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On the last factor of the period polynomial
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by

S. GURAK (San Diego, Cal.)

1. Introduction. Let ¢ = p® be a power of a prime, and e and f positive
integers such that ef +1 = ¢. Let F; denote the field of ¢ elements, F} its
multiplicative group and g a fixed generator of Fy. Let Tr : Fy — I, be the
usual trace map and fix § = exp(27i/p), a primitive pth root of unity. Put

-1 1 -1
5=(e,q 1) and R=-.1"-

- 5 p—1’
and let C, denote the group of eth powers in . The Gauss periods are
(1) =y, 0" (1<j<e)

.’L‘ECE

and satisfy the period polynomial
(2) o(x) = [[(z = ny).
j=1

In the classical case ¢ = p, Gauss showed that @(z) is irreducible over
Q and determined its coefficients for small values of e and f. In 1982 I de-
termined how to compute the beginning coefficients of @(x) for the classical
case when f is fixed [4]. (See also [3].)

G. Myerson [7] has shown that for the general case ¢ # p, @(z) splits
over Q into ¢ factors, each of degree e/d. To be precise,

0
3) o) =[] 2™ (),

e/d—1

(4) ) ()= [[ @ nurrs) (1 <w<0).
k=0

[391]
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Each of the factors ®("*)(z) is irreducible or a power of an irreducible
polynomial over Q. Explaining patterns of additional reducibility that occur
for () (z) was the primary focus of recent work of mine [5]. Here I consider
instead the problem of computing the coefficients of a given factor () (x),
particularly when w = §. I determine in Section 3 how to compute the
beginning coefficients of the last factor #(®)(z) in (3) in a manner analogous
to that known for the case ¢ = p in [3] and [4].

2. Computations of the coefficients of &(*)(x). Here I first express
the coefficients a, = a,(w) of a factor
(5) W) (z) = 2¢/° 4 ayx/O7t 4+ e/s
of the period polynomial (3) for fixed w, 1 < w < §, in terms of the sym-
metric power sums
e/é—1

(6) Sy = Sp(w) = Z (M)

k=0
Specifically, this is given by Newton’s identities
(7)  Sr+a1Sp-1+a2Sr—2+ ...+ a—1S1+ra, =0 (1 <r<e/d).

To obtain a computationally practical formula for S, I introduce a
certain counting function ¢,,(n) as follows. For a fixed integer w and any

n > 0, let t,(n) count the number of n-tuples (z1,...,x,) in (C¢)" for
which Tr(¢g"(xz1 + ...+ z,)) = 0. I assert that
(8) Sn(w) = =R f*~" + p(e/d)tu(n)/(p — 1)

in (6) for n > 0. To see this, first write 0 = c¢(¢—1)/(p — 1) + he for integers
h and c. Then for any fixed j, ¢g%+% = G9gheitv 0 < j < e/, where
G = gla=1/(r=1) generates ;. Now t,,(n) also counts the number of n-tuples
in (C.)" with Tr(g%*+%(z1+...+z,)) = 0 since Tr(g% % (21 +...+2,)) =
G Tr(g¥ g™ (z1 + ...+ xn)), SO

9) ty(n) =tw(n) for v=w (mod J).

In particular, t,(n) counts the number of ones (6°) occurring in the multi-
nomial expansion of any 75, ., = (X_,cc. HTrngw’”)”. A simple counting
argument similar to that used in [4, p. 349] now yields (8). In particular,
one finds a; = R — p(e/d)t,(1)/(p — 1) from (7). A much tidier expression
for ay is given below.

PROPOSITION 1. For 1 < w < §, let T(w) count the number of times
Trgov*t® =0 for 1 <v < R. Then a; = R — pT'(w) in (5).

Proof. It suffices to show that ¢, (1) = d(p — 1)T'(w)/e. 1 first assert
that T'(w) also counts the number of times Trg!*** = 0 (1 < v < R)
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for any integer [ prime to R. To see this, note that for v = v/ (mod R),
Trgtw = 0 o Trg®'tv = 0, as ¢°'t% = ¢t . Gt if v/ = v + tR.
Since [v runs through a complete set of residues modulo R for 1 < v < R,
the assertion about T'(w) follows. In particular, T'(w) counts the number of
times Tr¢g®*™ = 0 (1 < v < R) since (e/d, R) = 1. Hence 6(p — 1)T'(w)/e
counts the number of times Trg®’** =0 (1 < v < (¢ — 1)/e) which is just
tw(1).

An immediate consequence of Proposition 1 is the following reducibility
criterion for (") (z).

COROLLARY 1. If T(w) = 0 then ®")(z) is irreducible over Q.

Proof. When T(w) =0, a; = R is prime to e/§, the degree of &(*)(x).
Hence, since #(*)(z) is some power of an irreducible, #(*)(x) itself must
be irreducible. (This is essentially how Myerson argues the irreducibility of
&@(z) when 6 =1 in [7, Theorem 6].)

A few comments are in order when p =1 (mod f). Then e is a multiple
of (¢g—1)/(p—1)s0od=(q—-1)/(p—1),R=1ande/d = (p—1)/f. In
particular C, C Iy, so t,,(n) counts the number of tuples (z1,...,,) in C
satisfying Trg“(x1 + ... + ) = (Trg“)(x1 + ... +x,) = 0. If Trg” # 0
then ¢,,(n) coincides with the counting function 3, f(n) in [3, p. 392], so
Sp(w) = (—f" + pBp.s(n))/f in (8), and hence (™) (z) is the ordinary
cyclotomic period polynomial for F), of degree e/ [4, p. 349]. On the other
hand, if Trg* = 0 then t,,(n) = f™ so S,(w) = (e/d)f™ in (8), and thus
o) (x) = (z — f)*/°. To summarize, I have shown:

PROPOSITION 2. Suppose p =1 (mod f) and 1 < w < 4. If Trg” =0
then @) () = (xz — f)*/° else dW)(z) is the ordinary cyclotomic period
polynomial of degree e/§.

In the general case p Z 1 (mod f) there seems to be no nice interpreta-
tion of t,,(n) as above, except for special values of the form w = kd/m for
fixed m |9 and 1 < k < m. In the next section, I treat the simplest such case
w = § and describe how to compute the beginning coefficients of $(%) (z) in a
manner analogous to that for ordinary cyclotomic period polynomials [3, 4].
The methods used may be extended to handle other cases w = kd/m, with
m > 1, but not without additional difficulties.

3. Beginning coefficients of the last factor #(°)(x). Retaining the
notation of the previous section, I determine here how to compute the be-
ginning coefficients of the last factor () (z) in (5), or equivalently those of

(10) F(X)=XoO(X =14+ a1X +...+a,sX,
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for fixed f > 1. My goal is to generalize the results known in the classical case
q = p [3, 4] by exhibiting a suitable counting function which coincides with
ts(n) in (8) for all sufficiently large p. For this purpose fix an integer r prime
to f satisfying 1 < r < f, say with ordyr = b, and consider primes p = r
(mod f). One finds then that e/d = (p—1)/(p—1,f) and R = f/(p—1, f).
Further, all such primes have common decomposition field K in Q(¢), where
¢ = exp(2mi/f), with [Q(¢) : K] = b. (The field K is that subfield of Q(¢)
fixed by the action ( — (".) For n > 0, let Bk (n) count the number of times
Troe) k(1 + ...+ 2,) = 0 for choice of f-roots of unity 1, ..., z, lying in
Q(¢). That Sk (n) = ts(n) for large enough p is demonstrated next.

PROPOSITION 3. If p > (bn)?)/% and pta, then ts(n) = Bk (n). (Here
¢ is Euler’s totient function.)

Proof. Since p* = 1 (mod f) the element ¢¢ lies in F, C Fq. Thus,
one may identify F,» /IF,, as the residue field extension at p for the extension
Q(¢)/K for some prime P lying above p in Q(¢) where g¢ corresponds to ¢
(mod P). The condition p > (bn)?/)/? ensures that for 0 < oy < f (1 <i <
n), Tr]pr/Fp(geal + ...+ g%) # 0 unless Trgy/ k(¢ + ...+ (%) = 0;
otherwise P | Trg)/x(¢** + ...+ ("), which implies

p < |Ngjo(Trge)/x (€™ + ..o+ ¢)| < (bn)?W/P,
Thus Sk (n) counts the number of times Terb/Fp(:cl +...4+z,) =0 for
z; € C. (1 <i<mn). Now, in addition,
Tre, /p, (v1 4. ..+ 2,) = %Terb/Fp(xl +...4z,) forz eC..
Hence, if pta then Sk (n) = to(n), which is the same as ts(n) by (9).

I should remark that the finite set &, of exceptional primes for which
ts(n) > P (n) can be determined in a manner analogous to the case ¢ = p [3]
by finding the rational primes dividing any of the norms Ng /q(Trg(c), x (¢!
+...4+¢*)), where 0 < a; < f, 1 <i <.

In general the counting function g (n) is difficult to determine. A simple
closed formula for Sk (n) in certain special cases is given by the following
two propositions.

PROPOSITION 4. If f =1, a prime, then

nl

n(l—1)/1 : ;
Brc(n) = {b Y e
0 otherwise.
Proof. When I = 2, one finds b = 1, K = Q and { = —1. An easy
counting argument shows (g(n) = 0 or (n%) according as n is odd or

even. Now consider the case [ is an odd prime, and observe that then an
integral linear combination co+c,¢+. ..+ ¢;—1¢!7! equals zero if and only if
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co = c1 = ... = c_1. A straightforward argument shows that Trgc)/x ((** +
oo+ ¢¥)=0for 0 < a; <l (1<i<n)ifandonlyif!|n and n/l of the a’s
are zero, with the remaining (n/l)(l — 1) o’s equally distributed among the
(I —1)/b cosets of the multiplicative subgroup (r) in Z;. For a fixed choice
of coset representatives T' = {t1,...,tq_1)/s} there are

n!
(/DY (o /D075
ways to choose the (n/l)(I — 1) non-zero «’s from among 7 so that
Troey/x(C* + ... 4+ (%) = 0. As each coset is of size b = ord;r and
the choice of a given a; # 0 in Trg(¢)/x (¢** + ... 4+ (%) depends only on

the coset it represents, one finds that B (n) = b""V/!M when [ |n. The
result stated in the proposition now follows.

PROPOSITION 5. (i) For f =4 and r =1,

D
Bre(n) =4 T2yt 72

0 if 24n.
(ii) For f =4 and r =3, Br(n) = (*").

n

Proof. In view of the result of Proposition 2, the counting function
Bi(n) in statement (i) is what Gupta and Zagier call G4(n) in [3]. Thus
statement (i) is just equation (5) in [3, Theorem 2], which was first observed
by D. H. and E. Lehmer [6].

To verify statement (ii) of the proposition note that K = Q here, so
Troe)/x((*) = 0 if « is odd, else equals 2 or —2 according as 4|« or
2|| @. Begin by encoding each fourth root of unity by a pair of ones and
minus ones, so that ¢ corresponds to the pair (1,—1), ¢? to (—1,—1), ¢3 to
(=1,1) and ¢* to (1,1). The encoding is such that the trace Trg¢), x (%)
equals the sum of its corresponding pair of values. Moreover, one may iden-
tify an n-tuple (x1,...,2,) of fourth roots of unity by a unique 2n-tuple
(Y1,Y25 - -+, Y2n—1,Y2n) consisting of ones and minus ones, where x; corre-
sponds to the pair (y2;-1,%2;) (1 < j < n) as described, and vice versa.
The correspondence is such that each tuple (z1,...,7,) with Trg)/x (21 +
...+ x,) = 0 yields a tuple (y1,...,y2,) With y1 + ... 4+ y2, = 0, and vice
versa. Thus Gk (n) = (27;‘), the number of ways to fill a 2n-tuple with an
equal number of ones and minus ones.

Thus statement (ii) is verified and the proof of the proposition is now
complete.

Now let h be the smallest positive integer for which S (h) # 0. Using
(7), (8) and Proposition 2, one may obtain the following generalization of
Theorem 1 in [4]. Since the argument is identical, I shall omit it here.
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THEOREM 1. For all sufficiently large primes p = r (mod f), the co-
efficient as of the polynomial &) (z) in (5) (or F(X) in (10)) satisfies
as = Us(p), where Uy is a polynomial of degree [s/h] in p.

The next examples illustrate the result above.

EXAMPLE 1. Consider the case f = 3 and r = 2 with ¢ = p? above in
Theorem 1, s0 R = 3 and e/d = p—1in (8). The decomposition field K = Q
with

0 otherwise

from Proposition 4, so h = 3. One finds the following expressions for the
coefficients a, (1 < s < 8) for #(%)(z) from (7) and (8):

ar =3, ax=9, az3=—(4p—27) for p > 2,
ay= — (12p —81), a5 = —(36p —243), ag = Sp? — 148p + 729

for p > 5,
ar = 24p* — 444p + 2187, ag = 72p* — 1332p + 6561 for p > 11.

One observes that (%) (z) is always irreducible from Corollary 1.

EXAMPLE 2. Consider next the case f = 8 and r = 3 or 7 with ¢ = p?
in Theorem 1, so R = 4 and ¢/d = (p — 1)/2 in (8). The decomposition
field K is Q(v/—2) or Q(v/2), respectively, but it is easy to verify that the
counting function Sk (n) is the same in each case. For the first few values, one
computes Ok (1) = 2, Bk (2) = 14, Bk (3) = 68 and i (4) = 454. Thus h =1
and one finds the following expression for the coefficients a5 (1 < s < 4) for
&) (z) from (7) and (8).

ay = — (p—4), agz%(p2—15p+48) for p > 3,
a3 = — §(p* — 33p* + 296p — 960) for p > 7 and
as = 5;(p* — 58p® + 1043p? — 8306p + 26880)  for p > 19.

The pattern of these coefficients is exhibited below for primes p < 23.

p  Factor 45(6)(:6)
3 x+1
7 23 —32%2 — 4z +13
11 2% — 72* 4+ 22° + 6122 — 1232 + 67
19 2° — 1528 + 6227 + 6525 — 9512° + 1585z
+ 61623 — 184622 — 583z — 37
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It is interesting to note that when h > 1, the polynomial &) (z) is
irreducible for sufficiently large p by Proposition 3 and the corollary to
Proposition 1. In particular, A > 1 whenever f is square-free, since then

Troe)/x (%) # 0 for any integer a.

To generalize Theorem 1 of S. Gupta and D. Zagier [3], I next introduce
the rational power series

(1) Bie(X) = e ( - Riﬁmf)
and

(12) A (X) = exp (f log Bic(X) — 7 log(1 - fX)),

defined in terms of the counting function Sk (n).
The argument in the proof of Theorem 1 of [3] extends in a straightfor-
ward manner to yield the following general result here.

THEOREM 2. The power sums Bk (X) and Ak (X) above lie in Z[[X]]
and satisfy
(1—fX) Ak (X)) = Bg(X)".
For any N > 0 there is a constant po(N) such that for all primes p = r
(mod f) with p > po(N),
(13) F(X) = Ag (X)Bg(X)®=/7 (mod XV).
For Example 1, the relevant power series (11) and (12) are given by
Br(X)=1-12X% - 48X°% + ...
and
Ago(X) =1+3X +9X? +19X3 + 57X* +171X° + ...
respectively.
In Example 2, the power series (11) is given by
Br(X)=1-8X +4X? +48X% - 62X* +..;
the corresponding series (12) are
Ags3(X) =1+ X +6X? +57X% +411X* + ...
and
Ag7(X)=1-3X —4X? +27X3 +98X* + ...
For the case f =4 andr =3,onehas R=2, K =Qand e/0 = (p—1)/2.
From Proposition 3, for primes p = 3 (mod 4) and not dividing a, one
finds t5(n) = Pr(n) for 1 < n < (p — 1)/2. In such cases one may take

N = (p+1)/2 in (13) which completely determines F(X) or #(0)(x). It is
even possible to find a closed form formula for the coefficients a5 in (10);
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namely, a; = (—1)*(P~17%) for 1 < s < (p — 1)/2. This result is proved in
the section to follow. (Incidentally, if p|a here, then it is easy to show that
P0)(z) = (x — 4)®~1/2 since t5(n) = 4".)

4. The case f = 4 and r = 3. In order to derive the closed form formula
mentioned at the end of the last section, the following well-known result will
be needed.

LEMMA. Let d be a positive integer. For any polynomial q(x) of degree
less than d,

n=0
Returning to the situation at hand, first observe that the power series

o - -5 (%)

n=1

=2 ()= ax (1 o)

n

=1
One finds then C(X) = %(1 + V1 —4X). In particular, from Proposi-
tion 5(ii), the power series

satisfies

Bg(X)=0C(X)* = %(1 —4X +2X?% + (1 -2X)V1 - 4X)
and
_CX) 1/ 1-3X
AraX) = =% =3 (1 X+ 4X>
in (11) and (12), so
cXx)”

F(X) = A (X) B ()P0 = —==ie

(mod X(p+1)/2)

in (13) where pfa. But
(1—4Xx)"12C(X)P

—ov x2S (M) -
n=0

p

=27y (Z) (1 - 4X)(=D/2

n=0

-y G () () - ()

s= n=0
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so the congruence above yields

e R O () (5

n (10) for 1 < s < (p —1)/2. Now Moriarty’s identity (2.73) in [2] implies

that
1 i P %‘1 _1(p—s—1
20-2s L \n s ) 2 s ’
nodd
Since
P/p\ [t p p\ [t
X ()T)-2 ()(F) eress
n s n s
n=0 n=0
n odd n even

by the Lemma, it follows from (14) that the coefficients as in (10) actually
satisfy

as:(_l)S(p_8_1> 1<s<(p-1)/2)

S

when p{a. In view of the parenthetical remark made at the end of Section 3,
I have shown

PROPOSITION 6. Let f =4 and p =3 (mod 4) be prime. If pta then

(r-1)/2 U
@(6)(1,): Z (_1)s<p S )x(pl)/237

s=0 s
else
&) (z) = (z — 4)(p—1)/2‘

This concludes the discussion of the special case f =4 and r = 3.
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