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0. Introduction and notations. One of powerful methods of study-
ing representations of quadratic forms by forms is via theta-series. Many
authors did a great deal of work in this direction. Most of them, however,
worked in the case when the representing quadratic form has an even number
of variables. One reason for this is that quadratic forms with odd number of
variables are associated with half integral weight theta-series whose trans-
formation formulas involve branch problems.

In this article, we study the behavior of half integral weight theta-series
under Hecke operators. We give an explicit formula of a given theta-series
of half integral weight acted on by a Hecke operator as a linear combination
of theta-series. As an application, we prove that generic theta-series of
half integral weight are simultaneous eigenfunctions with respect to certain
Hecke operators. For integral weight theta-series, analogous results were
given by A. N. Andrianov [A2] in 1979.

For g € M,,,(C), h € M, »(C), let g[h] = *hgh, where 'h is the trans-
pose of h. For g € My, (R), let Ay, B, C,, and D, denote the n x n block
matrices in the upper left, upper right, lower left, and lower right corners
of g, respectively. Let N, be the set of all semi-positive definite (eigenval-
ues > 0), semi-integral (diagonal entries and twice nondiagonal entries are
integers), symmetric m X m matrices, and NI be its subset consisting of
positive definite (eigenvalues > 0) matrices.

Let G, = GSpf(R) = {g € M2, (R) : J,[g] = rJn, r > 0} where

0, Iy
In = -1, 0O,
I = 8Sp,(Z) = {M € Mz,(Z) : J,[M] = J,}. Let H,, = {Z € M,(C) :
tZ = Z, Im Z is positive definite }. For g € G,, and Z € H,,, we set

9(Z) = (AgZ + By)(CyZ + Dy) ™" € Han.

and 7 = r(g) is a real number determined by g. Let
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For Z € M,,(C), let e(Z) = exp(2mwio(Z)) where o(Z) is the trace of Z.
Finally, let <n >=n(n+1)/2 for n € Z.

For other standard terminologies and basic facts, we refer the readers to
[A1], [M], [O].

1. Hecke rings. Let G be a multiplicative group and let I" be its
subgroup. Let L be a semigroup of G contained in the commensurator
of I''in G, ie., I'Y = g~'I'g N I is of finite index in both g='I'g and I"
for any g € L. Let (I',L) be a Hecke pair, i.e., 'L = LI' = L. Let
V = V(I', L) be the vector space over C spanned by left cosets (I'g), g € L.
Let £ = L(I', L) be the subspace of V consisting of X = > a;(I'g;), a; € C,
such that XM = X, for all M € I', where XM = > a;(I'g;M). If we
write (I'gl") = >4, (I'g;), g, gi € L, when I'gI" is the disjoint union of
I'g;, i=1,..., p, then the double cosets (I'¢gI"), g € L, form a basis for the
subspace L. L is in fact a ring, which is called the Hecke ring of the pair
(I, L), with the multiplication defined by X1Xs = ) a;b;(I'g;h;) for any
Xl = ZCLZ(FQZ), X2 = ZbJ(FhJ) € L.

Let (I, L1), (I, L2) be two Hecke pairs such that
(1.1) Iycly, DNiLo=1L;, and ©INLL;'CTl;.

Then the map € = e¢(L£1,Ls) : L1 = LI}, L1) — Lo = L(I3, La) defined
by €(X) = > a;(I2g;) € Lo for any X € Ly, where X may be written in
the form X = > a;(I1g;) with g; € Ly because of the second condition of
(1.1), is an injective ring homomorphism. Moreover, € is an isomorphism if
[I[h: Y] = [Iy: I'Y] for every g € Lo.

Let G be another multiplicative group and 7 : G — G and jg:I'— G be
surjective and injective homomorphisms, respectively, such that yoj =1
on I' and Kery C C(G), the center of G. For each g € L, we define a
homomorphism ¢ = g4 : ['Y — G by
(1.2) §(gMg™") = Ci(M)C o(M)  for every M € I'f

where ¢ € G such that v(¢) = g. 04(M) is independent of the choice
of ¢ because Kervy C C’(é) We call o, the lifting homomorphism of g.
It is known [Zh1] that if (I',L) is a Hecke pair and [I" : Ker g4 is finite
for any g € L, then (I', L) is also a Hecke pair where I' = j(I') and
L =~7(L), and that if 04 is trivial, then (I'¢T) = f;l(fg) if and only
if (I'gI") = >°% 1(I'g;), where ¢,(; € L and g,9; € L such that y(¢) = ¢
and v(¢;) = gi-

Let n, g be positive integers and p be a prime relatively prime to g. Let
L"=1y ={g ¢ Mon (Z[p™)) : Julg) = p°Jn, 6 € Z} where § = 6(g) is
an integer determined by g. Let I[J(q) = {M € I'" : Cpy = 0 (mod q)}
and Lg(q) = Ly ,(¢) ={g € L" : Cy =0 (mod q)}. Let I ={M € I'"™ :
Cy =0} and Ly = Lg, = {g € L™ : Cy = 0}. Finally, let A" = SL,(Z)
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and V" =V = {D € M,(Zp~']) : det D = p°, § € Z}. Then (I, L"),
(I, Ly(q), (IF,Ly), and (A", V™) are Hecke pairs. We denote their
corresponding Hecke rings by L£" = L7, Ly(q) = Lf,(q), Ly = L§
and D" = Dy, respectively. We let E" = E} = {g € L" : 0(g) € 2Z},
Ep(q) = Ep,(¢) = E" N L3(q), and By = Ej, = E" N Ly. Then (I, E),
(Ig(q), Ey(q), and (I, Ey) are also Hecke pairs whose corresponding
Hecke rings are denoted by £" = &, &'(q) = &3 ,(q), and & = &,
respectively. These are called the even subrings of L™, Ly (q), and Ly, re-
spectively.

Since Hecke pairs (I'(q), Li(q)) and (I, Lg) satisfy the conditions
(1.1), we have a monomorphism (" = €(Ly(q), Ly) : L{(q) — LG,

(1.3) 8" (D a3 (@)g0) = > aillig:)
where g; are chosen to be in L{j. Similarly, we have an injective homomor-
phism o™ = €(L,L{(q)) : L — L{(g), which is in fact an isomorphism
because [I™ : (I')9] = [I5'(q) : (I5'(q))?] for any g € Lg(q).

We introduce a homomorphism ¢, : L£§ — C,[z], where C,[z] =
ClzZ!,..., 2%, Let X € £2. Then X can be written in the form X =

o 04 * .
> ai(I'{g:), where g; = (p OD’ lB;) € Ly, with §; = §(g;) € Z, B; €

M, (Z[p~']), D; € V"™ and D} = (*D)~!. We define w,, : L} — D"[t*!] by

Then w, is a surjective ring homomorphism. Let W = Y a;t% (A"D;) €
D"[t*!]. We may assume that each D; is an upper triangular matrix with
diagonal entries p?i, ..., pin. We define ¢,, : D"[t*!] — C,[x] by
67_' -7 in
(W) = > asaly (T (@p™)").
1<j<n

Then ¢,, is an injective ring homomorphism. Finally, we set
(1.4) Yy, = ¢nowy, : LT — Cylx].

The Hecke rings we introduced above are local Hecke rings at p. We will
not use global Hecke rings in this context except Dg, the Hecke ring of the

Hecke pair (A™,GL}(Q)) where GL}(Q) = {D € GL,(Q) : det D > 0},
and its subring

(15) D= {Zai(A”Di) € DL : D; € M,,(Z), det D; > o} .

It is well known that Dg = @p D; where p runs over all rational primes.

2. The lifted Hecke rings. Let G, = {(g,a(2)) : g € G, a(Z) is
holomorphic on H,, a(Z)? = t(det g)~*/2det(CyZ + D,) for some t € C,
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lt| = 1}. Then G, is a multiplicative group under the multiplication de-
fined by (g,a(Z))(h,3(Z)) = (gh,a(h{Z))B(Z)) and is called the universal
covering group of G,,.
Let ~ : G —G be the projection 'y(g, (2)) =g. We define an action of
Gy on Hy, by ((Z2)=~(C)(Z) for (€ G, ZEH,. Note that KeryC C(Gy,).
For a moment, we assume 4 |q. Let

21) 0"(2)= Y. e(MMZ)= > eZIN])), ZeH,.

MeM, »(Z) NeM, 1(Z)

0" (Z) is called the standard theta-function. For M € I'}'(q), we define

(2.2) j(M,Z)zge(i\{g», ZeH,.
It is well known [S1] that (M, j(M, Z)) € Gp. So the map j : Iy (q) — G,
defined by j(M) = (M, j(M, 7)) is a well defined injective homomorphism
such that yoj = 1 on I'}'(¢). Hence we can define the lifting homomorphism
0g for each g € L?(q) and conclude that (I (q), L2 (q)) is a Hecke pair where
I (q) = (I (q)) and L (q) = v~ (L2 (q)) because [ (q) : Ker 04| is finite
for each g € L”( ) (see [Zh1]). Similarly (fé“,i”) is a Hecke pair where
I ¢ =7(Iy) and LO = 7_1(L”) We denote their corresponding Hecke rings
by Lo(q) = L7 0p(q) and Lo = £07p, respectlvely Also (F”( ), E?(q)) and
(I/;(?,E’g) are Hecke pairs, where E’O( ) =~ Y(E}(g)) and E0 =y L(EY),
and we denote their corresponding Hecke rings by gg(q) = g&p(q) and
En = g&p, which are the even subrings of £7(¢) and L}, respectively.
Hecke pairs (fg(q), Eg(q)) and (FO ,L”) also satisfy (1 1). So we have
an injective homomorphism 3" = e(ﬁo( ), L1 : E”( ) — EO,

(2.3) B (X a3 (@)6)) = 3 ail )

where (; are chosen to be in Lg.
For each g € L{, the lifting homomorphism g4 : (I'}")? — G, is trivial
[Zh1]. From this we obtain a surjective ring homomorphism

(2.4) TR Ly — L8, m(Tecly) = (ORIl

where k is a positive half integer, i.e., k = m/2 for some odd integer m > 1,

¢ =(g,0(2)) € L, and 7(¢) = a(Z )/\04( )I-

Let g7 = diag(l,_s, pIs, p?I,—s, pls) € E} for s =0,1,...,n. Let T? =
(I (q)ge 15 (q)) € &5 (q) and let L§(T) = L ,(T') be the subring C[T¢', .. .,
Ty oy, (T7)*1] of €5 (q). Similarly, let T = (I3 ()32 13 () € &5 (q), where

9" = (g7, p™=)/2) € ED for s = 0,1,...,n, and let £(T) = Agjp(T) be the
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subring C[T{, ..., T" |, (T™)%1] of E1(q). We define

(2.5) L§(T) = L, (T) = (v 0 B*)(L5(T)) C &'

Let S,, be the permutation group on {z1,z2,...,z,}. Let W, be the
group of automorphisms of C,[x]| generated by S, and o;,7 = 0,...,n,
where o; are automorphisms of C,,[x] defined by

00 :To— —To; Tjr— Ty, Vj%(),
Ot To > T ; xin—m:i_l; xj—xj, Vj#0,4, fori=1,...,n.

Let W, [x] be the subring of C,[x] consisting of all W,,-invariant elements.
Then

(2.6) Y Ly (T) — Wy |z]

is an isomorphism [Zh2]. Note that this implies that L (7) is a commutative
ring.

Let A™(z) = (2321 ... 2,), and R (x) = si(x1,...,Tn, 27, ..., 2, ") for
i =0,...,2n, where s;(-) denotes the elementary symmetric polynomial of
degree i in the corresponding variables. It is known [A2] that W, [z] is
generated by A™(x)*! and R} (xz), i=1,...,n.

3. Hecke polynomials. Let

31 = [ C-27'y —ay) =D ()R @)y
1<j<n i=0

Wy, only permutes the factors of r"(y) and hence the coefficients R} (x)
are Wy,-invariant. By (2.6), there exist R} € L{(7T) such that ¢, (R}) =
R(z) for all i = 0,...,2n. Let A" = (7 0 f)(T") = p(Ig L5, I7). Then
Y (A™) = p~<"> A" (). Therefore, we obtain

(3.2) LM(T) = C[RY},...,R", (A™)*].

Let R"(y) be a polynomial over Ly (T") defined by

2n
(3.3) R'(y) =Y (~1)'Riy’ € Lg(T)[y].

i=0
Such a polynomial over a Hecke ring is called a Hecke polynomial.

Let II? = (IJh2I{) € L§, where hY = diag(pl,—s, Is, In—s,pls) € L,

s =0,1,...,n. Let A =14 € M;(Z) and 7(A) = ry(A) be the rank
of A modulo p, where p is a prime. If r = r(A) > 0, then there exist
U € M;(Z) and A" € M,(Z) such that p is relatively prime to (det U det A”)
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and A; = A[U] (mod p), where A; = diag(A’,0;—,). We define

o (=1)"det A .
H(A):HP(A): Ep <p 1f7">0,
1 ifr=0,

where (—) is the Legendre symbol and ¢, is a complex number defined
by e,=1 for p=1 (mod 4) and ¢, =+/—1 for p=3 (mod 4). Then k(A)
is independent of the choice of U and A’. Let {A}={A}, be the set of all
Ay ="A1 € M;(Z) such that A;=A[U] (mod p) for some U € GL;(Z); call it
the p-class of A. Note that k(A), r(A) are invariants of the p-class of A.

Let D} = diag(l,—i—;, pl;, p*1;) for 0 < i,j,i+j < n, and let Bl (A) =
diag(0y—i—j, A,0;) for A ="A = M;(Z). Then

2 n \* n
gr(A) = <p (13”) Bﬁ;‘”) € E} and II%(A) = (IPgl(A)IY) € £
ij

Moreover, ITj3(A) = I17:(A1) if Ay € {A}. For 0 <r < and a half integer
k, we set

oy (k)= > k(A)FIIL(A).
{A}r(A)=r
Let
l
ep()=[(*—1) forl=1 (p,(0)=1),
a=1
() = *—1) forl>2 (oi(0)=¢l(1)=1)
©p P ©p ©p )
2<a<l
and let

oo _ pp(n—i +5)(=p)’/? or 0
Pp(n — 1)80;_(])

for j even or odd, respectively, where 0 <4,4,i+ 7 < n. Let

n n

XMy) =Y (1)’ X"y' XP(y) =Y (1) Xy,
(34) 1=0 . =0
B™(k,y) = > (-1)'B}(x)y’
=0

where X, = A~ 1H"H" X”»:A_IH”H" and

n—i’
an() <n ’L>A lzo_nnnZJ

fori =0,1,...,n. Here A = p<"> A",
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The following is an analogue of Andrianov’s result on the factorization
of Hecke polynomials concerning integral weight Siegel modular forms [A2].

PRrROPOSITION 3.1. R"(y) = X" (y)B" (k,y) X} (y).

Proof. See [Zh2].

Let C» =C", = {X € £ : XTI = Ty X} and C = C7, = {X € L] :
XN = OX}. It is well known [A2] that C” and C7 are commutative
subrings of L with no zero divisors. Let C"[[y]] and C%}[[y]] be the formal
power series rings in y over C” and C7, respectively. Then X" (y) and X7 (y)
are invertible in C™ [[y]] and C% [[y]], respectively, because their constant term
(I3 12n L) is the unity of L}, and we denote their inverses by X, (y) and
X, (y), respectively. If we write

X)) => X,y ec[y]] and XJ(y) =) X\y €cCiyl,
=0 1=0
then
—1 —in n D 0 n
DEA"\MTL(Z)/A”
(35) det D=p . ;
+i __ . —in n n
Xn =p Z <FO<0 D>FO>'
DeA™\M,(2)]A™
det D=p*®

Observe that X% X, € £

4. Siegel modular forms of half integral weight. Let n,q be a
positive integers with 4|¢q. Let x be a Dirichlet character modulo q. Let
p be a prime relatively prime to g. Let k be a positive half integer. For a
complex-valued function F' on H,, and ( = (g, (Z2)) € G,,, we set

A1) (FlQ)(2) =r(9)""* <" a(2)*F(9(2)), Z € Hy.

Since the map Z — ¢(Z) is an analytic automorphism of H,, and a(Z) # 0
on Hy, F|;C is holomorphic on H,, if F'is. Also from the definition it follows
that F'[r(1|xCe = F[r(1Ce for (1,( € Gi.

A function F : H, — C is called a Siegel modular form of degree
n, weight k, level ¢, with character x if the following conditions hold:
(i) F is holomorphic on H,, (ii) F|xM = x(det Das)F for every M =
(M,j(M,Z)) € fg‘(q), and (iii) F|x(M,a(z)) is bounded as Imz — oo,
z € Hy, for every (M,a(z)) € Gy with M € SLy(Z) when n = 1. It is
known [Koe| that the boundedness condition (iii) follows from (i) and (ii)
for n > 2. We denote the set of all such Siegel modular forms by M7 (q, x).
This is a finite-dimensional vector space over C [Si2].
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A function F : 'H,, — C is called an even or odd modular form of degree
n if F satisfies (i), (ii)’ (det Das)°F(M(Z)) = F(Z), Z € H, for every
M € Iy, where s = 0 for even and s = 1 for odd modular forms, and
(iii)" F(z) is bounded as Imz — oo, z € H; when n = 1. We denote the
sets of all even modular forms by Mg and of odd modular forms by MT.
They are also vector spaces over C.

Let F' € M7(q,x) and x(—1) = (—1)® for s =0 or 1. For M € Iy, we
have M = (M, j(M,Z)) = (M,1) and det Dy; = £1. So, F satisfies (i),
(iii)" and hence

(4.2) M (g, x) C Mg if x(=1) = (=1)°.
For '€ Mp(q,x) and X = Y a;(I¢'(9)¢:) € & (q), we set
(43) F‘]ﬁx)? = Z aix(det Az)F‘kCz s

where A; = A'Y(C )- There is a good reason for using the even subring (’f(q)
instead of E”( ): the action of double cosets in E”( )— 50 (gq) on M7 (q X) is
trivial [Zh1], i.e., for F € M?(q,x) and X = (Ig(q)CT 7 (q)) € L2 (q)—E(q),
we have F|j , X X =0.

As for FF € M? and X = > a;(I'{g:) € L, we set

(4.4) Flpx X = aix(det A)F|,g;
where
(4.5) Gi = (gi, (det g;)~/*|det D;|"/2) € LY,

A = Agw and X(_l) = (_1)8

X and X acting on modular spaces as above are called Hecke operators.
It follows from the definitions that F|, XX1 € /\/l"(q, x) if '€ Mj}(q,x) and
Flg, XXl‘k XX2 Fl, XX1X2 for any X1,X2 € 5"( ). Similarly, for F' € M?
and X1, X5 € 50, we have F|k:,XX1 S Mn and F|k,XX1|k:,XX2 = F‘k,XXlXQ,
where x(—1) = (—1)°.

Let x(— 1) = (- 1)*, with s = 0 or 1, FF € M} (¢, x) C M?Z, and
X = Zaz I@)¢) € &8(q), where ¢ = (g5, 04(Z)) € Ef with g; =
( Z Z) and a;(Z) = t;p~™%/*(det D;)'/? for some t; € C, |t;| = 1,
i € 2Z. We choose the usual branch for (det D;)'/? when det D; < 0. Since
M Z) =1 for any M € I, from (2.3) and (2.4) it follows that

(7rk Oﬁn Zaz (ties) Qk(ro gi) € &y

where ¢; = 1 or v/—1 according as det D; > 0 or det D; < 0. So (4.1) and
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(4.3)-(4.5) yield

Flix(m 0 B")(X)
—Zaz i€ z detp -D )F|kgz
= aities) " x(det p” D ) (p™ )"/ <>
x (p~"% /4| det Dy|V/?) "2 F(g:(Z))
= 3" aix(detp® DY) (p* )" <> (1a(det D) /) F (g:(2))
so that
(4.6) FlixX = Flix(m} 0 ") (X).

Let MZ[[y]] and Ly[[y]] be the rings of formal power series in y over
M and L, respectively. For F(y) = > 0 Fy' € M?[[y]] and X(y) =
Z;io Xyl € L8[[y]], we generalize (4.4) formally as follows:

(4.7) F@laX () = > (3 FilinX; )y’ € M2ly]

1=0 i+j=l

for a half integer k£ and a character yx satisfying x(—1) = (—1)°. Observe
that

Fy)lexX1(9)X2(y) = F )k xX1(y)kxX2(y)

for F(y) € M¢[[y]], X1(y), X2(y) € L§[[y]]. We say that F(y) € Mg[[y]] is
defined at 7 € C if F(1) converges absolutely and uniformly on every subset
Hn(c) of H,, where H,(¢) ={Z € H,, : Im Z > ¢} for ¢ > 0.

We now introduce an action of Dg on My, s =0 or 1. Let F' € M7 and
W =3 ai(A"D;) € Dg. We define

(4.8) (FIW)(Z) =) _a;F(Z Z€Hy.

For D € V"N M, (Z), we set
D 0 n n mn n
gp=\¢g p )€ Ey and Tp=(IJ9pGy)€&f.

Then Tp = 3" p,cam\anpan (1595, )- So if x(=1) = (=1)*, then (4.4), (4.5)
and (4.8) imply that

(4.9) FluxTp = > x(det D) F 19D,
D;eAM\ A" DA™
= x(det D)(det D)*F|(A"DA™).
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5. Action of B"(k,y) on M?. Let n,q,x,p, and k be as above. For
FeM? (s=0or1l), weset

n

(5.1) FlryB"(5,y) = Y (1) (Flrx B (r)y" .
i=0
For 0 <r <n, N €N,, we let

I"(k,r,N) = > R(A)_2k6<m>.

A="Ae M, (F,) p
r(A)=r

Zhuravlev [Zh2] showed
(5.2) FlrxB"(r,y) = > B"(k,y,N)f(N)e(NZ), Z€Hn,
NeN,

where

n

(53) Bn(ﬁv Y, N) = Z(_l)ip<n_i>_<n> ( Z O‘?jln(ﬁ?i - jv N))?JZ

i=0 §=0
and F(Z) = Y yen, F(N)e(NZ) (see (6.2)).

For semi-integral n x n matrices Ny, Na, we write Ny = Ny (mod p) if
(N1—N3)/p is again semi-integral, and write N1~Ns (mod p) if there exists
UeM,,(Z) such that Ny=N,[U] (mod p) and p is relatively prime to det 2U.
The following properties of B"™(k,y, N) are also due to Zhuravlev [Zh2]:
(54) Bn(’{ayaNl):Bn(K’ayaNZ) lleNN2 (mOdp)
for N1, Ny € N,,, and

n n—1 / : N0
(5.5) B"(k,y,N)=B"""(k,y,N') if N ~ 0 0 (mod p)

for N € N,, and N’ € N,,_1. Finally, if N is non-degenerate modulo p, i.e.,
p is relatively prime to det 2N, then
(5.6) B"(k,y,N)

2

H <1— éyi+1> for n even,
p

0<i<n/2—1

2
n Y Y
<1 - Xk,N(p)pn/Q> H (1 — p%“) for n odd,

0<i<(n—3)/2

where
—1)2k=n)/29 et 2N
(5.7) xz,N<p>=(” 2 )

for n odd and (—) is the Legendre symbol.
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6. Zharkovskaya’s commutation relation. Let n,q, x,p and k be as
above. Let F € M?. We define & : M” — M"~! by

61) (BF)(Z)= lim F((%’ g)) Z' € Hy 1 and A> 0.

A—+400

@ is well defined and is called the Siegel operator (MY = C, Ho = {0}).
Every F' € M, hence every F' € M} (q,x) if x(—1) = (—1)°, has a Fourier
expansion of the form

(6.2) F(Z)= Y f(N)e(NZ), Z€H,.
NeN,
Then from (6.1) and (6.2) it follows that

63 (@R)Z)= 3 f<<]g 8>>6(N’Z’), 7' € My

N’Ganl
(Mo = {0}) and that &F € M} (g, x) if F € M} (q,X).

p’ D B .
Let X =5 a;(I9:) € Ly where g; = ( 0 E D1> € Ly. By multi-

plying ¢; on the left by < 0 U
(2

) € Iy for a suitable U; € GL,,(Z), we

!
D; x

may assume that all the D; are of the form D; = < 0 pdi

>, d; € Z, where
D! € V™1 is upper triangular. We set
(6.4) W(X,u) = au % (up™") 5 (I g)) € Lo [u]

ERIAY /
where g; = <1D(5 (é)’) gﬁ) € Ly and £77'[u*!] is the polynomial ring
(2
in u,u~" over LI~ *. Here B! and D} denote the blocks of size (n—1) x (n—1)
in the upper left corners of B; and D;, respectively. If n = 1, we set
U(X,u) = au=%up~)%. Note that &;, d; are uniquely determined by
the left coset (I'})'g;) for each i. W(—,u): L8 — LI [u*!] is a well defined
ring homomorphism (see [Z]).
We define a ring homomorphism 7(—,u) : C,[x] — C,,_1[z,u™!] by

(6.5) {a:o»—>acou_1;arn»—>u;xi»—>xi,i;éO,n when n > 1,

ro—ul;x—u whenn=1(Colz] =C).
It is known [A2] that the following diagram commutes :
n

Ly —_— C,[a]

(6.6) W(*:U)l lnhu)

wn,fl X1y
—_—

£r ] Cpo [ "]
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where 9,1 X 1, is the ring homomorphism that coincides with ,,_; on
L2~ and fixes u.

We state the following theorem concerning a commutation relation,
called Zharkovskaya’s relation, between Hecke operators and the Siegel op-
erator acting on Siegel modular forms of half integral weight.

THEOREM 6.1. Let F' € M} (q,x) and X e é\g(q), where k is a half
integer. Then

P(FlinX) = (@F)ix(Yop" " x(p) )
where Y = (] o B\")()/{\') € &y. (If n =1, then the action on the right hand
side is nothing but multiplication of complex numbers.)
Proof. See [KKO].

The analogue of this formula for the integral weight Siegel modular forms
was given by Andrianov [A2]. The following result is also given by And-
rianov.

THEOREM 6.2. ¥(—,u) : L"(T) — L""Y(T) is a surjective ring homo-
morphism for any u € C, u # 0.
Proof. See [A2].

For later use, we introduce a decomposition of F' € M. Let

F(Z)= Y f(N)e(NZ), Z€Hy.

NeN,

We define the r-component F,.(Z) of F(Z) for 0 <r <mn by
(6.7) Fi(Z)= Y, [f(N)e(NZ), Z€Hn,
NeN,
rank(N)=r
so that F'(Z) =>_"_, F.(Z). One can easily show that
(6.8) (FlixX)r = Frlo X, X €Ly

7. Theta-series of half integral weight. Let Q € N,}. The level
q of Q is defined to be the smallest positive integer such that ¢(2Q)~! is
integral with even diagonal entries. It is well known [Og] that ¢ is divisible
by 4 when m is odd. We define the theta-series of degree n associated with

Q by
(71) 0(Z,Q) = Y, e@X]2)= > r(N,Qe(NZ), ZeMHn,

X €M, (Z) NeN,
where 7(N, Q) = {X € My, (Z) : Q[X] = N}| < 0.
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When m is even, the following is known [A-M]:
(7.2)  0"(M(2),Q)
= Xo(det Day) det(Cy Z + Dy)™?0™(Z,Q),  Z € Ha,
for M € I (q) where X, is the Dirichlet character defined by

1™/ e
03 gl = @y () g

and x,, (d) =1 if ¢ =1 for integers d relatively prime to g.
From (2.1), (7.1) and (7.3) it follows that

0"(Z)* = 0"(Z,I;) and ij(d) = sign(d) <\_c;]l>J =41.

So (2.2), (7.2) and (7.3) show that for any M € I}'(q)
(7.4) §(M, Z)? = x; (det Dar) det(Car Z + D) -

We fix an odd m in what follows. Let Q* = diag(Q, I3) € N, ;. Then
the level ¢* of Q* is the same as the level g of Q. Since m + 3 is even and

0" (Z
(2.0 ="y e ),

by applying (7.2)—(7.4), we obtain

(7.5) 0™(M(Z)) = x*(det Dys) det(Car Z + D) ™ V/25(M, 2)0™(Z, Q)

for any M € I'}'(q) where x* is the character of Q* (see (7.3)). From (4.1)

and (7.5) it follows that

(7.6) 0"(Z,Q)|xM = X, (det Dy )0"(Z,Q),  Z € My,
for any M = (M, j(M, Z)) € Ty (q) where k =m/2 is a half integer and
N m 2det 2
(7.7 Xold) = (@ (@02 = (2
Jac

So we have the following theorem:
THEOREM 7.1. Let Q € N}, m odd. Then
0"(Z,Q) € Mi(q;x) € Mg
where k = m/2 is a half integer, q is the level of Q, and x = Xq the
Dirichlet character (7.7).
Proof. Clear from the above and (4.2).

See [C-J],[A1] and [St] for the explicit formulas for det(CasZ + Dpy)~"/?
x0"(M{(Z),Q)/0™(Z,Q) and j(M, Z) det(Cpr Z+ Dypr)~ /2, respectively, for
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M € I7(q), where m is odd and det(CyZ + Dj)Y/? is under the usual
branch.

8. Theta operators. Let m,n be positive integers. Let O], be the
vector space over C spanned by 6™(Z,Q), Q € N,}, and let O (q,d) be its
subspace spanned by "(Z,Q), Q € N}, with d = det 2Q and g = the level
of @ for given positive integers d and ¢. If m is odd, then Theorem 7.1
shows that

Op C Mg and  O,(g,d) C Mi (g, x)

where

2d
x(det Dyps) = <|det Dot

Observe that det Dy, is relatively prime to g and hence to d because ¢ and
d have exactly the same prime factors [Og].

Let Q@ € N,t. We denote the genus of @ by [Q], i.e., [Q] is the set of
all matrices in N} that are locally equivalent to @ everywhere. In global
notation, we may define [Q] by the set of all Q1 € N, such that det2Q; =
det 2Q and 2Q; = 2Q[U] (mod 8(det 2Q)?) for some U € M,,(Z) (see [Si2]).

Let (@) be the class of Q, i.e., the set of Q1 € N such that 2Q; =
2QIU] for some U € GL,,(Z). Obviously (Q) C [Q]. It is well known that
[Q] contains a finite number of classes (see, for instance, [O]). Note that
0"(Z,Q1) =0"(Z,Q) for any Q1 € (Q). Also note that det 2Q) and the level
of @ are invariants of [Q] and hence

OnlQ € O (a.d) C O,
if ¢ = the level of @ and d = det 2Q), where O], [Q] is the subspace of O],
Spanned by en(Za Qz)v QZ € [Q]
It is well known [Sil] that
B(0"(2.Q)) = 0"(2.Q)
!/
where @ is the Siegel operator (6.1) and Z = (Z* :) € Hn, Z' € Hp—q.

In particular, @ : OL[Q] — O7Q], ® : OF(q,d) — O~ 1(q,d) are epi-
morphisms for all n > 1 and isomorphisms [F] if n > m.

We now introduce theta operators. Let m,n > 1 and let p be a prime
relatively prime to ¢. Let a : L§* — C* be a character such that a(Ij") = 1.

. p’D§  Bo
For X = (I§"gol{") € L§ with go = 0 D)€ L{ and 0™(Z,Q) €
0
or with Q € N, we set
(8.1) 0"(Z,Q) oa X = a(go) Z Ix(Q, D)6"™(Z,p° QD))

DEADyA/A
P’ Q[D*1eN]

m

) for any M € I'j'(q) -
Jac



Half integral weight theta-series 171

where A = A™ and
(8:2) L@D)= >  e@BD™).

B€By (D)/ mod D

Here
°D* B
Bx(D) = {B e Muz): (7 D) e rpwry|
and By, By € Bx(D) are said to be congruent modulo D on the right if
(By — B3)D™! € M,,,(Z). This congruence is obviously an equivalence rela-
tion and the summation in (8.2) is over equivalence classes in Bx (D) modulo
D on the right. We extend (8.1) by linearity to the whole space O, and the
whole ring £7'. Elements of £ in this action are called theta operators.
We set

86 = {Z(IZ(FS’L‘Q,F&”) S ng 2om —2b; =0,b; = logp \detDz\}
p"D;i B

0 D;
We prove the following theorem:

where g; = > € Ly and let &5 = £ N L.

THEOREM 8.1. (1) The action (8.1) is a well-defined action of L{" on
on.

(2) ©7.(q,d) is invariant under the theta operators of L3 if p is relatively
prime to q.

(3) O [Q)] is invariant under the theta operators of ENY if p is relatively
prime to 2q, where q is the level of Q).

Proof. This theorem is proved for the case of m even by Andrianov
[A2]. So, we restrict ourselves to the case of m odd. Let

(8.3) e(2,Q) =Y eQU)Z), ZeMHm,
ven
where 2 = GL,,(Z). ¢(Z,Q) is called the epsilon-series of (). For every

M = <13 g) € Iy" with D € §2, we have

(8.4) e(M(Z),Q) = ) e(QUUDZ)e(QUIBD™") = ¢(Z,Q).
ves?

Note that e(Q[U]BD~1) = 1 because Q[U] € N, and BD~! is integral sym-
metric [M]. From (8.4) and the definition of even modular forms it follows
that £(Z,Q) € My'. Let

Am =D 0e(2,Q): Qi e Nij } < My



172 M.-H. Kim

Let &k = m/2 and x be a character satisfying x(—1) = 1. Let X =

5 T)*
Iy golyr) € £ with go = ( P20 5oy ¢ . Ten
0 Dy
X = o (I3
DE\2Dy N

BeBx (D)/ mod D

where g = <p6(]))* g) By (4.1) and (4.5)
(8.5) €(2,Q) =Y eQUMZ) =} e(QZ)kM,
ves? ves?
Uu* 0 ~
where M, = < 0 U) € I'y" and M, = (M, ,1). Hence

e(Z,Q)|knX = > > X(det p’D*)e(QZ)|k M, | G
DE\NDyR  Uef
BeBx(D)/ mod D

where § = (g, p~%™/*|det D|'/?) (see (4.5)). Since

) * *
M, g— (p ([{)D) %5) and U* Bx(D)/mod D = Bx(UD)/mod UD

for any U € {2, we have
(2, Q)lkxX = > x(det p’ D*)e(QZ) |1 g -
DeN2Dy1?
BeBx(D)/ mod D
We may rewrite this as
(86) c(ZQlaX= > x(detp’D")e(Q2)[xFlM, .

UER DeNDy2/2
BeBx(D)/ mod D

Now let
(8.7) UZ,Q) = > X(detp’D*)e(Q2)]1.g -

BeBx(D)/ mod D

Then from (4.1) and (4.5) it follows that
(8.8) UZ,Q) = arx(g90)e(r"Q[D*)Z) > e(QBD™)

BeBx(D)/mod D

where oy, 1 Lg* — C* is the character defined by

(8.9) O‘k,x(g) — X(pém—b)pé(mk—<m>)_bk
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S y*
for any g = (p é) g) € Ly', where b = log, [det D|. If we take B + AD

instead of B as a representative of Bx(D)/mod D where ‘A = A € M,,(Z),
then

e(Q(B+ AD)D™1) = e(QBD "e(QA) = e(QBD ™).
So (8.8) is independent of the choice of representatives B of Bx (D)/mod D.

Let Kg = I(T)n IS > e Iy with t§ =8¢ Mm(Z) Then ks = (Ks,l)
d Ty* o 1y*
and gKg = (p é) p°D g+B) so that {B +p5D*5’} is a complete set

of representatives of Bx(D)/mod D if {B} is. Therefore, ¢(Z, Q)\kl?s =
1(Z,Q) by (8.7). Applying | Ks on the right hand side of (8.8), we obtain

(8.10) UZ,Q) = ak,x(90)e(P’Q[D*] 2)e(p"QID*]S)Ix (Q, D) .

So, if Ix(Q, D) # 0, then e(p’Q[D*]S) = 1 for any 'S = S € M,,(Z). This
clearly implies that p’Q[D*] € Nf. In other words, if p’Q[D*] & Nt then
Ix(@,D) = 0. From this and (8.5), (8.6), (8.10) it follows that

e(Z,Q)knX =onx(g0) Y. Ix(Q,D)e(Zp°QDY) € A .
DENDLN2/ Q2
p’QID*IEN,]

Choosing a complete set of representatives {D;} of 2Dg(2/(2 such that
det D; = det Dy, we may rewrite the above as follows:

811)  &(Z,Q)knX =arx(go) Y Ix(Q,D)e(Z,p°QDY)).
DEADyA/ A
p’QID*IEN,]

We now define a linear map 97, : A,,, — O}, by
I(=(Z,Q) = 07(2,Q),  QeN.
Obviously 97, is a well-defined epimorphism. (8.1) and (8.11) yield
(812)  ULE(ZQ)nX) = 0(Z.Q)ou X, X €LY,
where a = oy, is the character (8.9). Observe that
(2, Q) kX1 [k X2 = (2, Q)b x X1 X2
implies
0"(Z,Q) 0o X100 X2 =0"(Z,Q) 0n X1X2.

From the surjectivity of 9}, (8.11) and the above, (1) follows.

Let p be relatively prime to ¢q. To prove (2), it is enough to show that

det 2Q; = d and the level of Q = q if Q; = p°Q[D*] € N}, where d =
det 2Q) and ¢ = the level of (). Clearly det2Q); = d. Let ¢; be the level of
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Q1. Then ¢(2Q1)"'p’ = ¢p®*~9(2Q)~'[D] is integral for some 6; > 0. So
q1 | gp°*, which implies ¢; | ¢. Similarly ¢q|q;. This proves (2).

For (3), let 6 be even. Since we restricted ourselves to the case of m odd,
the level g of @) is divisible by 4. So we may replace 2¢ by ¢ in this case. Let
Dy = p®/2D* so that det D; = £1. Since ¢ and d = det 2Q have the same
prime factors, p is relatively prime to d and hence one can find U € M,,(Z)
such that U = D; (mod 8d3). Since 2Q; = 2Q[D1], we have 2Q; = 2Q[U]
(mod 8d3). Therefore Q; € [Q] if Q1 = p’Q[D*] € N} and this proves (3).

9. Action of LZ(T) on O7[Q]. Let Q € N with m odd. We
set U = Wg : LI(T) — L§ '(T) by requiring the following diagram to
commute:

RO —S— L)
T © n

(9.1) W=¢’Ql J{W(_vp’,L_kXél(p))

LNT) ——— Ly (D)
ﬂ-:'_ Oﬁn—l
where k = m/2 and x¢ is the character (7.7). Since the right vertical arrow
is surjective by Theorem 6.2, ¥ is also surjective. We let ¥" be the rth
iteration of ¥ for r > 0 and ¥° = the identity map. For X € Ly~ "(T),
0 <r<mn,let " (X) denote any element in L (7T") whose image under ¥"
is X.
p’D* B

Let X = (I"gl§") € Ly for g = o D)€ L{. We define the
signature s(X) of X by s(X) = 2b — md where b = log, |det D|. A linear
combination of double cosets with the same signature s € Z in L is said to
be s-homogeneous of signature s. For general X = Zl a;(I'{"g:) € LF with
0i T)* .
o _ (P Di B;
g’L - 0 DZ
part of signature s in X by X, i.e.,

Xo= >  ally"g).
i,2bi—m§i28
Let X € E()”(T) and Y = (7' o Bm)()?) € Ly(T). We define a homo-
morphism ™ = £« LTH(T) — L' by
(92) E™(X) =Y (@) Y2 X1
s>0
(see (3.5) for X;5). Observe that £™(X) € & for any X € Li(T).

We now prove the following theorem. For m even, it is also due to
Andrianov [A2].

and b; = log, |det D;|, we denote the s-homogeneous
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THEOREM 9.1. Let m,n > 1 be integers, m odd, m > n. Let Q € N,}
with level q, 4|q. Let p be a prime relatively prime to q. Then for X €
Ly(T), we have
(9:3) 0"(Z,Q)lkx X = 0"(Z,Q) 00 £™ ("™ (X))
where k =m/2, x = X, and o = ay, (see (7.7) and (8.9)).

Proof. Assume for a moment that (9.3) holds when n = m, i.e.,

(9.4) 0™(Z,Q)|kx X = 0™(Z,Q) 00 €™(X).

When r =m —n > 0, we apply @” (the rth iteration of the Siegel operator
®) to (9.4). Then from Theorem 6.1, (8.1) and (9.1) it follows that

(0™ (2, Q) |k X) = P"(0™(Z,Q)) [k x¥"(X) = 0"(Z,Q) [kx¥" (X)

and

(0™ (Z,Q) 0a §M (X)) = 0"(Z,Q) 00 £™(X).
Therefore, it suffices to show (9.4). We now let G(Z) be the m-component
of 0™(Z,Q) (see (6.7)). From the definition of ¢(Z,Q) and the left coset
decomposition of

{DeMn(Z):detD#£0}= | ) 0D,

DeA\M,} (Z)

it follows that

Gz)= Y @Dz = 3 Y

DEM,, (Z) DeMM}(z)Ues?
det D#0

= Y ez[D,Q
DeA\M (Z)
where A =A™, 2= 0™, and M (Z) ={D € M,,(Z) : det D > 0}.
Let
W(a) = > (ADA)= > (AD)eDy

DeA\M}(z)/A DeA\M}(Z)
det D=a det D=a

where a is a positive integer (see (1.5) for DJ*). Then from (4.8), we have

(9.5) E:sZQH/V }: S S(Z.Q)IWEhIW(a)
a=1 = a>0
(tl,p) 1

for any fixed prime p. The second equality follows from the commutativity
W (a)W(b) = W(b)W (a) for (a,b) = 1 (see [Zh2]). We let p be the given
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~ ~

prime and let Y = (7} o B™)(X) € Li(T), X € L*(T). Then

G(Z2) |k X = G(Z)|kxY = Z d e pIW(a)|k Y
= a>0
? (@
—Z > EZ.Q)IW (kYW (a)
= a>0

(am) 1
(see [A2] for the last equality). From (4.9) and (3.5) it follows that
9.6) e(ZQWEH = Y e(Z.QUADA) =7(Z,Q)lex X

DeA\M;;(Z)/A

det D= p

where 7 = x(p)p*. Therefore

0.7 DX = 3 (D2 QX0 )| W(a)
a>0 d=0
(a,p):l

We now consider F(y) = > 2 Fiy* € M{'([y]]. If F(y) is defined at
7 € C, then clearly F(7) = > "2  Fit" € Mj". Let

Y(y) = X, (v)Y X" (y) € Lg"[[y]]-
Then by Proposition 3.1,
Y(y) = B™(k,y) X7 (y)R™ (y) 'Y R™ (y) X, (y) B™ (r,y) "

Since Y € L§(T), R™(y) € L§*(T)[y], and L§*(T) is commutative, we have
R™(y)"'YR™(y) = Y and hence

(9.8) Y(y) = B™(r,y) X7 (y)Y X} (y)B™ (k,y) " .

We now assume for a moment the following holds:

o0

(9.9) e(Z,Q)kxY (y) = <Z5(Z, Q)‘k,xY(fm)X#yi) +e1(y)

i=0
where £1(y) € A, [y] € M5 [y], which vanishes at y = 7 = x(p)p*. Since
XY =Y(y)X,(y),
from (9.9) it follows that
(9.10)  &(Z,Q)kxXm(¥)Y

- ((ig(zaQHk,xY(—zi)X#yi) +€1(y)>‘ X ()

k
z:0 ’X
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Evaluate both sides of (9.10) at y = 7 = x(p)p*. Then (9.2) gives

Y T2, Qi XY =Y T (Z, Q)™ (X)X
d=0 d=0

So, by (9.5)(9.7),
G(Z)kx X =D (e(Z, Q)lrx&™(X))|W (a)
a=1

and hence the m-component of 0™ (Z, Q)]k7XX and that of 0™(Z,Q) o,
€™ (X) coincide. Therefore,

0™ (Z,Q) |1 X — 0™(Z,Q) 0q £™(X) € M (g,X)

such that its m-component is 0. Such a form is called a singular form and
it is well known [F] that there are no non-zero singular forms if 2k > m. So
the theorem follows.

It only remains to prove (9.9). Let B"(k,y,N) be the polynomial
in (5.3). From (5.2), (5.4), and the definition of £(Z, Q) it follows that

6(27 Q)|k,XBm(’{a y) = Bm(’%a Y, Q)&(Z, Q) SO,
(9.11) e(Z,Q)lexB™ (5,y) ™" = B™(k,5,Q)"'e(Z,Q) -
Note that e(Z, Q)|x X = 0if the signature s(X) of X is positive for X € &j"
(see (8.11)). But s(XT}) = 2i > 0 if i > 0 and hence
(9-12) e(Z, Q) kX' (y) = £(Z, Q) [k x X = (Z,Q).
We may write Y X! (y) = > 07, >, Yo X;h4y?. Since s(Y(y X;hY) =i + 2d,
we set
8(2, Q)|k7XYX7::”_L(y) = Z 8(27 Q)‘hxyr(i)Xr—)’;dyd .
i+2d<0
So, (9.8) and (9.12) imply
e(Z,Q)kxY (y)
=By Q) Y ZQnYi Xa (@) B (ry)
i+2d<0 X
The expression in parenthesis on the right hand side can be written as
Z a,a,56(Z, Qiaj)y”

i,d,j
i+2d<0

where Q;q,; € N,/ and a;q4; € C (see (8.11)). So, from (9.11) it follows
that

e(Z,QexY () = B"(5,4,Q) Y aia;B™(5,y,Qia;) "e(Z,Qia;)y’
i7d7'
i+2d]§0
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By (5.4), B™(k,y,Q) = Bm(n Y,Qiq,5) if i +2d = 0. Hence,

£(Z, Q)Y ( Z a1,4,5€(Z; Qi.a)y" + €1(y)
i,d,
i+2d]=0
where
m 1 d
€1 ( ) B I{ Y, Q Z a; d,j /{ ' Y, Qz d,j) 5(Zin,d7j)y
d,
i-‘:Qd]<0

One can easily check that @; 4, is degenerate modulo p if i + 2d < 0. So,
from (5.5)—(5.7) it follows that (1 — x}’g (p)p~™/?y) divides ¢;(y) and that

m/QXzfQ (p), where

_1)(2k=m)/29 de
T = (( 1) . 2d t(2Q)>’

which coincides with x(p) = x(p) of (7.7) because k = m/2. This proves

1(y) vanishes at y =7 =p

(9.9) and hence the proof is complete.

Theorems 8.1 and 9.1 say that 6"(Z,Q), Q € N, acted on by a Hecke
operator X € L{(T), can be written as a linear combination of §"(Z, Q;),

Qi € [Q].

10. Generic theta-series. Let Q € N. Let Q1,...,Qy be the full
set of representatives of the classes in the genus [Q] of Q. We define the
generic theta-series of degree n associated with [Q] by

(10.1) 0"(Z,(Q]) = <Zh: m(im>(é€1>l 7 e€H,

i=1

where e; is the order of the orthogonal group O(Q;).

THEOREM 10.1. Let m > n > 1 be integers with m odd. Let Q) € J\/;g
Let g and x = Xg be the level and the character of Q), respectively. Let p be

a prime relatively prime to q. Then for any Xe E”(T),

(10.2) 6" (2, [QDIkx X = XX, x)0™(Z, [Q))
where k = m/2 and the eigenvalue MNX, ) is determined as follows: Let
f(a:Oal‘lv'-‘y ) (Q)Z)nOﬂ'kOﬂn)( )GW [ ] Then

(10.3)  AMX,x) = fE"<"x0)™ 0 xp) 0" ()T

Proof. According to Theorem 9.1, it suffices to show that 6"(Z,[Q])
is an eigenform of any theta operator X € &fj. Then by (8.12), this is
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equivalent to showing that (7, [Q]) is an eigenform of any Hecke operator
X € &y, where

(10.0 (2.1Q) = (Z Q) (Z S

i=1 i=1

By the definition of (Z, Q),

(10.5) e(Z,1Q)=p" ) e(NZ)
Ne[Q]

where p = 2?21 1/e;, the mass of [Q)]. Let

°Dy B
X=(yar e, o= (700 B ey,

-z (w07 )

Def2\2Dy 2
BeBx (D)/mod D

and hence (4.4) and (4.5) imply

(10.6) e(Z,[QDkaX =D x(det p’ D*)e(Z, [Q) |6 G

Then

- °D* B
where § = (g, aer D7), g = (7

over D € Q\2Dy{2, B € Bx(D)/mod D. So by (4.1), (8.3), (8.4), (8.9),
and (8.11),

, and the summation is

(7, [QD[r X
= 3 et 57 D) () /3> (p0m A det DI/ e g(2), Q)
D,B
=u~ @y e(Q(*ZIDT + BDTY)

Qo€lQ]
D.B

=X @) > 1x(Qo, D)e(p’Qo[D7)Z) .
Qo,D
P Qo[D"1EN,

According to Theorem 8.1, p’Qo[D*] € [Q]. So we have
S(Z,[QDInX = 1T XGFpE S (Y0l D), D) )e(@u2).
@Q€lQ] D

But it is easy to check that >, Ix(p°Q:1['D], D) is independent of Q; €
[Q]. This proves that 6"(Z,[Q]) is an eigenform of any Hecke operator
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X € L(T). To prove (10.3), we apply " to (10.2) so that

(0" (Z, [QD) |k ¥ (X) = AMX, x)2" (0" (Z,[Q))) -
But @"(0™(Z,[Q])) = 1 since @Q is positive definite. Therefore, we have
AX, x) =¥™(X) and (10.3) follows immediately from the diagram (9.1).

Schulze-Pillot [Sc] proved that

(10.7) 0 (2, [Q) |k T(0?) = Xp(Q)0' (2,[Q)), =z € Ha,
where
2k—2 k—1 PR .
_Jp + x(p)p"~t+1 if k is an integer,
(108) An(@) {p%Q +1 if k is a half integer .

His T(p?) is equal to Ty + 77 if k is an integer and T\Ol if £ is an half integer.
It is easy to check that

($roB") Ty +T}) = 23(1+a1+23) and (PrompoB')(Ty) = a(1+27).

Evaluating these polynomials at zo = p*~!x(p), z1 = p'“¥x(p) !, we obtain

(10.8).
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