Lemma 4. Suppose that 1/2 ≤ r < 1, R = (1− r)−1 and α > −1. Then
∞∑

n=2

nα(log n)βrn � Rα+1(log R)β .

The implicit constant may depend on α and β.

P r o o f. See Lemma 2 of [7].

Lemma 5. Let α > 0. Then for every t , we have

(−1)n

(
−α

n

)
=

nα−1

Γ (α)

{
1 +

t∑
j=1

bj(α)n−j
}

+ O(nα−t−2),

as n → ∞, where the coefficients bk(α) are real numbers which depend at
most on k and α.

P r o o f. See Lemma 4.1 of [8].

Lemma 6. Let Ss(n) be given by (2) and s ≥ k + 2. Then

(17)
∑
n≤x

Ss(n) = x + O(1).
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P r o o f. The term with q = 1 in the definition of Ss(n) contributes [x]
when summed. Thus, we need to show that the terms with q ≥ 2 contribute
O(1) when summed. By Lemma 4.4 of [9], if p - a and l > γ, then

(18) S(pl, a) =
{

pk−1S(pl−k, a) when l > k,
pl−1 when l ≤ k,

where γ is defined by

γ =
{

τ + 2 when p = 2 and τ = 0,
τ + 1 when p > 2 or p = 2 and τ > 0,

and τ is the largest t such that pt divides k. Note that γ ≤ k unless k = p = 2
in which case γ = 3. Suppose that 2 ≤ l ≤ γ. Then

(19) |S(pl, a)| ≤ pl ≤ kpl−1,

since l ≤ k and p | k. For l = 1, by (3.54) of Hardy and Littlewood [3], we
have

(20) |S(p, a)| ≤ (k − 1)p1/2.

Let q =
∏

p pαp . Rewrite q as q1q
2
2q3

3 . . . qk
k , where q1, q2, . . . , qk−1 are square-

free and pairwise coprime. By Lemma 2.10 of [9],

S(q, a) =
∏

pαp ||q

S(pαp , apαp ),

where apαp ≡ a (mod p). By (18), we have

(21) S(q, a) =
k−1∏
u=1

∏
p|qu

p>2

S(pu, apαp )
∏
p|qk

p>2

pvp(k−1)S(2α2 , a2α2 ).

Therefore,

|S(q, a)| ≤
k−1∏
u=2

∏
p|qu, p>2
(p,k)=1

pu−1
∏

p|qu, p>2
(p,k)>1

kpu−1(22)

×
∏
p|q1
p>2

kp1/2
∏
p|qk

p>2

pvp(k−1) (4 · 2α2/2)

�
( k−1∏

u=2

qu−1
u

)( ∏
p≤k

k
)
q
1/2
1

( ∏
p|q

k
)
(qk−1

k )

� qεq
1/2
1 q1

2q2
3 . . . qk−1

k .
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If q > 1 and (a, q) = 1, then∑
n≤x

e(−an/q) � |sin(πa/q)|−1 � ‖a/q‖,

where ‖y‖ is the distance of y from the nearest integer. So the terms with
q ≥ 2 in (17) contribute

�
∞∑

q=2

q−1∑
a=1

(qεq
1/2
1 q1

2q2
3 . . . qk−1

k )sq−s‖a/q‖−1

�
∞∑

q=2

(q1/2
1 q1

2q2
3 . . . qk−1

k )sq1−sqη,

where η = ε(s + 1). The last sum is

≤
∞∑

q1=1

∞∑
q2=1

. . .
∞∑

qk=1

q
1+η−s/2
1 q2+2η+s−2s

2 q3+3η+2s−3s
3 . . . q

k+kη+(k−1)s−ks
k

=
∞∑

q1=1

∞∑
q2=1

. . .
∞∑

qk=1

q
1+η−s/2
1 q2+2η−s

2 q3+3η−s
3 . . . qk+kη−s

k .

When s ≥ k + 2, it is convergent. Hence, the lemma follows.

Lemma 7. Let 1/2 ≤ r < 1 and L(r) be as in Lemma 1 and suppose that
s ≥ max(5, k + 2). Then

(23)
∞∑

n=1

Ss(n)Γ
(

1 +
1
k

)s

Γ

(
s

k

)−1

ns/k−1rn = Ls(r) + O(Rs/k−1).

P r o o f. Clearly,

Ls(r) = Γ

(
1 +

1
k

)s

(1− r)−s/k.

By the binomial expansion, we have

Ls(r) = Γ

(
1 +

1
k

)s ∞∑
n=0

(−1)n

(
−s/k

n

)
rn.

Hence, by Lemma 5, we have

Ls(r) = Γ

(
1 +

1
k

)s ∞∑
n=1

Γ

(
s

k

)−1

(ns/k−1)rn + O
(
1 +

∞∑
n=1

ns/k−2rn
)
.

By Lemma 4, this is

(24) Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1 ∞∑
n=1

ns/k−1rn + O(Rs/k−1).
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The difference between the main terms in (23) is
∞∑

n=1

(Ss(n)− 1)Γ
(

1 +
1
k

)s

Γ

(
s

k

)−1

ns/k−1rn,

which by partial summation is

(25)
∞∑

n=1

( ∑
m≤n

Ss(m)− n
)Γ (1 + 1/k)s

Γ (s/k)
(ns/k−1rn − (n + 1)s/k−1rn+1).

From Lemma 6, we see that the first factor� 1. By the binomial expansion,
the last factor is

(ns/k−1 − (n + 1)s/k−1)rn + (1− r)(n + 1)s/k−1rn

= −
(

s

k
− 1

)
ns/k−2rn + (1− r)(n + 1)s/k−1rn + O(ns/k−3rn).

Thus, by Lemma 4, (25) becomes � Rs/k−1. Combining this with (24) gives
the lemma.

3. Proof of theorems

P r o o f o f T h e o r e m 2. We have to show that
∞∑

n=1

(
Rs(n)− Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(n)ns/k−1

)
rn

= −s

2
Γ

(
1 +

1
k

)s−1

(1− r)−(s−1)/k + O((1− r)−(s−2)/k).

From Lemma 7 we see that this is simply a matter of establishing that

fs(r)− Ls(r) = −s

2
Γ

(
1 +

1
k

)s−1

R(s−1)/k + O(R(s−2)/k),

where R = (1− r)−1. By Lemma 1, it follows that

fs(r)− Ls(r) = (s + O(r−1/k))(f(r)− L(r))Ls−1(r)

= −s

2
Γ

(
1 +

1
k

)s−1

R(s−1)/k + O(R(s−2)/k),

as required.

P r o o f o f T h e o r e m 1. Choose y = Rk. First of all, we show that it
suffices to prove

(26)
∞∑

n=1

(
Rs(n)− Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(n, y)ns/k−1

)2

r2n � Rs/k,

where Ss(n, y) is as in Lemma 3.
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By definition of Ss(n, y), the left hand side is

�
∞∑

n=1

(
Rs(n)− Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(n)ns/k−1

)2

r2n

+
∞∑

n=1

(Es(n, y))2n2(s/k−1)r2n.

By Lemma 3, the second sum is

�
∞∑

n=1

n2εy2ε−2/kn2(s/k−1)r2n.

By Lemma 4, this is � y2ε−2/kR2s/k−1+2ε. Since y = Rk, this is
� R2s/k−3+ε′

. For k + 1 ≤ s < 2k, this is o(Rs/k).
Now, we prove (26). By Parseval’s identity, we may write the left hand

side of (26) as

1∫
0

∞∑
n=1

∣∣∣∣(Rs(n)− Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(n, y)ns/k−1

)
rne(nα)

∣∣∣∣2dα.

By the Cauchy–Schwarz inequality, this is at least T 2, where

T =
1∫

0

∣∣∣∣ ∞∑
n=1

Rs(n)rne(nα)− Γ (1 + 1/k)s

Γ (s/k)

∞∑
n=1

Ss(n, y)ns/k−1rne(nα)
∣∣∣∣ dα.

Clearly,

(27) T ≥
∫
1
−

∫
2
,

where ∫
1

=
1∫

0

∣∣∣ ∞∑
n=1

Rs(n)rne(nα)
∣∣∣ dα,(28)

∫
2

=
1∫

0

∣∣∣∣ ∞∑
n=1

Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(n, y)ns/k−1rne(nα)
∣∣∣∣ dα.(29)

By Parseval’s identity, we have

∞∑
n=1

r2nk

=
1∫

0

∣∣∣ ∞∑
n=1

rnk

e(nkα)
∣∣∣2dα.
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By Hölder’s inequality, this is

≤
( 1∫

0

∣∣∣ ∞∑
n=1

rnk

e(nkα)
∣∣∣sdα

)2/s( 1∫
0

1 dα
)1−2/s

=
( 1∫

0

∣∣∣ ∞∑
n=1

rnk

e(nkα)
∣∣∣sdα

)2/s

.

By Lemma 1 with r replaced by r2, we have( 1∫
0

∣∣∣ ∞∑
n=1

rnk

e(nkα)
∣∣∣sdα

)2/s

� 1
(1− r)1/k

as r → 1−. Since R = (1− r)−1, therefore,

(30)
∫
1
� Rs/(2k).

Finally, we estimate the integral
∫
2
. By definition of Ss(n, y) and (29),

we have ∫
2

=
1∫

0

∣∣∣∣ ∞∑
n=1

Γ (1 + 1/k)s

Γ (s/k)

∑
q≤y

q∑
(a,q)=1,a=1

(
S(q, a)

q

)s

(31)

× ns/k−1rne

(
n

(
α− a

q

))∣∣∣∣ dα

≤ Γ

(
1 +

1
k

)s ∑
q≤y

q∑
(a,q)=1,a=1

∣∣∣∣S(q, a)
q

∣∣∣∣s

×
1∫

0

∣∣∣∣ ∞∑
n=1

ns/k−1

Γ (s/k)
rne

(
n

(
α− a

q

))∣∣∣∣ dα.

Now, our task is to estimate the integral in (31). Suppose that |β| ≤ 1/2
and |β| > 1− r. By Lemma 5, we may write

Nγ

Γ (γ + 1)
=

t∑
j=1

fj(−1)N

(
−γ − 2 + j

N

)
+ O(Nγ−t),

where the fi depend at most on γ and t. This enables us to write
∞∑

n=1

ns/k−1

Γ (s/k)
rne(nβ) =

∞∑
n=1

t∑
j=1

fj(−1)n

(
−s/k − 1 + j

n

)
rne(nβ)(32)

+
∞∑

n=1

(O(ns/k−1−t))rne(nβ).
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Put t = 2. Since s < 2k, the last sum is

(33) �
∞∑

n=1

ns/k−3 � 1.

Therefore,
∞∑

n=1

ns/k−1

Γ (s/k)
rne(nβ) =

∞∑
n=0

2∑
j=1

fj(−1)n

(
−s/k − 1− j

n

)
rne(nβ) + O(1).

Hence, we have

(34)
∞∑

n=1

ns/k−1

Γ (s/k)
rne(nβ)

= f1(1− re(nβ))−s/k + f2(1− re(nβ))−s/k+1 + O(1).

Since |1− re(β)|2 = (1− r)2 + 4r(sinπβ)2, we have∣∣∣∣ 1
1− re(β)

∣∣∣∣s/k

=
(

1√
(1− r)2 + 4r(sinπβ)2

)s/k

(35)

� min((1− r)−s/k, |β|−s/k).

Replace α − a/q by β in the integral of right hand side of (31) and by
periodicity replace the interval [−a/q, 1 − a/q] by [−1/2, 1/2]. Then the
integral becomes

1/2∫
−1/2

∞∑
n=1

ns/k−1rne(nβ) dβ.

Hence, by (34) and (35), this is

�
1/2∫

−1/2

min((1− r)−s/k, |β|−s/k) dβ

=
∫

|β|≤1−r

(1− r)−s/k dβ +
1/2∫

1−r

β−s/k dβ +
−(1−r)∫
−1/2

(−β)−s/k dβ

� (1− r)1−s/k.

By (31), we have ∫
2
�

∑
q≤y

q∑
a=1

(a,q)=1

∣∣∣∣S(a, q)
q

∣∣∣∣s(1− r)1−s/k.

By Lemma 4.9 of [9] with s ≥ k + 1 and since R = (1 − r)−1, we have
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2
� yεRs/k−1. Since y = Rk and s < 2k, we have

(36)
∫
2

= o(Rs/(2k)).

By (27)–(29) and noting that s < 2k, we obtain T � Rs/(2k). Hence, the
theorem follows.

P r o o f o f T h e o r e m 3. We divide the solutions counted by r4(n)
according to how many of the xi are non-zero. Let

%j(n) = card{xi ∈ Z/{0} : x2
1 + . . . + x2

j = n}.
Then

r4(n) = %4(n) + 4%3(n) + 6%2(n) + 4%1(n) + %0(n).
Now we have

%4(n) = 2−4R4(n) and r4(n) = π2S4(n)n

(see Hardy [2], Section 3.11) and 4%3(n)+6%2(n)+4%1(n)+%0(n) is readily
seen to be Ω+(n1/2), which gives the first part of the theorem. The second
part of the theorem follows at once from Theorem 2.

4. Proof of corollaries

P r o o f o f C o r o l l a r y 1. Multiply both sides of (3) by

R = (1− r)−1 =
∞∑

l=0

rl.

Then the left hand side of (3) becomes
∞∑

l=0

∞∑
n=1

(
Rs(n)− Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(n)ns/k−1

)2

rn+l.

Obviously, this is
∞∑

n=1

∑
m≤n

(
Rs(m)− Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(m)ms/k−1

)2

rn.

The right hand side of (3) becomes Rs/k+1. Hence, we have

(37)
∞∑

n=1

∑
m≤n

(
Rs(m)− Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(m)ms/k−1

)2

rn

� Rs/k+1.

If (4) were false, then we would have∑
m≤n

(
Rs(m)− Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(m)ms/k−1

)2

= o(ns/k).
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Multiply both sides by rn and sum over n. Then
∞∑

n=1

∑
m≤n

(
Rs(m)− Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(m)ms/k−1

)2

rn = o(Rs/k+1).

This contradicts (37), and hence (4) is true.

P r o o f o f C o r o l l a r y 2. By Cauchy’s inequality,( ∞∑
n=1

(
Rs(n)− Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(n)ns/k−1

)2

rn

)( ∞∑
n=1

rn
)

≥
( ∞∑

n=1

(
Rs(n)− Γ

(
1 +

1
k

)s

Γ

(
s

k

)−1

Ss(n)ns/k−1

)
rn

)2

.

By Theorem 2, the right hand side is

s2

4
Γ

(
1 +

1
k

)2s−2

R(2s−2)/k + O(R(2s−3)/k)

and the second sum on the left hand side is rR = R + O(1). Hence, the
result follows.

P r o o f o f C o r o l l a r y 3. This is similar to the proof of Corollary 1.

P r o o f o f C o r o l l a r y 4. The first part of the corollary is immediate
from Corollary 1 and the second part from Theorem 2.
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