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1. Introduction. Let P (n) denote the largest prime factor of an integer
n ≥ 2 and let P (1) = 1. Sums involving reciprocals of P (n) have been
investigated in many works (see, for example, [3], [5], [8]–[10], [13] and [14],
where additional references may be found). In particular it was proved by
Erdős, Pomerance and the author [5] that

(1.1)
∑
n≤x

1
P (n)

= xδ(x)
(

1 + O

((
log log x

log x

)1/2))
,

where

(1.2) δ(x) =
x∫

2

%

(
log x

log t

)
dt

t2
,

and %(u) is the continuous solution (the so-called Dickman function) to the
differential delay equation

(1.3) u%′(u) = −%(u− 1)

with the initial condition %(u) = 1 for 0 ≤ u ≤ 1. One also defines %(u) = 0
for u < 0. It is well known that

(1.4) %(u) = exp
{
−u

(
log u+log2 u−1+

log2 u− 1
log u

+O

((
log2 u

log u

)2))}
,

and from [10] it follows that

(1.5) δ(x) = exp
{
− (2 log x log2 x)1/2

(
1 + g0(x) + O

((
log3 x

log2 x

)3))}
,

where logk x = log(logk−1 x) is the k-fold iterated natural logarithm of x
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and, for r > −1,

gr(x) =
log3 x + log(1 + r)− 2− log 2

2 log2 x

(
1 +

2
log2 x

)
− (log3 x + log(1 + r)− log 2)2

8 log2
2 x

.

It is possible to obtain more precise expressions for both functions ap-
pearing in the exponentials in (1.4) and (1.5). K. Alladi [1] (see also G. Te-
nenbaum [12]) proved an asymptotic formula for %(u):

(1.6) %(u) =
(

1 + O

(
1
u

))(
ξ′(u)
2π

)1/2

exp
(
γ −

u∫
1

ξ(t) dt
)
,

where γ = 0.57721 . . . is Euler’s constant and ξ = ξ(u) is the unique positive
solution of the equation

(1.7) eξ − 1 = uξ (u > 1).

By using standard methods of asymptotic analysis one finds (see Hildebrand–
Tenenbaum [7]) that, for u ≥ u0 > 0, ξ(u) is given by the convergent series

(1.8) ξ(u) = log u + log2 u +
∞∑

m=0

∞∑
k=1

cm,k

(
1

log u

)m(
1 + u log2 u

u log u

)k

,

where

cm,k =
(

m + k

m

)
Res
z=0

{
zm

(ez − 1)m+k

(
zez

ez − 1
− m

m + k

)}
.

Computing the first few values of cm,k one obtains, from (1.8),

(1.9) ξ(u) = log u + log2 u +
log2 u

log u
−

1
2 log2

2 u− log2 u

log2 u
+ O

((
log2 u

log u

)3)
,

and from (1.6) and (1.8) one obtains a sharpening of (1.4).
The main aim of this paper is to study the asymptotic behaviour of the

sums

(1.10) Sr(x) :=
∑

n≤x, P (n)≡l (mod k)

1
P r(n)

(r ≥ 0)

and

(1.11) Tr(x) :=
∑

n≤x, P (n)≡l (mod k), P 2(n)|n

1
P r(n)

(r ≥ −1),

where r is a fixed real number, 1 ≤ l ≤ k, (k, l) = 1 are fixed integers. In
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the special case k = 1 it was shown by Ivić–Pomerance [10] that

(1.12) Sr(x) = x exp
{
− (2r log x log2 x)1/2

(
1 + gr−1(x)

+ O

((
log3 x

log2 x

)3))}
(r > 0)

and

(1.13) Tr(x) = x exp
{
− (2r + 2)1/2(log x log2 x)1/2

(
1 + gr(x)

+ O

((
log3 x

log2 x

)3))}
(r > −1).

The asymptotic behaviour of Sr(x) for r < 0 and of Tr(x) for r < −1
is substantially different, and is less difficult to determine than in the cases
r ≥ 0 and r ≥ −1, respectively. For instance we have, if r < 0 and k = 1,

Sr(x) =
∑
p≤x

p−rΨ

(
x

p
, p

)
+ O(1) =

∑
√

x<p≤x

p−r

[
x

p

]
+ O(x1−r/2)

=
∑

pn≤x

p−r + O(x1−r/2) = x1−r

( J∑
j=1

cj(r)
logj x

+ O

(
1

logJ+1 x

))
,

where J ≥ 1 is any fixed integer, [t] is the integer part of t, Ψ(x, y) denotes
the number of positive integers ≤ x all of whose prime factors are ≤ y,
and p denotes primes. The constants cj(r) are effectively computable, and
in particular c1(r) = ζ(1 − r)/(1 − r). This is obtained analogously to De
Koninck–Ivić [4], where the case r = −1 was treated.

One can generalize (1.1) by using the methods of [5] and obtain

(1.14) Sr(x) =
x

ϕ(k)
δr(x)

(
1 + O

((
log log x

log x

)1/2))
(r > 0),

where

(1.15) δr(x) :=
x∫

2

%

(
log x

log t

)
dt

tr+1
(x ≥ 2, r > 0),

so that δ1(x) = δ(x), as defined by (1.2). This is a non-elementary function
which can be well approximated by elementary functions. A comparison of
(1.12) and (1.14) (with k = 1) yields

(1.16) δr(x) = exp
{
− (2r log x log2 x)1/2

(
1 + gr−1(x)

+ O

((
log3 x

log2 x

)3))}
.



232 A. Ivi ć

Note that (1.16) is an asymptotic formula not for δr(x), but for log δr(x).
We shall evaluate δr(x) directly and prove an asymptotic formula for it,
which contains the simpler function ξ(u), defined by (1.7). In view of (1.6),
ξ(u) appears to be the function well-suited to approximate expressions con-
taining %(u). We shall treat Sr(x) for r ≥ 0 and Tr(x) for r ≥ −1. Our aim
is to sharpen the existing results, and in particular (1.14). This research is
a continuation of several works on sums of 1/P (n) mentioned at the begin-
ning, especially of [5]. It was instigated by a question of P. Erdős, who asked
me for the asymptotic evaluation of S0(x), and whom I thank for valuable
remarks.

2. Statement of results. Our first result gives an asymptotic formula
for δr(x), defined by (1.15). The formula will be given in terms of ξ = ξ(u),
defined by (1.7), and ur = ur(x). The latter denotes the solution of f ′r(y)
= 0, where

(2.1) fr(y) := ry +
y−1 log x∫

1

ξ(t) dt (r > 0, 1 ≤ y ≤ log x).

Thus ur satisfies

(2.2) u2
r = ξ

(
log x

ur

)
log x

r
,

and using (1.9) it follows that

(2.3) ur =
{

log x

2r

(
log2 x + log3 x + log(r/2)

+
log3 x + log(r/2)

log2 x
+ O

(
log2

3 x

log2
2 x

))}1/2

.

It is clear that by using (1.8) and iteration one can obtain an asymptotic
expansion of ur. With this notation we can formulate

Theorem 1. For r > 0 a fixed number we have

(2.4) δr(x) = eγ

{
ξ′((log x)/ur)

f ′′r (ur)

}1/2(
1 + O

((
log2 x

log x

)1/4))
e−fr(ur).

The main contribution in (2.4) comes from e−fr(ur), and by evaluating
this term one can obtain a sharpening of (1.16). Comparing (2.4) with (1.6)
we obtain

Corollary 1. For r > 0 a fixed number we have

(2.5) δr(x) =
(

2π

f ′′r (ur)

)1/2(
1 + O

((
log2 x

log x

)1/4))
%

(
log x

ur

)
e−rur .
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One can evaluate f ′′r (ur) by noting that (2.1) gives

f ′′r (y) = ξ′
(

log x

y

)
log2 x

y4
+ 2ξ

(
log x

y

)
log x

y3
(2.6)

=
log x(log2 x + O(log3 x))

y3

for ur � y � ur. But since

(2.7) ξ′(u) =
ξ(u)

1 + uξ(u)− u
=

1
u

(
1 +

1
log u

+
1− log2 u

log2 u
+ O

(
log3

2 u

log3 u

))
and (2.2) holds, from (2.6) we obtain

(2.8) f ′′r (ur) =
2r

ur

(
1 +

log x

2ru2
r

(
1 +

1
log2 x− log ur

)
+ O

(
log3 x

log3
2 x

))
.

Hence we obtain

Corollary 2. For r > 0 a fixed number we have

(2.9) δr(x) =
(

π

r
ur

)1/2(
1− log x

4ru2
r

(
1 +

1
log2 x− log ur

)
+ O

(
1

log2
2 x

))
%

(
log x

ur

)
e−rur .

For the sum Sr(x) defined by (1.10), where r ≥ 0 is fixed and 1 ≤ l ≤ k,
(k, l) = 1, are fixed integers, we shall prove the asymptotic expansion given
by

Theorem 2. For any given ε > 0,

(2.10) S0(x) =
x

ϕ(k)
+ O(x exp(− log3/8−ε x)).

For fixed r > 0 and any fixed integer J ≥ 0,

(2.11) Sr(x) =
x

ϕ(k)

x∫
2

%

(
log x

log t

)( J∑
j=0

Qj,r(log t)
logj x

+ O

((
log t

log x

)J+1))
dt

tr+1

for suitable polynomials Qj,r(x) (j = 0, 1, 2, . . .) of degree j in x whose
coefficients depend on r. In particular ,

(2.12) Q0,r(x) = r, Q1,r(x) = (r − rγ)(rx− 1).

From (2.11) we obtain
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Corollary 3. If r > 0 is fixed and ur is given by (2.2), then

(2.13) Sr(x) =
(

r +
r2 − r2γ

log x
ur + O

((
log2 x

log x

)3/4))
x

ϕ(k)
δr(x).

One can use (2.3) to express the right-hand side of (2.13) as a function
of x times δr(x). Corollary 3 in the special case r = k = 1 sharpens (1.1),
showing incidentally that the error term in (1.1) is of the correct order of
magnitude.

A result analogous to Theorem 2 holds for Tr(x) defined by (1.11):

Theorem 3. For any given ε > 0,

(2.14)

T−1(x) =
Cx

ϕ(k)
+ O(x exp(− log3/8−ε x)),

C =
∞∫

0

%(v)
v + 2

dv < 1.

For fixed r > −1 and any fixed integer J ≥ 1,

(2.15) Tr(x) =
x

ϕ(k)

x∫
2

%

(
log x

log t

)

×
( J∑

j=0

Rj+1,r(log t)
logj x

+ O

(
logJ+2 t

logJ+1 x

))
dt

tr+2

for suitable polynomials Rj,r(x) (j = 1, 2, . . .) of degree j in x whose coeffi-
cients depend on r. In particular ,

(2.16) R1,r(x) = (r + 1)2x− r − 1.

From (2.11) and (2.15) it follows that, for r > −1, one should compare
Tr(x) to Sr+1(x). Indeed, we obtain

Corollary 4. For fixed r > −1 and ur defined by (2.2) we have

(2.17) Tr(x) = (r + 1)Sr+1(x)(ur+1 + O((log x)1/4(log2 x)3/4)).

In the most interesting case r = 0 we obtain, from (2.17) and (2.3):

Corollary 5.∑
n≤x, P 2(n)|n

1 =
(

log x

2

(
log2 x + log3 x− log 2

+
log3 x− log 2

log2 x
+ O

(
log2

3 x

log2
2 x

)))1/2 ∑
n≤x

1
P (n)

.

Like earlier works on sums of 1/P (n), our proofs of Theorems 2 and 3 use
results on Ψ(x, y). In the next section the necessary material on Ψ(x, y) and
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%(u) will be presented. In Section 4 we shall use the classical Laplace method
from asymptotic analysis to prove (2.4). In Section 5 we shall prove (2.10),
and (2.11) in Section 6. Finally, the proof of Theorem 3 will be given in
Section 7.

3. Some results on Ψ(x, y). The basic tool in the proofs of Theorems
2 and 3 is the asymptotic formula

(3.1) Ψ(x, y) = Λ(x, y)(1 + O(exp(− log3/5−ε y))),

proved by E. Saias [11]. This formula is a substantial sharpening of an older
result of N. G. de Bruijn [2], who introduced Λ(x, y) as a good approximation
to Ψ(x, y). One defines

(3.2) Λ(x, y) = x
∞∫

1−0

%

(
log x− log t

log y

)
d

(
[t]
t

)
for x, y ≥ 1, if x is not an integer. If x is an integer, then Λ(x, y) =
Λ(x + 0, y). Saias proved (3.1) in the wide range

(3.3) exp{(log log x)5/3+ε} ≤ y ≤ x, x ≥ x0(ε).

The formula (3.1) is very sharp, as it gives

(3.4) Ψ(x, y) = x%(u)
(

1 + O

(
log(u + 2)

log y

)) (
u =

log x

log y

)
in the range (3.3), which is a result of A. Hildebrand [6]. The proof of (1.1)
depended on (3.4), while the sharper (3.1) will be used for the proofs of
Theorems 2 and 3. Note, however, that Λ(x, y) is not readily approximated
by elementary functions. From (3.2) it follows that it has discontinuities
at natural numbers, which requires it to be treated with caution. Its prop-
erties, as well as those of Ψ(x, y) and %(u) are extensively discussed by
G. Tenenbaum [12]. For

(3.5)
x ≥ 2, (log x)1+ε ≤ y ≤ x,

min
0≤j≤k, j≤y

u− j

k + 1− j
≥ log log y

log y
, u =

log x

log y
,

one has the asymptotic formula

(3.6) Λ(x, y) = x

k∑
j=0

aj%
(j)(u) log−j y + O(x|%(k+1)(u)| log−k−1 y)

for any fixed integer k ≥ 0. Note that %(k)(u) for k ≥ 1 is defined on
R \ {0, 1, . . . , k}, and has discontinuities of the first kind at the exceptional
points u = 0, 1, . . . , k. In (3.6) the constants aj are the Taylor coefficients
of sζ(s + 1)/(s + 1). Hence a0 = 1, a1 = γ0− 1, a2 = 1− γ0 + γ1, . . . , where
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for j ≥ 0,

γj =
(−1)j

j!
lim

N→∞

( ∑
n≤N

1
n

logj n− logj+1 N

j + 1

)
,

and in particular γ0 = γ is Euler’s constant. Another way to write explicitly
aj is to note that, for Re s > 1,

ζ(s) =
∞∑

n=1

n−s =
∞∫

1−0

t−s d[t] = s
∞∫

1

[t]t−s−1 dt.

By analytic continuation we then have, for Re s > −1,

ζ(s + 1)
s + 1

=
∞∫

1

t−s−1 dt−
∞∫

1

{t}t−s−2 dt

=
1
s
−

∞∑
n=0

(−s)n

n!

∞∫
1

{t}t−2(log t)n dt,

where {t} = t − [t] is the fractional part of t. This shows that a0 = 1, and
for j ≥ 1,

(3.7) aj =
(−1)j

(j − 1)!

∞∫
1

{t}t−2(log t)j−1 dt.

From (1.6) and (1.7) one obtains

(3.8) %(u− 1) = uξ(u)%(u)(1 + O(1/u)).

Hence by using (1.3), (3.8) and induction on k it follows that, for k ≥ 0 a
fixed integer and u ≥ k + 2,

(3.9) %(k)(u) = (−ξ(u))k%(u)(1 + O(1/u)).

We also need the elementary estimate

(3.10) Ψ(x, y) � x exp
(
− log x

2 log y

)
(2 ≤ y ≤ x),

which is useful because it holds uniformly for all relevant y.

4. Asymptotic evaluation of δr(x). In this section we shall prove the
asymptotic formula (2.4). We start from the definition (1.15), writing

δr(x) =
( exp(Lr(x)/3)∫

2

+
exp(3Lr(x))∫

exp(Lr(x)/3)

+
x∫

exp(3Lr(x))

)
%

(
log x

log t

)
dt

tr+1

= I1 + I2 + I3,



Sums involving reciprocals 237

say, where

(4.1) Lr(x) :=
(

log x log log x

2r

)1/2

(r > 0).

Using (1.4) and (1.16) we obtain

I1 =
exp(Lr(x)/3)∫

2

%

(
log x

log t

)
dt

tr+1

≤ exp
{
− (1 + o(1))

3 log x

Lr(x)
log

(
3 log x

Lr(x)

)} ∞∫
2

dt

tr+1

� δr(x) log−A x

for any given A > 0, and using the trivial 0 < %(u) ≤ 1 we have

I3 =
x∫

exp(3Lr(x))

%

(
log x

log t

)
dt

tr+1
≤

∞∫
exp(3Lr(x))

dt

tr+1

� e−3rLr(x) � δr(x) log−A x.

Hence for any given A > 0 we have

(4.2) δr(x) = (1 + O(log−A x))
exp(3Lr(x))∫

exp(Lr(x)/3)

%

(
log x

log t

)
dt

tr+1
.

Now we use the asymptotic formula (1.6) to obtain from (4.2), after the
change of variable log t = y,

(4.3) δr(x) =
(

(2π)−1/2eγ + O

((
log2 x

log x

)1/2))

×
3Lr(x)∫

Lr(x)/3

(
ξ′

(
log x

y

))1/2

exp(−fr(y)) dy,

where fr(y) is given by (2.1). The key step in the proof is to further restrict
the range of integration in (4.3). To this end let

(4.4) Dr = Dr(x) := 20(log x)1/4(r−1 log2 x)3/4

and write the integral on the right-hand side of (4.3) as

ur+Dr∫
ur−Dr

+
ur−Dr∫

Lr(x)/3

+
3Lr(x)∫

ur+Dr

= J1 + J2 + J3,

say, where ur is defined by (2.2). We shall show that the contribution of J2

and J3 is small. Since both integrals are estimated similarly it suffices to
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consider only J3. We have by Taylor’s formula, since f ′r(ur) = 0 and (2.6)
holds,

J3 =
3Lr(x)−ur∫

Dr

(
ξ′

(
log x

y + ur

))1/2

exp(−fr(y + ur)) dy(4.5)

� exp(−fr(ur))
3Lr(x)−ur∫

Dr

exp
(
−

y+ur∫
ur

f ′′r (t)(y + ur − t) dt
)

dy

� exp(−fr(ur))
3Lr(x)∫
Dr

exp
(
− log x(log2 x + O(log3 x))

(3Lr(x))3

×
y+ur∫
ur

(y + ur − t) dt

)
dy

� exp(−fr(ur))
∞∫

Dr

exp
(
− r3/2y2

20(log x log2 x)1/2

)
dy

� exp(−fr(ur)) exp
(
− r3/2D2

r

20(log x log2 x)1/2

)
(log x)1/4

� exp(−fr(ur)) log−10 x.

To simplify J1 note that, for 1
3Lr(x) ≤ y ≤ 3Lr(x) we have, as x →∞,

f (3)
r (y) ∼ −3 log x log log x

y4
, f (4)

r (y) ∼ 12 log x log log x

y5

and (
ξ′

(
log x

y + ur

))1/2

=
(

1 + O

(
Dr

ur

))(
ξ′

(
log x

ur

))1/2

.

Therefore

J1 =
Dr∫

−Dr

(
ξ′

(
log x

y + ur

))1/2

exp(−fr(y + ur)) dy(4.6)

=
(

ξ′
(

log x

ur

))1/2(
1 + O

((
log2 x

log x

)1/4))
exp(−fr(ur))

×
Dr∫

−Dr

exp
{
− 1

2f ′′r (ur)y2 − 1
6f

(3)
r (ur)y3 + O(L−3

r (x)y4)
}

dy

=
(

ξ′
(

log x

ur

))1/2(
1 + O

((
log2 x

log x

)1/4))
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× exp(−fr(ur))
Dr∫

−Dr

exp
(
− 1

2f ′′r (ur)y2
)(

1− 1
6f

(3)
r (ur)y3

+ O(L−3
r (x)y4(1 + L−1

r (x)y2))
)
dy

=
(

ξ′
(

log x

ur

))1/2(
1 + O

((
log2 x

log x

)1/4))
× exp(−fr(ur))

Dr∫
−Dr

exp
(
− 1

2f ′′r (ur)y2
)
dy

=
(

2πξ′
(

log x

ur

))1/2

(f ′′r (ur))−1/2

×
(

1 + O

((
log2 x

log x

)1/4))
exp(−fr(ur)),

since for a, c > 0,

a∫
−a

e−cx2
dx =

∞∫
−∞

e−cx2
dx + O

(
1
ac

∞∫
a

2cxe−cx2
dx

)

=
(

π

c

)1/2

+ O

(
e−ac2

ac

)
.

Theorem 1 follows now from (4.3), (4.5) and (4.6).

5. The number of integers ≤ x for which P (n) ≡ l (mod k). In this
section we shall prove the asymptotic formula (2.10) for S0(x), the number
of integers ≤ x for which P (n) ≡ l (mod k). If n is counted by S0(x), then
n = 1 (if l ≡ 1 (mod k)) or n = mp, where P (m) ≤ p, p ≡ l (mod k) and p
denotes primes. Thus, for 0 < α < 1 to be determined later, we have

S0(x) =
∑

mp≤x, P (m)≤p, p≡l (mod k)

1 + O(1)(5.1)

=
∑

p≤x, p≡l (mod k)

Ψ

(
x

p
, p

)
+ O(1)

=
∑

exp(logα x)<p≤x
p≡l (mod k)

Ψ

(
x

p
, p

)
+ O

(
x exp

(
− 1

3 log1−α x
))

,
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since (3.10) yields∑
p≤exp(logα x), p≡l (mod k)

Ψ

(
x

p
, p

)
�

∑
p≤exp(logα x)

x

p
exp

(
− log x

2 log p

)
� x exp

(
− 1

3 log1−α x
)
.

Now we use the prime number theorem for arithmetic progressions in essen-
tially the strongest known form, namely

(5.2)
∑

p≤x, p≡l (mod k)

1 =
x

ϕ(k)

x∫
2

dt

log t
+ ∆(x),

∆(x) � x exp(− log3/5−ε x)

for any given ε > 0. Therefore

(5.3)
∑

exp(logα x)<p≤x, p≡l (mod k)

Ψ

(
x

p
, p

)

=
1

ϕ(k)

x∫
exp(logα x)

Ψ

(
x

t
, t

)
dt

log t
+

x∫
exp(logα x)

Ψ

(
x

t
, t

)
d∆(t)

=
1

ϕ(k)

x∫
exp(logα x)

Ψ

(
x

t
, t

)
dt

log t
+ I,

say. Integration by parts and (3.10) give

I = Ψ

(
x

t
, t

)
∆(t)

∣∣∣∣x
elogα x

−
x∫

elogα x

∆(t) dΨ

(
x

t
, t

)
(5.4)

= O(x exp(− log3/5−ε x)) + O
(
x exp

(
− 1

2 log1−α x
))

+
xe− logα x∫

1

∆

(
x

t

)
dΨ

(
t,

x

t

)
� x exp(− log3/5−ε x) + x exp

(
− 1

2 log1−α x
)

+
xe− logα x∫

1

∣∣∣∣∆(
x

t

)∣∣∣∣ d[t]

� x exp(− log3/5−ε x) + x exp
(
− 1

2 log1−α x
)

+ x
∑

n≤xe− logα x

1
n

exp
(
−

(
log

x

n

)3/5−ε)
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� x exp
(
− 1

2 log1−α x
)

+ x exp(− log3α/5−ε x)

� x exp(− log3/8−ε x)

with the choice α = 5/8.
From (5.1), (5.3) and (5.4) we obtain

S0(x) =
1

ϕ(k)

x∫
exp(log5/8 x)

Ψ

(
x

t
, t

)
dt

log t
(5.5)

+ O(x exp(− log3/8−ε x)).

Now observe that (5.5) holds also for k = 1, in which case we trivially have

S0(x) = x + O(1).

Hence we obtain

(5.6)
x∫

exp(log5/8 x)

Ψ

(
x

t
, t

)
dt

log t
= x + O(x exp(− log3/8−ε x)),

and (2.10) follows from (5.5) and (5.6).

We remark that the use of the conditional result ∆(x) � x1/2+ε, which
is a consequence of the Generalized Riemann Hypothesis for L-functions,
would not by our method of proof lead to any substantial improvements. It
would give O(x exp(−C log1/2 x)) (C > 0) for the error term in (2.10), and
the same for (2.14), while (2.11) and (2.15) would remain unaffected. For
(2.14) we would have to use the conditional improvement of (3.1) under the
Riemann hypothesis (see p. 81 of E. Saias [11]).

6. Sum of reciprocals of P r(n). In this section we shall prove the
asymptotic expansion (2.11). If Lr(x) is defined by (4.1), then

Sr(x) =
∑

p≤x, p≡l (mod k)

1
pr

Ψ

(
x

p
, p

)
+ O(1)(6.1)

= (1 + O(log−A x))
∑

exp(Lr(x)/3)<p≤exp(3Lr(x))
p≡l (mod k)

1
pr

Ψ

(
x

p
, p

)

for any given A > 0. This is similar to (4.2), the contribution of p ≤
exp(Lr(x)/3) being estimated by (3.4) and that of p > exp(3Lr(x)) trivially
by using Ψ(x, y) ≤ x. Now set for brevity

U := exp
(

1
3Lr(x)

)
, V := exp(3Lr(x)).
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By using (5.2) we have

(6.2)
∑

U≤p≤V, p≡l (mod k)

1
pr

Ψ

(
x

p
, p

)

=
1

ϕ(k)

V∫
U

Ψ

(
x

t
, t

)
dt

tr log t
+

V∫
U

Ψ

(
x

t
, t

)
d∆(t)

tr

=
1

ϕ(k)

V∫
U

Ψ

(
x

t
, t

)
dt

tr log t

+ Ψ

(
x

t
, t

)
∆(t)
tr

∣∣∣∣V
U

−
V∫

U

∆(t) d

(
1
tr

Ψ

(
x

t
, t

))
.

The integrated terms are � xδr(x) log−A x for any fixed A > 0. This follows
from (3.4), (1.4) and (1.16). The last integral in (6.2) equals

(6.3) − r
V∫

U

∆(t)
tr+1

Ψ

(
x

t
, t

)
dt +

V∫
U

1
tr

∆(t) dΨ

(
x

t
, t

)
� exp(− log3/10−ε x)

×
(

x
V∫

U

%

(
log x

log t
− 1

)
dt

tr+1
+ x1−r

x/U∫
x/V

tr−1 dΨ

(
t,

x

t

))
.

Using (3.8) we obtain

V∫
U

%

(
log x

log t
− 1

)
dt

tr+1
�

V∫
U

log x

log t
log2 x · %

(
log x

log t

)
dt

tr+1

� δr(x)(log x log2 x)1/2,

while from (3.4) and (1.4) we obtain

−x1−r

x/U∫
x/V

tr−1dΨ

(
t,

x

t

)
=

V∫
U

t1−rdΨ

(
x

t
, t

)

= Ψ

(
x

t
, t

)
t1−r

∣∣∣∣V
U

+ (r − 1)
V∫

U

1
tr

Ψ

(
x

t
, t

)
dt

� xδr(x)(log x log2 x)1/2.
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Thus it follows from (6.1)–(6.3) that, for any fixed A > 0,

(6.4) Sr(x) =
1

ϕ(k)

V∫
U

Ψ

(
x

t
, t

)
dt

tr log t
+ O(xδr(x) log−A x).

Then applying (3.1) we find that

(6.5)
V∫

U

Ψ

(
x

t
, t

)
dt

tr log t

= (1 + O(exp(− log3/10−ε x)))
V∫

U

Λ

(
x

t
, t

)
dt

tr log t
.

In the last integral we may use (3.6) with x replaced by x/t and y replaced
by t, since (3.5) will be satisfied for U ≤ t ≤ V . Therefore

V∫
U

Λ

(
x

t
, t

)
dt

tr log t
= x

J∑
j=0

aj

V∫
U

%(j)

(
log x

log t
− 1

)
dt

tr+1 logj+1 t
(6.6)

+ O

(
x

V∫
U

∣∣∣∣%(J+1)

(
log x

log t
− 1

)∣∣∣∣ dt

tr+1 logJ+2 t

)
.

It remains to evaluate the integrals

(6.7) Ij,k(x, r) :=
V∫

U

%(j)

(
log x

log t
− 1

)
dt

tr+1 logk t
(r > 0)

when j ≥ 1 and k are given integers, in particular when k = j+1. Integrating
by parts, using (1.4) and (3.8) we obtain, for any fixed A > 0,

Ij,k(x, r) =
−1

log x

V∫
U

1
tr logk−2 t

d

{
%(j−1)

(
log x

log t
− 1

)}

=
1

log x

V∫
U

%(j−1)

(
log x

log t
− 1

)

×
(

−r

tr+1 logk−2 t
+

2− k

tr+1 logk−1 t

)
dt + O(δr(x) log−A x).

Hence we have the recursive formula

Ij,k(x, r) =
−1

log x
(rIj−1,k−2(x, r) + (k − 2)Ij−1,k−1(x, r))(6.8)

+ O(δr(x) log−A x),
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and in particular,

I1,2(x, r) =
−r

log x
I0,0(x, r) + O(δr(x) log−A x)(6.9)

=
−r

log x

x∫
2

%

(
log x

log t
− 1

)
dt

tr+1
+ O(δr(x) log−A x).

If we use induction on m (1 ≤ m ≤ j), (6.8) and
(

m
k−1

)
+

(
m
k

)
=

(
m+1

k

)
, then

we obtain

(6.10) Ij,j+1(x, r) =
(−1)m

logm x

{
rmIj−m,j+1−2m(x, r)

+
m∑

k=1

(
m

k

)
rm−k(j −m)(j −m + 1) . . . (j −m + k − 1)

× Ij−m,j+1−2m+k(x, r)
}

+ O(δr(x) log−A x).

Hence for m = j it follows from (6.10) that

(6.11) Ij,j+1(x, r) =
(
−r

log x

)j

I0,1−j(x, r) + O(δr(x) log−A x).

Thus from (6.4)–(6.6) and (6.11) we obtain

Sr(x) =
x

ϕ(k)

J∑
j=0

aj

logj x

x∫
2

%

(
log x

log t
− 1

)
Pj−1,r(log t)

dt

tr+1
(6.12)

+ O(xδr(x) log−A x)

+ O

(
x

logJ+1 x

x∫
2

%

(
log x

log t
− 1

)
(log t)J dt

tr+1

)
with

(6.13) P−1,r(x) = 1/x, Pm,r(x) = (−r)m+1xm (m = 0, 1, 2, . . .).

As in (6.9) we have, by using (1.4), replaced the limits of integration U and
V by 2 and x, respectively. In doing this we have created an error which is
certainly

� xδr(x) log−A x.

Note that the absolute value signs in (6.6) are unimportant, since by (3.8)
the function %(k)(u) is of constant sign for u ≥ u0(k). The integrals in (6.12)
are further transformed by using

%

(
log x

log t
− 1

)
dt

t log t
= d

(
%

(
log x

log t

))
,
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which easily follows from (1.3). This gives

(6.14)
x∫

2

%

(
log x

log t
− 1

)
P−1,r(log t)

dt

tr+1
= (r + O(log−A x))δr(x),

and for j ≥ 1

(6.15)
x∫

2

%

(
log x

log t
− 1

)
Pj−1,r(log t)

dt

tr+1
= O(δr(x) log−A x)

+ r
x∫

2

%

(
log x

log t

)(
Pj−1,r(log t)

(
log t− 1

r

)
− P ′j−1,r(log t)

log t

r

)
dt

tr+1
.

Therefore if we insert (6.14) and (6.15) in (6.12) we obtain (2.11) with
Q0,r(x) = r, and in view of (6.13) for j = 1, 2, . . . we have explicitly

Qj,r(x) = raj

(
Pj−1,r(x)

(
x− 1

r

)
− P ′j−1,r(x)

x

r

)
(6.16)

= (−r)jaj(rxj − jxj−1),

where aj is given by (3.7). Since a1 = γ − 1 we obtain the expression for
Q1,r(x) given by (2.12).

To obtain (2.13) from (2.11) note that we may write

Sr(x) =
rx

ϕ(k)

exp(ur+Dr)∫
exp(ur−Dr)

%

(
log x

log t

)
(6.17)

×
(

1 + (1− γ)
(r log t− 1)

log x
+ O

(
log2 t

log2 x

))
dt

tr+1
,

where ur is defined by (2.2) and Dr by (4.4). This follows by the analysis
of Section 4, where δr(x) was evaluated. Hence in the integral in (6.17) we
have

log t = ur + O(Dr) = ur + O((log x)1/4(log2 x)3/4),

and (2.13) follows.
Since by (6.14) the relevant range of integration in the expression for

Sr(x) is [exp(ur −Dr), exp(ur + Dr)], it is seen that in (2.11) one can write
the error term outside the integral and obtain

Sr(x) =
x

ϕ(k)

J∑
j=0

1
logj x

x∫
2

Qj,r(log t)%
(

log x

log t

)
dt

tr+1
(6.18)

+ O

(
x

(
log2 x

log x

)(J+1)/2 x∫
2

%

(
log x

log t

)
dt

tr+1

)
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in view of (2.2). Similarly one can write (2.15) with the error term outside
the integral (it will be like the one in (6.18) but with J +2 in place of J +1).
However, (2.15) has the advantage that one sees immediately that the error
term is of the smaller order of magnitude than the main terms, which is not
obvious in (6.18).

7. The sum in which P 2(n) |n. We turn now to the proof of Theo-
rem 3, which follows the method of the proof of Theorem 2. For this reason
we shall be relatively brief and stress only the salient points. We start with
the proof of (2.14). Since

T−1(x) =
∑

mp2≤x, p≡l (mod k), P (m)≤p

p + O(1),

analogously to (5.5) we obtain

T−1(x) =
1

ϕ(k)

√
x∫

exp(log5/8 x)

tΨ

(
x

t2
, t

)
dt

log t
(7.1)

+ O(x exp(− log3/8−ε x)).

However, in the case of S0(x) we knew that S0(x) = x + O(1) when k = 1,
whereas nothing analogous seems to hold for T−1(x) when k = 1. For this
reason we shall prove (2.14) directly from (7.1), noting that this method
incidentally provides an alternative proof of (2.10). For Ψ(x/t2, t) in (7.1)
and t ≤ x1/3 we use (3.1), noting that (3.3) will hold, and for x1/3 ≤ t ≤ x1/2

we use Λ(x, y) = Ψ(x, y) = [x] (y ≥ x). Thus

T−1(x) =
1

ϕ(k)

√
x∫

exp(log5/8 x)

yΛ

(
x

y2
, y

)
dy

log y
(7.2)

+ O(x exp(− log3/8−ε x)).

Now we use the representation (3.2) for Λ(x, y), invert the order of inte-
gration and make the change of variable (log(x/t))/ log y − 2 = v. This
gives

√
x∫

exp(log5/8 x)

yΛ

(
x

y2
, y

)
dy

log y

= x

√
x∫

exp(log5/8 x)

1
y log y

( x/y2∫
1−0

%

(
log x− log t

log y
− 2

)
d

(
[t]
t

))
dy
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= x
X∫

1−0

( (x/t)1/2∫
exp(log5/8 x)

%

(
log x− log t

log y
− 2

)
dy

y log y

)
d

(
[t]
t

)

= x
X∫

1−0

( W∫
0

%(v)
v + 2

dv

)
d

(
[t]
t

)
(X = xe−2 log5/8 x, W = (log x− log t)/ log5/8 x− 2). From (1.4) we have

(7.3) g(x) :=
∞∫

x

%(v)
v + 2

dv � e−x, g′(x) = − %(x)
x + 2

� e−x.

Integrating by parts, using (7.3) and d([t]/t) = −d({t}/t), we then obtain

(7.4)

√
x∫

exp(log5/8 x)

yΛ

(
x

y2
, y

)
dy

log y

= x
X∫

1−0

( ∞∫
0

%(v)
v + 2

dv

)
d

(
[t]
t

)
+ x

X∫
1−0

g(W ) d

(
{t}
t

)

= Cx + O(e2 log5/8 x) + xg(W )
{t}
t

∣∣∣∣t=X

t=1−0

+ x
X∫

1−0

{t}
t

g′(W )
dt

t log5/8 x

= Cx + O(x exp(− log3/8−ε x)).

Thus (2.14) follows from (7.2) and (7.4). Note that

C =
∞∫

0

%(v)
v + 2

dv <
∞∫

0

%(v)
v + 1

dv = −
∞∫

0

%′(v + 1) dv = %(1) = 1,

hence T−1(x) is proportional to S0(x).
To prove (2.15) note first that

Tr(x) =
∑

p≤
√

x, p≡l (mod k)

1
pr

Ψ

(
x

p2
, p

)
+ O(1)(7.5)

=
1

ϕ(k)

Z∫
Y

Ψ

(
x

t2
, t

)
dt

tr log t
+ O(xδr+1(x) log−A x)

for any fixed A > 0. This follows analogously to (6.4), where we set

Y := exp
(

1
3Lr+1(x)

)
, Z := exp(3Lr+1(x)),
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and Lr(x) is given by (4.1). Applying (3.1) we obtain

(7.6)
Z∫

Y

Ψ

(
x

t2
, t

)
dt

tr log t

= (1 + O(exp(− log3/10−ε x)))
Z∫

Y

Λ

(
x

t2
, t

)
dt

tr log t
.

In the last integral we may use (3.6) to obtain, similarly to (6.6),

(7.7)
Z∫

Y

Λ

(
x

t2
, t

)
dt

tr log t

= x
J∑

j=0

aj

Z∫
Y

%(j)

(
log x

log t
− 2

)
dt

tr+2 logj+1 t

+ O

(
x

Z∫
Y

∣∣∣∣%(J+1)

(
log x

log t
− 2

)∣∣∣∣ dt

tr+2 logJ+2 t

)
.

For the integrals

Jj,k(x, r) :=
Z∫

Y

%(j)

(
log x

log t
− 2

)
dt

tr+2 logk t
(r > −1),

where j ≥ 1 and k are integers, a recursive formula analogous to (6.8) holds:

(7.8) Jj,k(x, r) =
−1

log x
((r + 1)Jj−1,k−2(x, r)

+ (k − 2)Jj−1,k−1(x, r)) + O(δr+1(x) log−A x)

for any fixed A > 0. If we set k = j + 1 in (7.8) and iterate j times, then
from (7.5)–(7.7) we shall obtain

Tr(x) =
x

ϕ(k)

J∑
j=0

aj

logj x

Z∫
Y

%

(
log x

log t
− 2

)
qj−1,r(log t)

dt

tr+2
(7.9)

+ O(xδr+1(x) log−A x)

+ O

(
x

logJ+1 x

Z∫
Y

%

(
log x

log t
− 2

)
logJ t

dt

tr+2

)
,

where, analogously to (6.13), we have

q−1,r(x) = 1/x, qm,r(x) = (−r − 1)m+1xm (m = 0, 1, 2, . . .).
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To transform the integrals in (7.9) we use

d%

(
log x

log t
− 1

)
= %

(
log x

log t
− 2

)
dt

(1− log t/ log x)t log t
,

d%

(
log x

log t

)
= %

(
log x

log t
− 1

)
dt

t log t
.

We obtain

(7.10)
Z∫

Y

%

(
log x

log t
− 2

)
q−1,r(log t)

dt

tr+2

=
Z∫

Y

%

(
log x

log t

)(
p1,r(log t) +

p2,r(log t)
log x

)
dt

tr+2

+ O(δr+1(x) log−A x),

where p1,r(x) = (r+1)2x− r−1 and p2,r(x) is a quadratic function in x. In
the general case, if Pj,r(x) denotes a generic polynomial of degree j (≥ 1)
in x whose coefficients depend on r, we have

(7.11)
Z∫

Y

%

(
log x

log t
− 2

)
Pj−1,r(log t)

dt

tr+2

=
Z∫

Y

(
Pj,r(log t) +

Pj+1,r(log t)
log x

)
1

tr+1
d%

(
log x

log t
− 1

)
+ O(δr+1(x) log−A x)

=
Z∫

Y

%

(
log x

log t
− 1

)(
Pj,r(log t) +

Pj+1,r(log t)
log x

)
dt

tr+2

+ O(δr+1(x) log−A x)

=
Z∫

Y

(
Pj+1,r(log t) +

Pj+2,r(log t)
log x

)
1

tr+1
d%

(
log x

log t

)
+ O(δr+1(x) log−A x)

=
Z∫

Y

%

(
log x

log t

)(
Pj+1,r(log t) +

Pj+2,r(log t)
log x

)
dt

tr+2

+ O(δr+1(x) log−A x).

If we insert (7.10) and (7.11) in (7.9) and replace the limits of integration Y
and Z by 2 and x, respectively, we obtain (2.15) with R1,r(x) given by (2.16).
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To obtain (2.17) note that, analogously to (6.14), we have

(7.12) Tr(x) =
(r + 1)x

ϕ(k)

exp(ur+1+Dr+1)∫
exp(ur+1−Dr+1)

%

(
log x

log t

)

×
(

(r + 1) log t− 1 + O

(
log2 t

log x

))
dt

tr+2
,

where ur is defined by (2.2) and Dr by (4.4). Thus for t in (7.12) we have

log t = ur+1 + O(Dr+1) = ur+1 + O((log x)1/4(log2 x)3/4),

which gives

(7.13) Tr(x) = ((r + 1)ur+1 + O((log x)1/4(log2 x)3/4))
(r + 1)x

ϕ(k)
δr+1(x).

But from (2.13) we have

Sr+1(x) =
(

1 +
(r + 1)(1− γ)

log x
ur+1 + O

((
log2 x

log x

)3/4))
(7.14)

× (r + 1)x
ϕ(k)

δr+1(x),

hence (2.17) follows from (7.13), (7.14) and (2.3).
In concluding let it be mentioned that the foregoing methods may be

used to yield an asymptotic expansion of the general sum∑
n≤x, P (n)≡l (mod k), P m(n)|n

1
P r(n)

when m ≥ 1, 1 ≤ l ≤ k, (k, l) = 1 are fixed integers and r is a fixed
real satisfying r ≥ 1 − m. Also in Theorems 2 and 3 one can suppose
that 1 ≤ k ≤ logN x for any fixed N > 0. Namely in (5.2) we shall have
then ∆(x) � x exp(−C(N) log1/2 x) for some C(N) > 0. The asymptotic
formulas (2.11) and (2.15) will not be affected, but in (2.10) and (2.14) the
exponent 3/8 of log x will be replaced by the slightly weaker 3/10.
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[5] P. Erd ő s, A. Iv i ć and C. Pomerance, On sums involving reciprocals of the largest
prime factor of an integer , Glas. Mat. 21 (41) (1986), 283–300.

[6] A. Hi ldebrand, On the number of positive integers ≤ x and free of prime factors
> y, J. Number Theory 22 (1986), 289–307.

[7] A. Hi ldebrand and G. Tenenbaum, On a class of differential-difference equa-
tions arising in number theory , to appear.
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