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Introduction. Consider the following operator on the set of integers:

(1) T (n) :=
{ 1

2n if n is even,
1
2 (3n + 1) if n is odd.

Now choose a starting number x ∈ N, and look at its 3n + 1 trajectory
{T k(x) : k ≥ 0}, where T k = T ◦ . . . ◦ T denotes the k-fold iterate of T
for k ≥ 1, and T 0(x) = x. The famous and unsolved 3n + 1 conjecture
says that any 3n + 1 trajectory eventually hits 1, for any starting number
x ∈ N.

There is an extensive literature on associated problems and generaliza-
tions of this conjecture (see [3] and [4]).

This paper proves an estimate on the functions

(2) ϑa(x) := |{n ∈ P(a) : n ≤ ax}|

where P(a) denotes the 3n + 1 predecessor set of a ∈ Z, that is,

P(a) := {n ∈ Z : T k(n) = a for some k ≥ 0} .

The investigation of the set P(1) began with Crandall [1] who succeeded
in proving

(3) ϑ1(x) ≥ xβ for some β > 0 and large x,

where the exponent has been computed to be β ≈ 0.057. In 1987, Sander [5]
improved Crandall’s technique to show β = 1

4 in (3). In 1989, Krasikov [2]
introduced another technique to prove β = 3

7 . Here we extend Krasikov’s
method to obtain the estimate

(4) ϑa(x) ≥ x0.48 for large x, if a is not divisible by 3 .

Starting out from the set of Krasikov’s inequalities given here in (7) it might
be possible to get a further improvement of this exponent.
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The improvement of Krasikov’s estimate. For a given positive
integer v and a given positive real number x, consider the set

G(v, x) :=

{
n ∈ N :

T k(n) = v for some k ≥ 0

T i(n) ≤ x for 0 ≤ i ≤ k

}
.

In his paper [2], Krasikov defines a function f by

(5) f(v, x) = |G(v, x)| .

Then he puts

Φm
n (y) := inf{f(v, 2yv) : v is noncyclic and v ≡ m mod 3n}

(an integer v is called noncyclic if T k(v) 6= v for each k ≥ 1), which gives
immediately the equation

(6) Φm
n−1(y) = min{Φm

n (y), Φm+3n−1

n (y), Φm+2·3n−1

n (y)} ,

and he proves the following set of inequalities:

(7)

 Φm
n (y) ≥ Φ4m

n (y − 2) + Φ
(4m−2)/3
n−1 (y + α− 2) if m ≡ 2 mod 9,

Φm
n (y) ≥ Φ4m

n (y − 2) if m ≡ 5 mod 9,
Φm

n (y) ≥ Φ4m
n (y − 2) + Φ

(2m−1)/3
n−1 (y + α− 1) if m ≡ 8 mod 9

with the constant α = log2 3 = 1.5849+. Note that (5) implies Φm
n (y) = 0

for y < 0, and that Φm
n (y) is a nondecreasing function of y. In addition, we

have Φm
n (0) ≥ 1 by the fact that v ∈ G(v, v) gives f(v, 20v) ≥ 1 for each

integer v > 0.
Since G(a, ax) ⊂ {n ∈ P(a) : n ≤ x}, there is an obvious inequality

between the functions ϑa defined in (2) and the Φm
n , provided a is noncyclic:

(8) ϑa(x) ≥ Φm
n (log2 x) if a ≡ m mod 3n .

Krasikov uses the set (7) of inequalities for n = 2 to prove β = 3
7 in

the estimate (3), but he does not deal with n ≥ 3. The following lemma
provides the key to extract information out of (7) for the case n = 3.

Lemma 1.

Φ2
2(y) ≥

∞∑
k=0

Φ8
2(y − 2 + k(α− 4)) .

P r o o f. An immediate consequence of (7) is

(9) Φ2
2(y) ≥ Φ8

2(y − 2) + Φ2
1(y + α− 2) .

Moreover, we have, like Krasikov in his proof of Theorem 1 in [2],

(10) Φ2
1(y) = min{Φ2

2(y), Φ5
2(y), Φ8

2(y)} ≥ Φ2
2(y − 2)
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since Φ5
2(y) ≥ Φ2

2(y − 2) by (7), and Φ8
2(y) ≥ 1 + Φ2

1(y + α − 1) > Φ2
1(y), if

y ≥ 2. If y < 2 then (10) is obvious. (9) and (10) combine to give inductively

Φ2
2(y) ≥

n∑
k=0

Φ8
2(y − 2 + k(α− 4)) + Φ2

2((y − 2 + n(α− 4)) + α− 2) .

In what follows, the transcendental function

(11) g(λ) := λ−12 + λα−7 + λα−6 +
λα−16 + λα−5

1− λα−4

will play an essential rôle. g(λ) is a decreasing function of λ on the positive
real axis, so there is a unique λ1 > 1 with g(λ1) = 1. This number λ1 will
be responsible for the exponent β = 0.48 < log2 λ1 in the estimate (4).

Proposition 2. Let the real number λ0 > 1 be given such that g(λ0) > 1.
Then Φ8

2(y) ≥ λy
0 if y is sufficiently large.

P r o o f. If we fix arbitrary numbers λ > 1 and ỹ > 0, the facts that Φ8
2 is

nondecreasing and Φ8
2(0) ≥ 1 imply that there is a constant c = c(λ, ỹ) > 0

such that

(12) Φ8
2(y) ≥ cλy for 0 ≤ y ≤ ỹ .

Now the idea is to show—using Krasikov’s inequalities (7)—that the con-
dition g(λ) > 1 suffices to prolong the inequality (12) to all y ≥ 0. Having
done this prolongation, the claim follows by decreasing λ slightly to get rid
of the constant c, while restricting the range to all sufficiently large y.

The system (7) reads for n = 3:

(13)



Φ2
3(y) ≥ Φ8

3(y − 2) + Φ2
2(y + α− 2) ,

Φ5
3(y) ≥ Φ20

3 (y − 2) ,

Φ8
3(y) ≥ Φ5

3(y − 2) + Φ5
2(y + α− 1) ,

Φ11
3 (y) ≥ Φ17

3 (y − 2) + Φ5
2(y + α− 2) ,

Φ14
3 (y) ≥ Φ2

3(y − 2) ,

Φ17
3 (y) ≥ Φ14

3 (y − 2) + Φ2
2(y + α− 1) ,

Φ20
3 (y) ≥ Φ26

3 (y − 2) + Φ8
2(y + α− 2) ,

Φ23
3 (y) ≥ Φ11

3 (y − 2) ,

Φ26
3 (y) ≥ Φ23

3 (y − 2) + Φ8
2(y + α− 1) .

Since the functions Φm
n are nondecreasing, and because α > 1 and Φ8

2(0) ≥ 1,
the last line of (13) implies Φ26

3 (y) ≥ 1 + Φ8
2(y + α − 1) > Φ8

2(y), provided
y ≥ 2. Hence we conclude by (6)

(14) Φ8
2(y) = min{Φ8

3(y), Φ17
3 (y)} for y ≥ 2 .
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Starting with the third line of system (13) and running through this system,
one arrives at the inequality

Φ8
3(y) ≥ Φ17

3 (y − 12) + Φ5
2(y + α− 1) + Φ8

2(y + α− 6)

+ Φ8
2(y + α− 7) + Φ5

2(y + α− 12) .

By (7) and Lemma 1, one infers Φ5
2(y) ≥ Φ2

2(y−2) ≥
∑n

k=0 Φ8
2(y−4+k(α−4))

for any given integer n ≥ 0. If we put

Gn(y) := Φ8
2(y − 12) + Φ8

2(y + α− 6) + Φ8
2(y + α− 7)(15)

+
n∑

k=0

(Φ8
2(y + α− 16 + k(α− 4))

+ Φ8
2(y + α− 5 + k(α− 4))) ,

we come—using (14)—to the inequality

(16) Φ8
3(y) ≥ Gn(y) for any n ∈ N .

An inspection of (15) shows that Gn(y) needs the values of Φ8
2(x) only at

points in the range

y − 12− (n + 1)(α− 4) ≤ x ≤ y − (5− α) .

Fixing an arbitrary n ≥ 0 and a sufficiently large ỹ, and calculating a
constant c(λ, ỹ) according to (12), we have

(17) Gn(y) ≥ c(λ, ỹ) λygn(λ) if 12 + (n + 1)(4− α) ≤ y ≤ ỹ + (5− α) ,

where

gn(λ) := λ−12 + λα−7 + λα−6 +
n∑

k=0

(λα−16+k(α−4) + λα−5+k(α−4)) .

Analogously, chasing through the system (13) starting at the sixth line
and using (14) gives

Φ17
3 (y) ≥ Φ8

2(y − 6) + Φ2
2(y + α− 6) + Φ2

2(y + α− 1) .

As before, put

Hn(y) := Φ8
2(y − 6)

+
n∑

k=0

(Φ8
2(y + α− 8 + k(α− 4)) + Φ8

2(y + α− 3 + k(α− 4))) ,

to get the inequality

(18) Φ17
3 (y) ≥ Hn(y) for any n ∈ N .

Again we see that Hn(y) needs the values of Φ8
2(x) only at points in the

range
y − 4− (n + 1)(α− 4) ≤ x ≤ y − (3− α) ,
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and we have

(19) Hn(y) ≥ c(λ, ỹ) λyhn(λ) if 4 + (n + 1)(4− α) ≤ y ≤ ỹ + (3− α) ,

with the abbreviation

hn(λ) := λ−6 +
n∑

k=0

(λα−8+k(α−4) + λα−3+k(α−4)) .

Now the limiting functions

(20) g(λ) = lim
n→∞

gn(λ) and h(λ) := lim
n→∞

hn(λ) = λ−6 +
λα−8 + λα−3

1− λα−4

are clearly decreasing in the range λ > 1. Hence, there are unique numbers
λ1, λ2 > 1 with g(λ1) = h(λ2) = 1. A simple numerical calculation shows
that λ2 > λ1.

Given a number λ0 > 1 satisfying g(λ0) > 1 as in the assumption of
Proposition 2, we know that λ0 < λ1. Choose λ′ with λ0 < λ′ < λ1 and n′

with the property

(21) gn(λ′) ≥ 1 and hn(λ′) ≥ 1 for n ≥ n′ ,

which is possible by (20). Moreover, put

y0 := 12 + (n′ + 1)(4− α) .

By the definition of c(λ′, y0) above (12), we have

(22) Φ8
2(y) ≥ c(λ′, y0)(λ′)y for 0 ≤ y ≤ y0 .

Combine (14), (16), and (18) to get

Φ8
2(y) = min{Φ8

3(y), Φ17
3 (y)} ≥ min{Gn′(y),Hn′(y)} .

This gives using (17) and (19)

Φ8
2(y) ≥ c(λ′, y0)(λ′)y min{gn′(λ′), hn′(λ′)} for y0 ≤ y ≤ y0 + (3− α)

≥ c(λ′, y0)(λ′)y

where the last inequality is due to (21). Using in addition inequality (22),
the claim Φ8

2(y) ≥ c(λ′, y0)(λ′)y can be proved inductively on the intervals
0 ≤ y ≤ y0 + k(3− α), which completes the proof of Proposition 2.

Theorem 3. For any integer a > 0 which is not divisible by 3, we have

ϑa(x) ≥ x0.48 if x is sufficiently large .

P r o o f. If a ≡ 8 mod 32, the result follows from (8) and Proposition 2:

ϑa(x) ≥ Φ8
2(log2 x) ≥ xlog2 λ0 if x is sufficiently large ,

where λ0 satisfies g(λ0) > 1. The number λ1 with g(λ1) = 1 and its log2 are
approximately (with an error < 10−3) given by λ1 ≈ 1.397 and log2 λ1 ≈
0.482, whence the result.
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If, more generally, we have only a 6≡ 0 mod 3, it is easy to see that there
is a noncyclic predecessor b ∈ P(a) satisfying b ≡ 8 mod 32. But this means
T k(b) = a for some k, whence

ϑa(x) ≥ ϑb

(
ax

b

)
≥

(
a

b

)β

xβ if x is sufficiently large .

Applying the remarks following (12) to this inequality completes the proof.
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