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Introduction. Consider the following operator on the set of integers:

1) 7(0) = {

n if n is even,

(Bn+1) if nis odd.

N[ N[

Now choose a starting number z € N, and look at its 3n + 1 trajectory
{T*(x) : k > 0}, where T* = T o ... o T denotes the k-fold iterate of T
for kK > 1, and T%(x) = z. The famous and unsolved 3n + 1 conjecture
says that any 3n + 1 trajectory eventually hits 1, for any starting number
z € N.

There is an extensive literature on associated problems and generaliza-
tions of this conjecture (see [3] and [4]).

This paper proves an estimate on the functions

(2) Yo(x) := [{n € P(a) : n < ax}|
where P(a) denotes the 3n + 1 predecessor set of a € Z, that is,
P(a) :={n € Z: T*(n) = a for some k > 0} .

The investigation of the set P(1) began with Crandall [1] who succeeded
in proving

(3) V1(x) > 2”  for some B > 0 and large z,

where the exponent has been computed to be 3 ~ 0.057. In 1987, Sander [5]

improved Crandall’s technique to show 3 = § in (3). In 1989, Krasikov [2]
introduced another technique to prove § = % Here we extend Krasikov’s
method to obtain the estimate

(4) Oo(z) > 2% for large z, if a is not divisible by 3.

Starting out from the set of Krasikov’s inequalities given here in (7) it might
be possible to get a further improvement of this exponent.
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The improvement of Krasikov’s estimate. For a given positive
integer v and a given positive real number x, consider the set

T*(n) = v for some k > 0
T'n)<zfor0<i<k |

Gv,z) = {n eN:

In his paper [2], Krasikov defines a function f by
() fv,2) = |G (v, z)] -
Then he puts
& (y) = inf{f(v,2%v) : v is noncyclic and v = m mod 3"}

(an integer v is called noncyclic if T*(v) # v for each k > 1), which gives
immediately the equation

. m m n—1 m qn—1
(6) @?—l(y) = mln{@n (y)v ¢n 3 (y)7 @n 23 (y)} )
and he proves the following set of inequalities:
4m—2)/3 .
P (y) > Pim(y — 2) + ( " ) (y+a—2) ifm=2mod)9,
(7) D™ (y) > Pim(y — 2) if m =5 mod 9,
2m—1)/3 .
P (y) > Pim(y — 2) + <15( " ) (y+a—1) if m=8mod9
with the constant o = log, 3 = 1.5849%. Note that (5) implies & (y) = 0
for y < 0, and that @]"'(y) is a nondecreasing function of y. In addition, we
have &™(0) > 1 by the fact that v € G(v,v) gives f(v,2%) > 1 for each
integer v > 0.

Since G(a,ax) C {n € P(a) : n < z}, there is an obvious inequality
between the functions 9, defined in (2) and the @, provided a is noncyclic:

(8) Uo(z) > P (logyz)  if a =m mod 3™.

Krasikov uses the set (7) of inequalities for n = 2 to prove = % in

the estimate (3), but he does not deal with n > 3. The following lemma
provides the key to extract information out of (7) for the case n = 3.

LEMMA 1.
B2(y >Zqﬁ8 y—2+4k(a—4)).
k=0

Proof. An immediate consequence of (7) is
(9) Di(y) = P3(y —2) + P(y + @ - 2).
Moreover, we have, like Krasikov in his proof of Theorem 1 in [2],

(10) P71 (y) = min{®3(y), D3(y), B5(y)} > D3 (y — 2)
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since @3(y) > P5(y — 2) by (7), and P3(y) > 1+ Py + o — 1) > B{(y), if
y > 2. If y < 2 then (10) is obvious. (9) and (10) combine to give inductively

n
Bi(y) > Y By —2+k(a—4)+P3((y—2+n(a—4)+a—2). =
k=0
In what follows, the transcendental function
)\a—16 + Xm—5
1— o4
will play an essential role. g(\) is a decreasing function of A on the positive

real axis, so there is a unique Ay > 1 with g(A;) = 1. This number A; will
be responsible for the exponent 3 = 0.48 < log, A1 in the estimate (4).

(11) g(N) == AT AT ey

PROPOSITION 2. Let the real number Ao > 1 be given such that g(Ao) > 1.
Then @5(y) > Ny if y is sufficiently large.

Proof. If we fix arbitrary numbers A > 1 and § > 0, the facts that &5 is
nondecreasing and @5(0) > 1 imply that there is a constant ¢ = ¢(\,4) > 0
such that

(12) D5(y) > e\ for 0<y<7y.

Now the idea is to show—using Krasikov’s inequalities (7)—that the con-
dition g(\) > 1 suffices to prolong the inequality (12) to all y > 0. Having
done this prolongation, the claim follows by decreasing A slightly to get rid
of the constant ¢, while restricting the range to all sufficiently large y.

The system (7) reads for n = 3:

P3(y) > D3(y — 2) + P3(y +a —2),
P3(y) > D3°(y — 2),
i(y) > 3(y — 2) + P3(y +a — 1),
3 (y) > D3 (y —2) + Py (y+ - 2),
(13) 3t (y) > D3(y — 2),
D37 (y) > B3ty —2) + Py + - 1),
3 (y) > 30 (y —2) + P (y + . — 2),
3 (y) > D3 (y - 2),
F(y) > 0P (y—2) + P (y+a —1).

7

Since the functions @™ are nondecreasing, and because o > 1 and &5(0) > 1,
the last line of (13) implies #3°(y) > 1+ P5(y + o — 1) > P5(y), provided
y > 2. Hence we conclude by (6)

(14) 5(y) = min{@5(y), 857 (y)}  for y > 2.
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Starting with the third line of system (13) and running through this system,
one arrives at the inequality

D3(y) > D37 (y — 12) + 3 (y + a — 1) + P5(y + o — 6)
+ DSy +a—T)+D(y+a—12).
By (7) and Lemma 1, one infers 5(y) > @3(y—2) > > 1 _, D5 (y—4+k(a—4))
for any given integer n > 0. If we put

(15) Gn(y) =5y —12) + P5(y + a — 6) + D3 (y + a — 7)

n
+ 3 (P3(y+a — 16+ k(o — 4))
k=0

+ By +a—5+k(a—4)),
we come—using (14)—to the inequality
(16) P5(y) > Gu(y) forany n € N.
An inspection of (15) shows that G,,(y) needs the values of ®§(z) only at
points in the range

y—12—(n+1)(a—4) <z<y—(5-a).

Fixing an arbitrary n > 0 and a sufficiently large 7, and calculating a
constant ¢(A,y) according to (12), we have

(17) Gu(y) = cNy) Ngn(A) 124+ n+1)d—a)<y<y+(-0a),

where

O ED Nt D SN ED L Zn:()\a—16+k(a—4) 4 Ae-sHk(asa)y
k=0
Analogously, chasing through the system (13) starting at the sixth line
and using (14) gives
P17 (y) > D5(y — 6) + P2y +a — 6) + P3(y +a —1).
As before, put

Hy(y) :== P5(y — 6)

+) (B +a— 8+ E(a—4)) + Py + o — 3+ k(a—4))),
k=0
to get the inequality
(18) &i"(y) > Hu(y) for any n € N.
Again we see that H,(y) needs the values of @5(z) only at points in the
range
y—d-(m+)a-4)<zr<y—-Q@B-a),
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and we have
(19) Hp(y) > c(Ng) Ah,(N) 4+ n+1)d—a)<y<y+(B—a),

with the abbreviation

n
hn(A) — )\76 + Z(/\a*8+k(af4) + /\&*34’16(04*4)) )
k=0
Now the limiting functions
)\0478 +)\o¢73
1— o4

are clearly decreasing in the range A > 1. Hence, there are unique numbers
A1, A2 > 1 with g(A1) = h(A2) = 1. A simple numerical calculation shows
that Ao > \q.

Given a number )\ > 1 satisfying g(Ag) > 1 as in the assumption of
Proposition 2, we know that A\g < A;. Choose X with A\g < X < A; and n’
with the property
(21) gn(N)>1 and h,(N)>1 forn>n',
which is possible by (20). Moreover, put

yo:=12+ (" +1)(4—a).
By the definition of ¢()\,yo) above (12), we have
(22) B3(y) > (N, yo)(N)Y  for 0 <y < yo.
Combine (14), (16), and (18) to get
P5(y) = min{P5(y), 23" (y)} > min{G (y), Hu (y)} -
This gives using (17) and (19)
B(y) > c(N, yo)(N) min{gnr (V). b (\)}  for o <y < o + (3— )
> (N, yo)(N)?
where the last inequality is due to (21). Using in addition inequality (22),

the claim ®5(y) > c(N,y0)(N)¥ can be proved inductively on the intervals
0 <y <wyo+ k(83— a), which completes the proof of Proposition 2. m

(20) g(\) = lim g,(\) and hA()):= lim h,(\) = A"5 +

THEOREM 3. For any integer a > 0 which is not divisible by 3, we have
Oo(x) > 2% if x is sufficiently large.
Proof. If a =8 mod 32, the result follows from (8) and Proposition 2:
Vo(x) > D5 (log, ©) > x'°%220  if 7 is sufficiently large,

where )\ satisfies g(Ag) > 1. The number \; with g(A\1) = 1 and its log, are
approximately (with an error < 1073) given by A\; ~ 1.397 and log, \; ~
0.482, whence the result.
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If, more generally, we have only a Z 0 mod 3, it is easy to see that there
is a noncyclic predecessor b € P(a) satisfying b = 8 mod 32. But this means
T*(b) = a for some k, whence

b b
Applying the remarks following (12) to this inequality completes the proof. m

B
Vo(z) > 0y (M> > (a) 2? if x is sufficiently large .
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