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1. Introduction. Let Z, N, Q be the sets of integers, positive integers
and rational numbers respectively. Let x,m,n € N be such that x > 1 and
n > 1, and let u,,(x) = (™ — 1)/(z — 1). In [10], Shorey proved that if
m>1,m=1 (mod n) and u,,(x) is an nth power, then max(z,m,n) < C,
where C' is an effectively computable absolute constant. In [11], he further
proved that if both u,,, () and wum,,(z) are nth powers with m; < mq
and m; = my (mod n), then max(x, ms,n) < C. Recently, the author [7]
showed that if both w,,, (z) and u,, (z) are nth powers with m; < mg and
my = mg (mod n), then m; = 1. For m; = 1, the problem is still open. In
this note we prove a general result as follows.

THEOREM. The equation

™ —1 n
=y, z,ymneN z>1 y>1 m>2, n>1,

(1)

has no solution (x,y, m,n) satisfying ged(zp(x),n) = 1, where p(z) is Fu-
ler’s function of x.

r—1

By the above theorem, we can obtain the following result.

COROLLARY. If m > 1, m = 1 (mod n) and u,(x) is an n-th power,
then (z,m,n) = (3,5,2).

Thus it can be seen that the above theorem contributes to solving many
problems concerning the equation (1).

2. Preliminaries. Let p be an odd prime, and let a € N be such that
a>1,ptaand § = a'/? ¢ Q. Then K = Q(6) is an algebraic number field
of degree p. Further let a = plfl ...p%, where ky,..., ks €N, p1,...,ps are
distinct primes, and let S = {xp™pi*...pl* | ro,71,...,7s are nonnegative
integers}. Then K has an integral base of the form {6°/I; | i = 0,1,...

..,p—1}, where I; € S fori =0,1,...,p— 1.
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Let Ok be the algebraic integer ring of K. Then we have Z[f] C Og. For
at,...,a € Ok, let [aq,..., ;] be the ideal of K generated by o, ..., ap,
and let ([aq,...,a,]) denote the residue class degree of [aq,...,a,] if
[a1,..., ;] is a prime ideal.

LEMMA 1. Let q be a prime. If ¢fap, ¢ # 1 (mod p) and the congruence
(2) 2P =a (mod q)
is solvable, then (2) has exactly one solution z = zy (mod q). Moreover,

[q] = p1p5® .. py7,  e2,...,e4 €N,
where py,pa, ..., p, are distinct prime ideals of K such that p; = [q,0 — 2],
(p1) =1 and (p;) > 1 forj=2,...,9.

Proof. By [5, Theorem 3.7.2], if ¢fa and (2) is solvable, then the
number of solutions of (2) is ged(p,q — 1). Hence, if ¢ # 1 (mod p), then
(2) has exactly one solution, say z = zp (mod ¢). Furthermore, since ¢1{p,
the solution is simple. This implies that

() 2P —a=(z—20)(h2(2))?...(he(2))% (mod q), e2,...,e4 €N,

where hg(z),...,he(2) € Z[z] are distinct monic irreducible polynomials
modg of degrees greater than one. Notice that the discriminant
A(1,0,...,0771) = (=1)P=D/2gP=1pP  Since qfap, by [6, Chapter 1], we
deduce from (3) that

la] = 9,0 — zo]la, h2(0)]* . . . [q, hye(0)]%
where [q,6 — 2], [q, h2(0)], ..., [q, hg(0)] are distinct prime ideals which sat-
isfy ([q,0 — z0]) = 1 and ([g, h](Q)D > 1for j = 2,...,9. The lemma is
proved.

Let ¢ = 2™ ~1P Then L = K(¢) = Q(0,¢) is the normal extension
of K/Q. Notice that {#° |i=0,1,...,p—1} and {¢? | =0,1,...,p—2}
are bases of K and Q(() respectively. We have

LEMMA 2 ([3]). {0°¢? |i=0,1,...,p—1, 5=0,1,...,p— 2} is a base
of L.

Let Up,, W, be the groups of units and cyclotomic units of L respectively.
Then Wy, = {£(' |1 =0,1,...,p—1}.

LEMMA 3. If e € Uy, then e = (', where | € Z with 0 <1 <p—1, and
n is a real unit of L.

Proof. Let 7, : L — L be the field homomorphism defined by 7;(¢) = ¢
and 7;(0) = 6¢* for i =0,...,p—1 and o, : L — L the field homomorphism
induced by 0;(¢) = ¢’ and 0;(#) =0 for j = 1,...,p — 1. Further, for any
a € L, let 7,05 : T05(o) = 75(0j(w)). Then 705 (i =0,...,p—1, j =
1,...,p— 1) are distinct p(p — 1) distinct embeddings of L into C, where
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C is the set of complex numbers. Since L is a normal extension of K/Q,
Gal(L/Q) ={mo; |i=0,1,...,p—1, j=1,...,p— 1} is the Galois group
of L/Q.

Let ¢ = 190p—1. Then ¢'(a) = @ for any o € L. Hence, o(@) =
o(0'(a)) = 0 (o(e)) = p(a) for any o € L and any p € Gal(L/Q). If e € Uy,
then € = ¢'(¢) € U, and

<€> _‘ @] _ ‘ o(¢)
o\ — =l = ===

g e@ 1] | ole)
This implies that ¢/ € Wr. Since Wr, = {£¢?' |1 =0,1,...,p— 1}, we get
e = +C%z, where [ € Z. Let n = ("le. If e = —(¢%'Z, then
(4) n=(le=—(le=—-(Cle=-7
Since (=¢"'=1 (mod 1—(), by Lemma 2, a=a (mod 1—) for any a € L.
From (4), we get 2n =0 (mod 1 — (). Notice that n € UL, p| Nr/o(1 — ()
and p is an odd prime. That is impossible. Thus, ¢ = (%, ¢ = ¢'n and

=1, pe€ Gal(L/Q).

n=("le= (e =("'e=7is areal unit of L. The lemma is proved.

3. Proof of Theorem. Let (x,y,m,n) be a solution of (1)

(5) ged(zp(x),n) = 1.
By [8], (1) with n even has no solutions other than (x,y,m,n) = (3,11,5,2)
or (7,20,4,2). It suffices to consider the case 2{n. Since n > 1, n has an
odd prime factor p. Then (x,y"/?,m,p) is a solution of (1) satisfying (5).
We can therefore assume that n is an odd prime.

If z — 1 is an nth power, then z — 1 = y{" and

(6) xm_(yly)nzlv $7y1y>m7nEN> LU>1, Y1y > 17 m>27 n>2.

By [4], we see from (6) that n |z, which contradicts (5). Therefore, 6 :=
(x —1)'/" ¢ Q and K = Q(#) is an algebraic number field of degree n.

Let = = ¢i'...q*, where r1,...,7s € N, and ¢i,...,qs are distinct
primes. Then, by (5), we have ¢;tx — 1, ¢;{n and ¢; Z 1 (mod n) for
i=1,...,s. Notice that the congruences

2" =x—1 (mod ¢;), i=1,...,s,
have solutions z = —1 (mod ¢;) (i = 1,...,s) respectively. By Lemma 1,
we get
gi
(7) lgi] = [gi, L+ 0 [ o5y, i=1,....5,
j=2

where [g;,1 + 6] and p,; are distinct prime ideals of K which satisfy
(lgi;1+0]) = 1 and (p;;) > 1fori=1,...,sand j = 2,...,g;. Since
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Nio(1+0) =z, we infer from (7) that

® = (i + o) (LT (1155) )

— [1+9] (Hl (Hzpe”) bt
From (1) and (8),
© e[S e =

S
~eo (T (1) )"
i=1  j=2
Since ged(z,n) = 1, the ideals [1+y6] and [(1+y"0"™)/(1+y0)] are coprime.
If p;; [ [1 + yO] for some 4,7 € N with 1 <4 < s and 2 < j < g;, then from
(9) we get pg;/"" |[1 + yb]. For any ideal a in K, let Na denote the norm
of a. Recall that (p;;) > 1. So we have ¢*"i" | Np®4"i™. Further, since
p;””m | [1+y0] and N[1 + y8] = Ng,o(1 +y0) = 2™, we get qQ”m |z™, a
contradiction. Therefore, p,; {[1 + 8], and by (9),

(10) 1+ y6) =[1+6]™
Let Uk be the unit group of K. We see from (10) that
(11) L+yd=(1+0)"e, eeUk, Ngjpgle)=1.

Since K = Q[f], we have
(12) e=ecl@)=ao+af+...+an_10""", ag,a,...,an_1 €Q.
Let ( = e2™V=1/n_ Since 0¢,...,0¢" 1 are conjugate numbers of 6, we get
(13)  14+ybC=(1+60)"e(6), 14+yo¢ " = (1+6¢H)™e(6¢7),
by (11). Let L = K(¢) = Q(6,¢), and let Uy, W, be the groups of units
and cyclotomic units of L respectively. Since L is a normal extension of
K/Q, we have ¢(0¢) € Ur, and by Lemma 3, £(6¢) = ¢'n, where | € Z with
0 <l <n-—1,and 7 is a real unit of L. Notice that (0¢™1) = ¢(6¢) = (!n.
We see from (13) that

L+y0C = (1+00)™¢"n,  1+yoC" = (1+6¢7H)™¢ ',
whence we obtain
(14) (1+y0¢) (1 +0¢™H)™ = (1+y0¢™ (1 +6¢)"¢* =0
since n # 0. Clearly, (14) can be written as

(15) To(C) + 0Ty (O) 4 ...+ 60" 1T,_1(¢) =0,




Perfect powers of the form 2l 41 95

where
(16) Ti(¢) =bio+birC+ ... +binol"?€Z], i=0,1,....,n—1.
By Lemma 3, we find from (14)—(16) that
(17) bi; =0, i=01,....,n—1, j=01,...,n—2.
Since m > 2, 0" =z — 1 and (" = 1, we have
(1+00)™ =co+c10C+ ... +cn (00" €Z[0C], co>1, c1 >1.
From (14) and (15), we get
(18)  To(¢) = co+ en—1(z — 1)y¢* — co¢® — ez — )y¢* 2,
(19)  Ti(¢) = er¢" " + coyC — e — oy

If 1, ¢2, ¢* and ¢*~2 are distinct, we see from (16)—(18) that co = 0, a con-
tradiction. Therefore, there exist at least two elements of {1,¢?,¢?, (%2}
which are equal. Since 1 # ¢2 and ¢% # (%72, it suffices to consider the
following three cases.

Case 1: 1 =(¢?. Then ! =0, n = ¢(f¢) and
(20) n=ao+afl+...+a,_1(0¢)" "
= Qg + a19C_1 4+ ...+ an_l(HC_l)"_l = ﬁ
by (12), since 7 is a real unit of L. Notice that (* # ("¢ fori=1,...,n— 1.

By Lemma 2, we see from (20) that a; = ... = ap—1 = 0 and € = (0
£(0¢) = ag. Since N ,g(c) =1 by (11), we get ap = ¢ = 1 and
(21) 1+yd=(01+0)"

by (11). For m > 1, (21) is impossible.

Case2: 1=¢*"20r(?=¢? Thenl=1and T1(¢) = c1¢(" ! — 13
by (20). Since ¢"~! # (3 and ¢; > 1, (16) is false.

Case 3: (2 = (%72 Then | = 2 and Ty(¢) = co — co¢* by (19). Since
1# ¢* and ¢ > 1, (16) is false.

All cases are considered and the Theorem is proved.

4. Proof of Corollary

LEMMA 4 ([2]). Let n € N with n > 3, and let p, = Hpmpl/(p’l).

Let a,b € N such that 7a/8 < b < a and a = b = 0 (mod n). If A\ =
4b(a — b)2p,t > 1, then

al/n X>i
b Y|~ Y¢
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for any X € Z and any Y € N, where

log 241, (a + b) . 1
log A ’ ©20%2(q + b)’

LEMMA 5 ([9]). Let a,b € N with a > 1 and b > 1. Then the equation
aX?®—-bY? =1, X, Y €N,

§=1+

has at most one solution (X,Y).

LemMA 6 ([12]). Let a,b,c,n € N with n > 3. If (ab)™/?>~1 >
4¢2" =2 (nu, )", where p, was defined in Lemma 4, then the inequality
laX™ —bY"| <e¢, X, Y EN, ged(X,Y)=1,
has at most one solution (X,Y).

Proof of Corollary. Let u,(x) be an nth power which satisfies
m>1landm=1 (mod n). Then (1) has a corresponding solution (z,y, m,n).
We may assume that n is a prime. By [8], if (x,m,n) # (3,5,2), then n
is an odd prime. Further, by Theorem, we have n|zp(z). If n |z, then we
find from (1) that y® = 1 (mod n). This implies that y™ = 1 (mod n?)
and n? | z. If n{x, then n|¢(z) and z has a prime factor ¢ such that ¢ = 1
(mod n). So we have

(22) =0 (modn?) or z hasa prime factor ¢ with ¢ =1 (mod n).

On the other hand, since m = 1 (mod n), m = nt + 1 and (X,Y) =
(z',y) is a solution of the equation

(23) X" —(x—-1)Y"=1, X, YeN,

where ¢ € N. Notice that (23) has another solution (X,Y) = (1,1). By
Lemmas 5 and 6, we get n > 5 and

(24) (z(x — 1))"21 < 4pn*/ (=),

On combining (24) with (22), we obtain

n=>5and = 11,22,25,31,33, 41 or 44,
n=T7and x =29, n =11 and x = 23.
If 2tt, then 2| m and

™2 —1

(25)

(26) =y, 2™ +1=yl, y,pEN, yiy=vy.

z—1
By [1], (26) is impossible for n < 11. Therefore, by (25), we get 2|¢. For
the pairs (z,n) in (25), by computation, ug,+1(x) is not an nth power. So
we have t > 4.
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Let a =a2n and b= (x — 1)n. If > 1 and (X,Y) is a solution of (24),
then

1/n
a Y 1
27 T (e
27) ‘(b) X‘<n(:c—1)1/"X”
On the other hand, by Lemma 4, if z > 8 and 4(z — 1) > n™/(»=1) then
1/n
a Y c
9 b N
(28) '(b) ‘X‘>‘XW
where

s<24 (" lognt1 - =
log2\n—1 cgn TR ), 6_25+2n(2x—1)'
Take (X,Y) = (z%,y). The combination of (27) and (28) yields
10log 2 + 2nlogn/(n —1)
(n—2)t—1—mnlogn/((n—1)log2)
and < 10 for n > 5 and ¢ > 4, which contradicts (25). Thus, the Corollary
is proved.

logz < <232 <logll
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