
ACTA ARITHMETICA
LXXIII.4 (1995)

Reciprocity formulae for
general Dedekind–Rademacher sums

by

R. R. Hall (York), J. C. Wilson (York) and D. Zagier (Bonn)

1. Introduction. Let

B1(x) =
{
x− [x]− 1/2 (x ∈ R \ Z),
0 (x ∈ Z).

If b and c are coprime integers the classical Dedekind sum s(b, c) is defined by

s(b, c) =
∑

h (mod c)

B1

(
h

c

)
B1

(
bh

c

)
.

Dedekind [5] introduced this sum in connection with the transformation
formula for the Dedekind η-function and deduced from this his reciprocity
formula

s(b, c) + s(c, b) = −1
4

+
1
12

(
b

c
+

1
bc

+
c

b

)
.

The Dedekind sum has been generalized, notably by Rademacher [9], who
introduced the homogeneous sum s(a, b; c) in which the fraction h/c in the
left-hand Bernoulli function above becomes ah/c. Rademacher’s reciprocity
formula, which is not implied by Dedekind’s, is (for a, b, c pairwise coprime)

s(a, b; c) + s(b, c; a) + s(c, a; b) = −1
4

+
1
12

(
a

bc
+

b

ca
+

c

ab

)
.

The standard reference for ordinary Dedekind sums is Rademacher and
Grosswald [10]. Apostol [1], Carlitz [3] and Mikolás [7] defined sums involv-
ing higher order Bernoulli functions. The inhomogeneous and homogeneous
sum become, respectively,

Sm,n(b, c) =
∑

h (mod c)

Bm

(
h

c

)
Bn

(
bh

c

)

[389]
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and

Sm,n(a, b; c) =
∑

h (mod c)

Bm

(
ah

c

)
Bn

(
bh

c

)
,

where Bm(x) denotes the periodic extension onto R of the mth Bernoulli
polynomial restricted to [0, 1) (cf. §2). The authors cited gave reciprocity
formulae for their sums, and all such linear relations with polynomial co-
efficients were classified by Hall and Wilson [6]. It emerges that Mikolás’s
relations for homogeneous sums form a complete set. In this paper we show
that Mikolás’s relations extend to the generalized Dedekind–Rademacher
sum given by (5) below, in which the variables are affected by certain linear
shifts. In the case m = n = 1, Berndt [2] obtained this relation, and there is
a similar result with a slightly different formulation in Carlitz [4]. The theo-
rem presented in this paper contains all the previous results in the literature
about shifted sums. The original, rather more complicated proof was given
by the first two authors. It is based on general identities involving Bernoulli
polynomials which are apparently new, and is contained in Wilson [12]. The
present formulation and proof are due to the third author.

2. Review of Bernoulli polynomials. The mth Bernoulli polynomial
is defined by

Bm(u) =
m∑
n=0

(
m

n

)
Bn u

m−n (Bn = nth Bernoulli number),

or equivalently by the generating function

(1)
∞∑
m=0

Bm(u)
Xm−1

m!
=

euX

eX − 1
.

Its most important property is the Fourier expansion formula

(2)
∑′

k∈Z

e(ku)
km

= − (2πi)m

m!
Bm(u) (u ∈ R, m ≥ 1).

Here
∑′ means that k = 0 is to be omitted (and, in the non-absolutely

convergent case m = 1, the sum to be interpreted as a Cauchy principal
value), e(u) denotes exp(2πiu) as usual, and Bm(u) is defined as the unique
function which is periodic of period 1 and coincides with Bm(u) on [0,1) (ex-
cept that we set B1(u) = 0 for u ∈ Z). To prove (2), one can simply check
the case m = 1 directly (the left-hand side is essentially the Taylor expan-
sion of the logarithm function) and observe that the Bm(u) are uniquely
characterized by the properties

B0(u) = 1, B′m(u) = mBm−1(u), Bm(0) = Bm(1) for m > 1.
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We will also need the so-called “distribution property” (Raabe’s formula [8])

(3)
∑

f (mod a)

Bm

(
x+

f

a

)
= a1−mBm(ax) (a ∈ N, x ∈ R),

which follows easily from (1) and trivially from (2).

3. The function β(u,X). We define this by the formula

β(u,X) =
∞∑
m=0

Bm(u)
m!

Xm−1 (X 6= 0),

where u ∈ R/Z and we think of β(u,X) either as a formal Laurent series
(with values in X−1 R[[X]]) or as a convergent Laurent series for X in the
discD = {X ∈ C : |X| < 2π}. We denote by (R/Z)3

0 (respectively D3
0)

the set of triples with sum zero in the circle group (respectively disc). The
components of such a triple will always be indexed by a number j ∈ Z/3Z.

The next proposition is the key result of the paper, from which the main
theorem follows easily. We give three proofs since each is very short and
illustrates a method which is useful in many other calculations of this type.

Proposition. For (u1, u2, u3) ∈ (R/Z)3
0 and (X1, X2, X3) ∈ D3

0 we have
∑

j (mod 3)

β(uj , Xj+1)β(−uj+1, Xj) =
{

1/4 if u1 = u2 = u3 = 0,
0 otherwise.

P r o o f 1. By the definition (1) of Bm(u), we have

(4) β(u,X) =





1
2
· e

X + 1
eX − 1

(u ∈ Z),

e(u−[u])X

eX − 1
(u 6∈ Z),

so the Proposition can be checked by elementary algebra, assuming that
each uj lies in [0, 1) and distinguishing the cases when none, one, or all
three of them are equal to zero. (The last case is just the addition law for
the cotangent function.)

P r o o f 2. A second method is to use equation (2). This gives

β(u,X) =
1
X
−
∞∑
m=1

Xm−1

(2πi)m
∑′

k∈Z

e(ku)
km

=
∑

k∈Z

e(ku)
X − 2πik

=
∑

λ≡X (mod 2πi)

e(X−λ)u

λ
,

where the last sum, obtained by writing λ = X−2πik, is to be interpreted as
a Cauchy principal value (sum over |λ| < L and let L→∞) for convergence.
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This gives

β(u1, X2)β(−u2, X1) =
∑

λ1≡X1, λ2≡X2 (mod 2πi)

e(X2−λ2)u1−(X1−λ1)u2

λ1λ2
.

Now, setting λ3 = −λ1 − λ2, one has

(i) λj ≡ Xj (mod 2πi) for all j ∈ Z/3Z,
(ii) the expression exp((Xj+1−λj+1)uj−(Xj−λj)uj+1) is independent

of j, and
(iii)

∑
j∈Z/3Z 1/λjλj+1 = 0.

Therefore the triple sum over all (λ1, λ2, λ3) ∈ C3
0 with λj ≡ Xj (mod 2πi)

vanishes termwise unless u1 = u2 = u3 = 0, in which case the Cauchy
principal values do not match up and the limit as L→∞ must be computed
as the Riemann sum

lim
L→∞

(
3

∑

|λ1|, |λ2|<L, |λ1+λ2|>L

1
λ1λ2

)
=

6
(2πi)2

1∫
0

1∫
1−y

dx

x

dy

y
= −1

4
.

P r o o f 3. Finally, forXj real—it is obviously enough to treat this case—
we can use the formula for summing geometric series to rewrite (4) as

β(u,X) =
∑

κ≡u (mod 1)

δ(X,κ) eκX (X ∈ R, X 6= 0),

where δ(X,κ) = 1
2 (sign(X)− sign(κ)). The desired identity then follows by

summing over triples of real numbers κ ∈ R3
0 which reduce to u modulo

1 and noting that exp(κjXj+1 − κj+1Xj) is independent of j and that∑
j δ(κj , Xj+1)δ(−κj+1, Xj) equals 1/4 if κ = (0, 0, 0) ∈ R3

0 and 0 other-
wise.

R e m a r k. In the second and third proofs we used the fact that if x and
y are two triples with sum 0, then ∆j = xjyj+1 − xj+1yj is independent of
j ∈ Z/3Z. This can be seen by direct calculation or by noting that the 3× 3
determinant |x y z| = ∑j ∆jzj+2 must vanish if the triple z also has sum 0.

4. The reciprocity theorem. We now introduce the main object of
study, the generalized Dedekind–Rademacher sum

(5) Sm,n

(
a b c
x y z

)
=

∑

h (mod c)

Bm

(
a
h+ z

c
− x
)
Bn

(
b
h+ z

c
− y
)

(a, b, c ∈ N, x, y, z ∈ R/Z).

Clearly

Sm,n

(
ka kb kc
x y z

)
= k Sm,n

(
a b c
x y z

)
,
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so we may (and will) assume that the integers a, b, and c have no common
factor. Note also that Sm,n

(
a b c
x y z

)
depends only on a and b modulo c. We

want to prove that these sums, which generalize the classical Dedekind sums
and their generalizations by Rademacher, satisfy certain reciprocity relations
under (simultaneous) cyclic permutations of (a, b, c) and (x, y, z). However,
these reciprocity relations mix various pairs of indices (m,n), so they are
most conveniently stated in terms of the generating function

(6) S



a b c
x y z
X Y Z


=

∑

m,n≥0

1
m!n!

Sm,n

(
a b c
x y z

)
(X/a)m−1 (Y/b)n−1.

Here X and Y are non-zero variables (either formal or else complex of small
absolute value) and the variable Z, which does not appear explicitly on
the right-hand side of the definition, is defined as −X − Y . The reciprocity
theorem is then:

Theorem. Let a, b, c be three positive integers with no common factor ,
x, y, z three real numbers, and X,Y, Z three variables with sum zero. Then

(7) S



a b c
x y z
X Y Z


+ cyclic permutations

=
{

1/4 if (x, y, z) ∈ (a, b, c)R+ Z3,
0 otherwise,

where the sum on the left is over the three terms obtained by cyclic permu-
tation of the columns of the argument of S.

R e m a r k. Since clearly S is symmetric in its first two columns, the
left-hand side of (7) is invariant under all permutations of the columns, not
just the cyclic ones.

P r o o f o f T h e o r e m. Using the property (3) of Bm, we can rewrite
the definition of Sm,n as

a1−mb1−n Sm,n

(
a b c
x y z

)

=
∑

f (mod a)

∑

g (mod b)

∑

h (mod c)

Bm

(
z + h

c
− x+ f

a

)
Bn

(
z + h

c
− y + g

b

)

and hence, setting ξ = (x+ f)/a, η = (y + g)/b and ζ = (z + h)/c,

S



a b c
x y z
X Y Z


 =

∑

(ξ,η,ζ)∈(R/Z)3

(aξ,bη,cζ)=(x,y,z)

β(ζ − ξ,X)β(−η + ζ, Y ).

The Theorem now follows immediately from the Proposition of Section 3.
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5. Explicit formulas. By comparing the homogeneous parts of degree
N − 2 in X, Y and Z = −X − Y in the two sides of (7), we obtain for
each integer N ≥ 0 a reciprocity law for the sums (5) with m + n = N .
For N = 0 this identity is the trivial 1/(XY ) + 1/(Y Z) + 1/(ZX) = 0 and
for N = 1 it is vacuous, but for N = 2 we obtain Berndt’s generalization
of the classical Dedekind–Rademacher reciprocity law and for higher N we
get a whole series of higher reciprocity identities for the sums (5). The word
“reciprocity” is used because if (say) c = 1 then only two of the three terms
on the left-hand side of (7) are non-trivial and they are obtained from one
another by interchanging the roles of (a, x,X) and (b, y, Y ).

As an illustration, we take the case N = 4. If we multiply both sides
of (7) by XY Z, then both sides become power series in X and Y , and
we must compare the terms of degree 5. This gives six identities, one for
the coefficient of each monomial XiY 5−i. Of these, three are trivial and the
other three are obtained by permutation of the indices, so there is essentially
one reciprocity law. The trivial relations, obtained from the specializations
X = 0, Y = 0 and X + Y = 0, concern the sums S4,0 and S4,0 and say that

1
a3S4,0

(
a b c
x y z

)
=

1
c3
S4,0

(
c b a
z y x

)

and similarly for cyclic permutations. They are trivial because we can eval-
uate any sum Sm,0 or S0,n directly from (3):

(8) Sm,0

(
a b c
x y z

)
=

(a, c)m

cm−1 Bm

(
az − cx
(a, c)

)
.

The non-trivial reciprocity law relates the sums S2,2 to the sums S3,1 and
S1,3. Specifically, if we introduce the abbreviations

S̃2,2

(
a b c
x y z

)
=

1
4ab

S2,2

(
a b c
x y z

)
,

S̃3,1

(
a b c
x y z

)
=

1
6a2

[
S3,1

(
a b c
x y z

)
+ S3,1

(
a c b
x z y

)]

(so that S̃2,2 is symmetric in its first two and S̃3,1 in its last two columns),
then (7) and (8) give

S̃2,2

(
a b c
x y z

)
= S̃3,1

(
a b c
x y z

)
+ S̃3,1

(
b a c
y x z

)

− a(b, c)4

24b3c3
B4

(
bz − cy
(b, c)

)
− b(a, c)4

24a3c3
B4

(
az − cx
(a, c)

)

− c(a, b)4

8a3b3
B4

(
ay − bx
(a, b)

)
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or, equivalently,

2S̃3,1

(
a b c
x y z

)

= S̃2,2

(
a b c
x y z

)
+ S̃2,2

(
a c b
x z y

)
− S̃2,2

(
b c a
y z x

)

− a(b, c)4

24b3c3
B4

(
bz − cy
(b, c)

)
+
b(a, c)4

8a3c3
B4

(
az − cx
(a, c)

)

+
c(a, b)4

8a3b3
B4

(
ay − bx
(a, b)

)
.

In general, if we write S+ for the subsum of (6) with m and n strictly
positive (so that S+ is a power series rather than a Laurent series in X and
Y ), then (8) shows that the left-hand side of equation (7) equals

S+



a b c
x y z
X Y Z


+

∞∑
m=2

(a, c)mb
m!am−1cm−1Bm

(
az − cx
(a, c)

)
Xm−1−(X+Y )m−1

Y

+ cyclic permutations

which is again a power series in X and Y . Comparing the coefficients of
degree N − 2 of this and the right-hand side of (7) we get N − 1 relations
among 3(N − 1) non-trivial Dedekind–Rademacher sums Sm,n (m+n = N ,
m,n ≥ 1) and these, together with the evident symmetry between Sm,n and
Sn,m, let us express all the sums Sm,n as linear combinations of those with
m > 2n+O(1).
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UNIVERSITY OF YORK GOTTFRIED-CLAREN-STRASSE 26

YORK YO1 5DD, UNITED KINGDOM 53225 BONN, GERMANY

Received on 9.3.1995
and in revised form on 15.3.1995 (2753)


