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Nets obtained from rational functions
over finite fields

by

GERHARD LARCHER (Salzburg)

1. Introduction. For N points x1,x2,...,xn in the s-dimensional
unit-cube I° :=[0,1)® and for a subinterval J of I* we put

where Ay (J) is the number of n, 1 <n < N, with z,, € J, and V(J) is the
volume of J.

The star-discrepancy D7 of x1,...,zn is then defined by

Dn(J)

N
where the supremum is extended over all half-open subintervals J =
Hle[O,ai) of I*® (0 < a5 < ].)

In the theory of uniform distribution as well as in the theory of Monte
Carlo methods for numerical integration, point sets with small star-discrep-

ancy play a crucial role. It is known (Roth [10]) that for every s there is a
cs > 0 such that for every point set x1,...,xy in I° we have

(log N)(s—l)/2

Dy == sup
J

Dy > ¢
It is conjectured that even
(log N)s—1
N
is always true. (This is trivial for s = 1 and was shown for s = 2 in [11].)
In this connection (especially for numerical integration) the notion of
good lattice points plays an outstanding role. (See for example [1]-[3], [6].)

An s-tuple g := (g91,...,9s) € Z* will be called a good lattice point
modulo N € N if the point set

Ty = <{Tﬁ},,{n]€rs}), n=1,...,N,

Dy > ¢4
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has small discrepancy D3} (g). ({-} denotes the fractional part.)

It is known that for every s there is a ¢, such that for all N € N there is
a g € 7Z° with
(log N)*

N
For dimension s = 2 this result was improved in [5] to
(log N)(log log N)?

N .

It is conjectured that for arbitrary dimension the result can be improved at
least to the form

Dy (g) < cs (see [6]).

Dy(g) < c2

(log N)*~*(log log N)*)
N

Dy(g) <cs

with some k(s).

In connection with the construction of nets and (¢, s)-sequences (these are
classes of low-discrepancy point sets and sequences, see [7] and [8]) Nieder-
reiter [9] introduced a class of point sets which in some sense can be viewed
as analogous to the point sets generated by good lattice points. In the fol-
lowing we give an inessentially simplified definition for essentially the same
point set as in [9]:

Let g be a prime and F, = Z, be the field of ¢ elements which we denote
by {0,1,...,q —1}.

Let F,((z™')) be the field of formal Laurent series L with

oo
L=0 or L= Zth*k
k=w

with t;, € F, and w an arbitrary integer with ¢,, # 0. We define the fractional
part {L} of L by

oo

{Ly:== >tz F.

k=max(1,w)

F,((z™1)) contains the field of rational functions over F, as a subfield.
Let

¢:B,:={0,1,...,q—1} — {0,1,...,q—1}
be defined by ¢(i) := i for all i and let
D By((z71)) — Fyl(=z™))
be the extension of ¢ to B,((z™1)).
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Let t € N. Every integer n with 0 < n < ¢ can be uniquely represented
in the form

t—1
n = Zaqu with a;, € B, .
k=0

Let n(z) € F,[x] be defined by n(z) = ZZ_:B @xz®. Then it was shown in [9]
that for every f € Fy[z] with deg(f) =t > 1, there are ¢1,...,9s € F,[z],
(9if)=1,1=1,...,s, deg(g;) < t, such that for the star-discrepancy D}

of the point set

n=0,....,¢ —1="N—1,

we have
log N)*
D}kv < CS(]V) .
(cs depends only on s.)
It is the aim of this paper to show that this estimate can be improved
for the special (and most important for applications) case f(z) = z! in the

following form:

THEOREM. For every t € N there are g1,...,9s € Fyz], ¢1 = 1,
(9isx) = 1, ¢ = 1,...,s, such that for the discrepancy D% of the point
set

- (ds_l {n(w)g:(x)} g {n(m)g:@:)} ) |
x - x v=q
n=0,....,¢ —1="N—-1,
we have

(log N)*~*(log log N)
N b
with a constant ¢ depending only on s and q.

Dy <c

(For the connection of these point sets with the theory of nets see [9].)
So in this “non-archimedean case” the analogue of the conjecture on
classical good lattice points is true.

2. Proof of the Theorem. In the following, for simplicity, we always
write 7 instead of 4 for all i € F},. It will always be clear whether i is a digit
or an element of Fj.

For the first coordinate of our point set we have

(2]

n

PP
r=q q
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so by standard methods (see [4], Chapter 2.2) we have

—k
ND% < max NyoD
N = 1<No<N 0~ No

where we denote by 57\,0 the star-discrepancy of the (s — 1)-dimensional

point set
CREE N R

x
n=20,...,Ng—1.
For simplicity we now consider the quantity Ejvo forall1 < Ng < N = ¢

for the sequence
n — ;Ut PR ;Ut 9
z=q
n:O,...,No—l,

and show that there are always ¢g1,...,9s, (g;, ) = 1, such that

(log N)*®loglog N
No

r=q

Tr=q

Ej\,o < ¢y for all Ny .

Then the result follows.
Let

t
gi(x) == Z w;
k=1

and let U be the t x t matrix (ug), k,jg=1,...,t, with ug)] = Ui p— k42
(where ug)J =0if k+j5—1>t). Then, with z,, := (mS), . ,x%s)) and

t—1
n=>,_gaxq", we have

z) = iq"(
=1

(Here the inner sum is taken in Fj.) This fact can formally be denoted by

t—1
ui,t—l—k—f—l) (With Uj 5 = 0 for j < 0) .
k=0

567(11') ~ . (ag, - . ‘7at*1)t'

Let now No, 1 < No < N, No = 20 bk, b € By, b1 # 0 be
given. For fixed m, 0 <m <ty—1,and b € {0,...,b,, — 1} we consider the
subsequence (x,,) with
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For such n we have

m—1 t()*l
n= Z arq® + bg™ + Z bpg®  with ay, € B,
k=0 k=m+1
and therefore
t m—1 )
zl) = Zq7l< Z U p—|—k10k + Al(l)>
=1 k=0
with
to—m—l
Al(i) _ ) Uit—m—141b+ Z Wit—m—i+1—jbmys forl=1,....t—m,
j=1
0 forl >t —m.

For given Al(i) we now consider the sequence
Tno= @0, .. 7))
with
m m—1
55%') = Zq_l< Z Ui t—1—k+10k + Al(z)) ) n=0,...,q" —1.
=1 k=0
Let (71(1) be the m x m matrix
(71@) = (u,(;)]), k,j=1,....,m.
By Ugi) we denote the [th row of [71(2) Let h(1) € Ny be maximal such that

Ugl), e 021()1) are linearly independent over F,. If p(1) < h(1) then in every

interval [dg—PM, (d + 1)g=?M), d € Ny, 0 < d < ¢°(V), there are exactly
qm*p(l) of the 5&1).

LEMMA 1. For every p := p(1) there are a reqular mxm matriz V := V1)
(depending on p(1) and on [71(1)) and m-dimensional vectors ¢; (depending
on p(1), ﬁl(l) and the Agi)), 1 =2,...,8, such that for all d = Zﬁ;é drq”,
di € By, and for all n with 7 e [dg~P,(d+ 1)g~P), we have

7D 2 UD V. (dyy,. . doyEmpy - 6 e, i=2,.,s,
with some &, € By.

Proof. Let a’ = (ay,...,al,_;)" be such that

U =y o) — (AP, A0 )

for any &;. We arrange the columns of [71(1) and the vector a’ into U := (u; )
and a = (ag, ..., a,_1)" in such a way that the system does not change and
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the submatrix U° := (ujk), j,k=1,...,p, is regular. Then the vectors a
which satisfy the above system for any &; are given by a = (ag,...,m_1)"
with arbitrary a,,...,a,—1 and with
_ 1
(CL(), e ,ap_l)t == (UO) L. (dp—l - Ag ) —Ulp+10p — -+« — UL, mOm—1, - - -
o, do — A;l) — UpptiGp — ... — up,mam,l)t .

Let U' := (—ujx), j=1,...,p, k=p+1,...,m and let Vo= U)u(2)

with
| v = (O G0 ) wa v ()

with F} the £ x k£ unit matrix. Then
a—= U(l)U(2)(dp_1, .. .,do,ap, ce ,(Im_l) ]
with
T=u@)-(AY,..., AW o,...,0) .

We rearrange the rows of V and ¢ in the inverse way to the initial rear-

rangement and get thereby a regular matrix V' and a vector ¢. Then V' and
¢ = — 1(Z)c satisfy the assertion of Lemma 1. m
Let now [72(i) = ﬁl(i)V. Let

0 =), gk=1.m,

ng) = (v](g, ey U](;)n) and ng) = (v](,;))(l)ﬂ, . ,v](;)n) .
Let h(2) € Ny be maximal such that S(IQ), el S;LQ(;) are linearly independent

over Fy,. Let p(2) < h(2). Then for all d(i) € Ny, 0 < d(i) < W i=1,2,
there are exactly ¢ P(0=P(2) integers n with

57(11) e [d(l)qﬂa(l)7 (d(l) + 1)qu(1)),
72 e [d®q @ (4@ 1)@,

LEMMA 2. For every p(2) there is a reqular mxm matriz V®) | depending
on p(2) and U2(2), such that for all

p(H)—1
d= 3" dl'¢", deB,, =12,
k=0

and for all n with
2
@D, 72) € [[1d0q >, (@D + 1)g710)

i=1
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we have
T N )

Em—p()—p(2), 1) + 6,
i=3,...,s, with some &, € By.

Proof. V) must have the following two properties:

Let 9@ := (d\), ,,...,d"). Then

(2
}(la) bU2( )V(Z) (3(1)70(2)7£m—p(1)—p(2)7 s aél)t = (0(2)777m—p(2)7 R 77]1)t
with arbitrary §;, n;;

(b) V(z) (0(1)70(2)7£m7p(1)7p(2)7 cee agl)t = (0(1)70(2)a Nm—p(1)—p(2)s - - -
..,m)" with arbitrary &;, n;.

We arrange the columns of (72(2) so as to get a matrix U = ()
with w; == (U p(1)+15- > Ujp(1)+p2)), J = L, .., p(2), linearly independent
over Fy.

In the same way as in (a) we arrange the rows of V(2 so that the system
remains unchanged. (Thereby we get a matrix which we denote by V.) The
first p(1) rows of V(2) remain unchanged. We set

_ Ep(l) ‘ 0
V.=

4l Bl C

with matrices A, B, C which will be determined later. Then condition (b)
is satisfied.

Let
ay
U= : and V= (v},...,0")
Ay
with
0 = (T4, Um,j) -

The T j, k=1,...,p(1), j =1,...,m, are already fixed.

For1 < j <p(1)let vx ;, k =p(1)+1,...,m, be arbitrary with ﬁkﬁz =0
for all k = 1,...,p(2). This is possible since the rank of each such system
is p(2) <m —p(1).

For p(1) +1 < j < p(1) 4+ p(2) let Tpay4p@2)+1,j = -+ = Um,; = 0 and
vy, L=p)+1,...,p(1) + p(2), be such that

at = JO g #p() 4k,
T i =p(1) +E,

for k=1,...,p(2). (Each such system has exactly one solution.)
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Further, for p(1) + p(2) +1 < j < m let v;,; := 1 and 7;; := 0 for
l=p(1)+p2)+1,...,m; 1 # j. Finally, v, j for | = p(1)+1,...,p(1)+p(2)
are determined by

0o, =0, k=1,...,p(2).
So V constructed in that way has the form

Ep) 0

V= D F
A

0 B p1)-p(2)

with a regular p(2) x p(2) matrix D, so that V is regular. By rearranging
the rows of V we get a regular matrix V(2 which satisfies (a) and (b). =

Again we set Ué) = Uz(l)V(Q), i = 3,...,s, define h(3) analogously
to h(2), take any p(3) < h(3) and construct in exactly the same way a
matrix V) with the analogous properties to V(?) and proceed with this
construction. In general, for any w, 0 < w < s — 1, we then have integers
p(1),...,p(w), matrices (75;”, i =w,...,S, where (75) = USZIMMJ with a
regular m x m matrix M; ,,, and we construct a regular m X m matrix V(W)
and get ﬁg}rl = ﬁg)v(w), i=w+1,...,s

We define h(w + 1) := h(p(1),...,p(w)) to be maximal such that (with
Ush” = (o)

3k = (Zk,p(l)—‘r...—l—p(’w)—l-l) ey Zk,m) y k= 1, ey h(’UJ + 1) 5

are linearly independent over F,. Then for every p(w + 1) < h(w + 1)
and every d(j), 0 < d(j) < ¢, j = 1,...,w + 1, there are exactly
g~ @M+ Ap(wtD) ntegers n with

w41
(537(11)7”' (w+1) ) € H g P, ()+1)q—p(j))_

This is no longer true if p(w + ) > h(w+1). So h(w + 1) depends only on
the sequence z,, and on p(1),...,p(w) but not on the special construction
of the matrices V(*). Of course not all w-tuples p(1),...,p(w) can occur
in this construction. Those which can are called admissible. (For the case
w = 0 we have to make the obvious adaptations in the notation.)

LEMMA 3. For the discrepancy T)j\/o =: D of the initial point set x,, n =
1,..., Ny, we have
to—l s—1

NoD < ¢° (28t0 +2°+q+ Z Z Z qm*(PlJr...erw)fh(Ih ..... Pw)) )

m=1w=0 (p1,...,Pw)
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(The last summation is over all w-tuples p1, ..., pw which are admissible
with respect to m, and the quantity h of course also depends on m.)

Proof. Fori=1,...,slet 8 := Y22, B,(j)q_k. Let B :=[];_,[0,8%)
and for any C' C I° let A(C) be the number of z,,, n=0,...,¢" —1, in C.
Let

/3(2) 1 s pi—1l

o= U U (H[Zﬂii)q_ﬂbé?qﬂ’%

(P15--,Ds) b<> =0 =1

admissible i:l,...,s

pi—1
> A+ o) + g ))
k=1
(This is a disjoint union.) Then
©cBcouUA

where

(i)
s—1 Bpi -1 w pi—1

(> 00 b

1 k=1

w=0 (p1,....pw) b)=0 1

p1_1

Zﬁ() )+ 1)g )

A(6) "V () =

For every interval in the definition of A the quantity A equals
g™~ (Prtotputh(prpe)) and the volume of these intervals is equal to
g~ (PrteFpwth(Pi,pw)) - Therefore

s—1
‘A(B) o qu(B)’ < Z Z qwqm—(P1+...+pu;+h(P1,‘..,pw)) )

w=0 (p1,....pw)
admissible

Since max;—1 \ng) — ng)| < ¢ ™, the result follows by standard

methods. m
Let now ¢ € Ny and 7 € N be fixed. Let m < t and (p(1),...,p(r—1)) be

admissible with respect to m. Let U," o) = (21,5) be the new constructed ma-
trix with respect to these parameters. Agaln let 3k =(zx (1) +oAp(r—1)41y -« -

-----
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ooy Zkm) and let p:=p(1) + ...+ p(r — 1). These definitions depend only
on gi,...,gr and not on g,41,...,gs.
We define

M :={(g1,...,9-) € (Fylz])" | there exist m <t and
p:= (p(1),...,p(r — 1)) admissible such that 3k

k=1,...,m—p—c, are linearly dependent over F,} .

(In this definition };k, k=1,...,m —p — c, are viewed to be linearly inde-
pendent if m —p — ¢ <0.)

LEMMA 4. |M]|, the number of elements in M, always satisfies
M| < g™t
with a certain constant ¢, depending only on s.

Proof. We have (with p :=p)

MI<D T > > M p,m)|

m=1 p admissible
where the last sum is taken over all XA := (A1,..., Ap—p—c) € (F,)™ P\
{(0,...,0)} and where
M, p,m) := {(gl, cooygr) € (Fylz])" : p is admissible

m—p—c

and Z /\k;k = 0} .

k=1

We have ﬁ,ﬁ” = ﬁl(T)M with a regular m x m matrix M.
Let

31 Uy
(77@ = and ﬁl(T) =
dm U
with u; = (’U,j,l, Ce 7uj,m) = (’Uj, e Uj—i—m—l) if gT(l‘) = let_l + ...

vt (v = 0if k> t), and M := (01,...,0m) with o; = (01,j,...,0m )"
Then the system - "¢ /\k},‘k = 0 is equivalent to

m
kaak,ﬁH:O, I=1,...,m—7p,
k=1

. \m—Pp—¢ _
where gk = Zj:l )\jvk+j—17 k= 1, cee, M.

We consider two cases.
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(a) 2m —p — ¢ — 1 < t. The above system in the variables & has rank
m—7p since M is regular. For each of the ¢” solutions ({1, ... ,&,,) the system

m—p—c

fk: Z )\jvk+j_1, k‘:l,...,m,
j=1

in vi,...,%2m—p—c—1 has rank m. Therefore we have g™ ¢! solutions
(1, ..., V2m—p—c—1) for the initial system. Hence g¢1, ..., g,—1 may be taken

arbitrarily, [M(X, p,m)| = ¢"*~™"P and consequently
S IMp,m)| < g7

(b) 2m —p—c—1 > t. In this case (for any of the ¢? solutions &1, ...,&n,
of Y0 1 &okprt =0, I =1,...,m — D) the system
m—p—c

fk: Z )\jvk-‘y—j—l’ kzlv"'7m7
j=1

in the variables vq, ..., v; may have rank less than m.

If \; #£ 0 for at least one [ with 1 <[ <t —m + 1, then the system has
rank m.

If thereisa 7 with 1 <7 <2m —t—p—c—1such that \y =Xy = ...
coo = Memar = 0, M—par41 # 0, then the system has rank m — 7. We
have

qrt—mtp in the first case,
(MR, p,m)| < { g™t~ ™TP*T in the second case,

and therefore in case (b),

S MOl s e et

< mqm+(r—1)t—c +

So

t
|M| < Z Z (mqm—i-(T—l)t—c + qrt—c)
m=1 P

p<m
and the assertion follows.
Now we finish the proof of the theorem. For given ¢ as above we de-

fine a sequence Gy, ...,Gs—1 with G,_1 C (F,[z])" and with the following
properties:

(i) If (g1,-..,9r) € Gyr—1 then (g;,z) =1 for all .
(ii) For all j < r we have (g1,...,9;) € Gj_1.



12 G. Larcher

(iii) For all m < ¢ and all (p(1),...,p(r — 1)) which are admissible with
respect to (g1, ...,9r) € Gr—1 and m, the vectors 31, ..., 3m—p—c are linearly
independent.

Let

1 2 ! 48 .S
Gi—G._, and C:Pg(%m)w

log q
(with ¢ as in Lemma 4 and [-]| denoting the next larger integer). Then

1
ctiqTC < %q_s

and therefore

1
M| < ?Sqr(t_l) for every r.

1
Gol >q¢ 11— —
|Go| > ¢ ( 23)’

Gh| > gt (1 B 1>qt—1 B iq2(t—1) _ 20D (1 _ 2)

Then

2s 2s 2s

and going on in this way we get |G| > ¢*(=1 /2.
Now we consider
t—1 s—1

1 m—p— m
2::@ SN NN g

(917"'793)6G m=1w=0 p

where the last sum is over all p = (p(1),...,p(w)) admissible with respect
tom and ¢1,...,9s. We have

t—1 s—1
SR SD WL YR W
m=1w=0 (91+--39w+1)EGw P

< 2qs Z Z q—t(w+1) Z Z qm—ﬁ—h

(917"'7gw+1) p

< 2qs+1 Z Z q—t(w+1) Z mz_: qm_ﬁ_i

(p(1),...,p(w)) i=m—p—c
p<m
. > !
Ay M) E(Fg)\{(0,...,0)} 9

where Ehe last sum Is over all (g1,...,9w+1) € Gy for which p is admissible
and A\131 + ...+ A3, =0.
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By the estimate for > |M(X,p,m)| in the proof of Lemma 4 with

m—-p—c=itiand r =w+ 1 we get

t—1 s—1

¥ <ot Z Z g~

m=1w=0

m—p
v Z Z g P (gt . gt Dtkip—m)
P i=m—p—c

p<m

< d"ct® < ¢(log N)*(loglog N)

(here ¢” is again a constant depending only on s and on ¢) and by Lemma 3
the result follows.

[9]

[10]
(11]
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