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1. Introduction. For N points x1, x2, . . . , xN in the s-dimensional
unit-cube Is := [0, 1)s and for a subinterval J of Is we put

DN (J) := AN (J)− V (J)N

where AN (J) is the number of n, 1 ≤ n ≤ N , with xn ∈ J , and V (J) is the
volume of J .

The star-discrepancy D∗
N of x1, . . . , xN is then defined by

D∗
N := sup

J

∣∣∣∣DN (J)
N

∣∣∣∣
where the supremum is extended over all half-open subintervals J =∏s

i=1[0, αi) of Is (0 ≤ αi ≤ 1).
In the theory of uniform distribution as well as in the theory of Monte

Carlo methods for numerical integration, point sets with small star-discrep-
ancy play a crucial role. It is known (Roth [10]) that for every s there is a
cs > 0 such that for every point set x1, . . . , xN in Is we have

D∗
N > cs

(log N)(s−1)/2

N
.

It is conjectured that even

D∗
N > cs

(log N)s−1

N

is always true. (This is trivial for s = 1 and was shown for s = 2 in [11].)
In this connection (especially for numerical integration) the notion of

good lattice points plays an outstanding role. (See for example [1]–[3], [6].)
An s-tuple g := (g1, . . . , gs) ∈ Zs will be called a good lattice point

modulo N ∈ N if the point set

xn :=
({

ng1

N

}
, . . . ,

{
ngs

N

})
, n = 1, . . . , N ,
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has small discrepancy D∗
N (g). ({·} denotes the fractional part.)

It is known that for every s there is a cs such that for all N ∈ N there is
a g ∈ Zs with

D∗
N (g) < cs

(log N)s

N
(see [6]).

For dimension s = 2 this result was improved in [5] to

D∗
N (g) < c2

(log N)(log log N)2

N
.

It is conjectured that for arbitrary dimension the result can be improved at
least to the form

D∗
N (g) < cs

(log N)s−1(log log N)k(s)

N

with some k(s).
In connection with the construction of nets and (t, s)-sequences (these are

classes of low-discrepancy point sets and sequences, see [7] and [8]) Nieder-
reiter [9] introduced a class of point sets which in some sense can be viewed
as analogous to the point sets generated by good lattice points. In the fol-
lowing we give an inessentially simplified definition for essentially the same
point set as in [9]:

Let q be a prime and Fq
∼= Zq be the field of q elements which we denote

by {0, 1, . . . , q − 1}.
Let Fq((x−1)) be the field of formal Laurent series L with

L = 0 or L =
∞∑

k=w

tkx−k

with tk ∈ Fq and w an arbitrary integer with tw 6= 0. We define the fractional
part {L} of L by

{L} :=
∞∑

k=max(1,w)

tkx−k .

Fq((x−1)) contains the field of rational functions over Fq as a subfield.
Let

φ : Bq := {0, 1, . . . , q − 1} → {0, 1, . . . , q − 1}
be defined by φ(i) := i for all i and let

Φ : Bq((x−1)) → Fq((x−1))

be the extension of φ to Bq((x−1)).
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Let t ∈ N. Every integer n with 0 ≤ n < qt can be uniquely represented
in the form

n =
t−1∑
k=0

akqk with ak ∈ Bq .

Let n(x) ∈ Fq[x] be defined by n(x) =
∑t−1

k=0 akxk. Then it was shown in [9]
that for every f ∈ Fq[x] with deg(f) = t ≥ 1, there are g1, . . . , gs ∈ Fq[x],
(gi, f) = 1, i = 1, . . . , s, deg(gi) < t, such that for the star-discrepancy D∗

N

of the point set

xn :=
(

Φ−1

{
n(x)g1(x)

f(x)

}∣∣∣∣
x=q

, . . . , Φ−1

{
n(x)gs(x)

f(x)

}∣∣∣∣
x=q

)
,

n = 0, . . . , qt − 1 =: N − 1 ,

we have

D∗
N < cs

(log N)s

N
.

(cs depends only on s.)
It is the aim of this paper to show that this estimate can be improved

for the special (and most important for applications) case f(x) = xt in the
following form:

Theorem. For every t ∈ N there are g1, . . . , gs ∈ Fq[x], g1 = 1,
(gi, x) = 1, i = 1, . . . , s, such that for the discrepancy D∗

N of the point
set

xn :=
(

Φ−1

{
n(x)g1(x)

xt

}∣∣∣∣
x=q

, . . . , Φ−1

{
n(x)gs(x)

xt

}∣∣∣∣
x=q

)
,

n = 0, . . . , qt − 1 =: N − 1 ,

we have

D∗
N < c

(log N)s−1(log log N)
N

,

with a constant c depending only on s and q.

(For the connection of these point sets with the theory of nets see [9].)
So in this “non-archimedean case” the analogue of the conjecture on

classical good lattice points is true.

2. Proof of the Theorem. In the following, for simplicity, we always
write i instead of i for all i ∈ Fq. It will always be clear whether i is a digit
or an element of Fq.

For the first coordinate of our point set we have

Φ−1

{
n(x)
xt

}∣∣∣∣
x=q

=
n

qt
,
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so by standard methods (see [4], Chapter 2.2) we have

ND∗
N ≤ max

1≤N0<N
N0D

∗
N0

where we denote by D
∗
N0

the star-discrepancy of the (s − 1)-dimensional
point set (

Φ−1

{
n(x)g2(x)

xt

}∣∣∣∣
x=q

, . . . , Φ−1

{
n(x)gs(x)

xt

}∣∣∣∣
x=q

)
,

n = 0, . . . , N0 − 1 .

For simplicity we now consider the quantity D
∗
N0

for all 1 ≤ N0 ≤ N = qt

for the sequence

xn =
(

Φ−1

{
n(x)g1(x)

xt

}∣∣∣∣
x=q

, . . . , Φ−1

{
n(x)gs(x)

xt

}∣∣∣∣
x=q

)
,

n = 0, . . . , N0 − 1 ,

and show that there are always g1, . . . , gs, (gi, x) = 1, such that

D
∗
N0

< cs
(log N)s log log N

N0
for all N0 .

Then the result follows.
Let

gi(x) :=
t∑

k=1

ui,kxk−1

and let U (i) be the t×t matrix (u(i)
k,j), k, j = 1, . . . , t, with u

(i)
k,j := ui,t−k−j+2

(where u
(i)
k,j := 0 if k + j − 1 > t). Then, with xn := (x(1)

n , . . . , x
(s)
n ) and

n =
∑t−1

k=0 akqk, we have

x(i)
n =

t∑
l=1

q−l
( t−1∑

k=0

ui,t−l−k+1

)
(with ui,j = 0 for j ≤ 0) .

(Here the inner sum is taken in Fq.) This fact can formally be denoted by

x(i)
n
∼= U (i) · (a0, . . . , at−1)t .

Let now N0, 1 ≤ N0 ≤ N , N0 =
∑t0−1

k=0 bkqk, bi ∈ Bq, bt0−1 6= 0 be
given. For fixed m, 0 ≤ m ≤ t0− 1, and b ∈ {0, . . . , bm − 1} we consider the
subsequence (xn) with

t0−1∑
k=m+1

bkqk + bqm ≤ n <

t0−1∑
k=m+1

bkqk + (b + 1)qm .
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For such n we have

n =
m−1∑
k=0

akqk + bqm +
t0−1∑

k=m+1

bkqk with ak ∈ Bq

and therefore

x(i)
n =

t∑
l=1

q−l
( m−1∑

k=0

ui,t−l−k+1ak + A
(i)
l

)
with

A
(i)
l =

 ui,t−m−l+1b +
t0−m−1∑

j=1

ui,t−m−l+1−jbm+j for l = 1, . . . , t−m,

0 for l > t−m.

For given A
(i)
l we now consider the sequence

x̃n := (x̃(1)
n , . . . , x̃(s)

n )

with

x̃(i)
n :=

m∑
l=1

q−l
( m−1∑

k=0

ui,t−l−k+1ak + A
(i)
l

)
, n = 0, . . . , qm − 1 .

Let Ũ
(i)
1 be the m×m matrix

Ũ
(i)
1 := (u(i)

k,j) , k, j = 1, . . . ,m .

By v
(i)
l we denote the lth row of Ũ

(i)
1 . Let h(1) ∈ N0 be maximal such that

v
(1)
1 , . . . , v

(1)
h(1) are linearly independent over Fq. If p(1) ≤ h(1) then in every

interval [dq−p(1), (d + 1)q−p(1)), d ∈ N0, 0 ≤ d < qp(1), there are exactly
qm−p(1) of the x̃

(1)
n .

Lemma 1. For every p := p(1) there are a regular m×m matrix V := V (1)

(depending on p(1) and on Ũ
(1)
1 ) and m-dimensional vectors ci (depending

on p(1), Ũ
(1)
1 and the A

(i)
1 ), i = 2, . . . , s, such that for all d =

∑p−1
k=0 dkqk,

dk ∈ Bq, and for all n with x̃
(1)
n ∈ [dq−p, (d + 1)q−p), we have

x̃(i)
n
∼= Ũ

(i)
1 · V · (dp−1, . . . , d0, ξm−p, . . . , ξ1)t + ci , i = 2, . . . , s ,

with some ξk ∈ Bq.

P r o o f. Let a′ = (a′0, . . . , a
′
m−1)

t be such that

U
(1)
1 a′ = (dp−1, . . . , d0, ξm−p, . . . , ξ1)t − (A(1)

1 , . . . , A(1)
p , 0, . . . , 0)t

for any ξi. We arrange the columns of Ũ
(1)
1 and the vector a′ into U := (uj,k)

and a = (a0, . . . , am−1)t in such a way that the system does not change and
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the submatrix U0 := (uj,k), j, k = 1, . . . , p, is regular. Then the vectors a
which satisfy the above system for any ξi are given by a = (a0, . . . , am−1)t

with arbitrary ap, . . . , am−1 and with

(a0, . . . , ap−1)t = (U0)−1 · (dp−1 −A
(1)
1 − u1,p+1ap − . . .− u1,mam−1, . . .

. . . , d0 −A(1)
p − up,p+1ap − . . .− up,mam−1)t .

Let U1 := (−uj,k), j = 1, . . . , p, k = p + 1, . . . ,m and let Ṽ := U(1)U(2)
with

U(1) :=
(

(U0)−1 0
0 Em−p

)
and U(2) :=

(
Ep U1

0 Em−p

)
with Ek the k × k unit matrix. Then

a = U(1)U(2)(dp−1, . . . , d0, ap, . . . , am−1)− c̃

with

c̃ = U(1) · (A(1)
1 , . . . , A(1)

p , 0, . . . , 0)t .

We rearrange the rows of Ṽ and c̃ in the inverse way to the initial rear-
rangement and get thereby a regular matrix V and a vector c. Then V and
ci := −Ũ

(i)
1 c satisfy the assertion of Lemma 1.

Let now Ũ
(i)
2 := Ũ

(i)
1 V . Let

Ũ
(i)
2 := (v(i)

j,k) , j, k = 1, . . . ,m ,

v
(i)
j := (v(i)

j,1, . . . , v
(i)
j,m) and

∗
v
(i)
j := (v(i)

j,p(1)+1, . . . , v
(i)
j,m) .

Let h(2) ∈ N0 be maximal such that
∗
v
(2)
1 , . . . ,

∗
v
(2)
h(2) are linearly independent

over Fq. Let p(2) ≤ h(2). Then for all d(i) ∈ N0, 0 ≤ d(i) < qp(i), i = 1, 2,
there are exactly qm−p(1)−p(2) integers n with

x̃(1)
n ∈ [d(1)q−p(1), (d(1) + 1)q−p(1)) ,

x̃(2)
n ∈ [d(2)q−p(2), (d(2) + 1)q−p(2)) .

Lemma 2. For every p(2) there is a regular m×m matrix V (2), depending
on p(2) and Ũ

(2)
2 , such that for all

d(i) =
p(i)−1∑
k=0

d
(i)
k qk , d

(i)
k ∈ Bq , i = 1, 2 ,

and for all n with

(x̃(1)
n , x̃(2)

n ) ∈
2∏

i=1

[d(i)q−p(i), (d(i) + 1)q−p(i))
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we have

x̃(i)
n
∼= Ũ

(i)
2 V (2)(d(1)

p(1)−1, . . . , d
(1)
0 , d

(2)
p(2)−1, . . . , d

(2)
0 ,

ξm−p(1)−p(2), . . . , ξ1)t + ci ,

i = 3, . . . , s, with some ξk ∈ Bq.

P r o o f. V (2) must have the following two properties:
Let d(i) := (d(i)

p(i)−1, . . . , d
(i)
0 ). Then

(a) Ũ
(2)
2 V (2)(d(1), d(2), ξm−p(1)−p(2), . . . , ξ1)t = (d(2), ηm−p(2), . . . , η1)t

with arbitrary ξj , ηj ;
(b) V (2)(d(1), d(2), ξm−p(1)−p(2), . . . , ξ1)t = (d(1), d(2), ηm−p(1)−p(2), . . .

. . . , η1)t with arbitrary ξj , ηj .

We arrange the columns of Ũ
(2)
2 so as to get a matrix U = (uj,k)

with
∗
uj := (uj,p(1)+1, . . . , uj,p(1)+p(2)), j = 1, . . . , p(2), linearly independent

over Fq.
In the same way as in (a) we arrange the rows of V (2) so that the system

remains unchanged. (Thereby we get a matrix which we denote by V .) The
first p(1) rows of V (2) remain unchanged. We set

V :=

 Ep(1) 0

A B C


with matrices A, B, C which will be determined later. Then condition (b)
is satisfied.

Let

U :=

 a1
...

am

 and V := (vt
1, . . . , v

t
m)

with
vj := (v1,j , . . . , vm,j) .

The vk,j , k = 1, . . . , p(1), j = 1, . . . ,m, are already fixed.
For 1 ≤ j ≤ p(1) let vk,j , k = p(1)+1, . . . ,m, be arbitrary with ukvt

j = 0
for all k = 1, . . . , p(2). This is possible since the rank of each such system
is p(2) ≤ m− p(1).

For p(1) + 1 ≤ j ≤ p(1) + p(2) let vp(1)+p(2)+1,j = . . . = vm,j = 0 and
vl,j , l = p(1) + 1, . . . , p(1) + p(2), be such that

ukvt
j =

{
0 if j 6= p(1) + k,
1 if j = p(1) + k,

for k = 1, . . . , p(2). (Each such system has exactly one solution.)
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Further, for p(1) + p(2) + 1 ≤ j ≤ m let vj,j := 1 and vl,j := 0 for
l = p(1)+p(2)+1, . . . ,m; l 6= j. Finally, vl,j for l = p(1)+1, . . . , p(1)+p(2)
are determined by

ukvt
j = 0 , k = 1, . . . , p(2) .

So V constructed in that way has the form

V =


Ep(1) 0

D F
A

0 Em−p(1)−p(2)


with a regular p(2) × p(2) matrix D, so that V is regular. By rearranging
the rows of V we get a regular matrix V (2) which satisfies (a) and (b).

Again we set Ũ
(i)
3 := Ũ

(i)
2 V (2), i = 3, . . . , s, define h(3) analogously

to h(2), take any p(3) ≤ h(3) and construct in exactly the same way a
matrix V (3) with the analogous properties to V (2) and proceed with this
construction. In general, for any w, 0 ≤ w ≤ s − 1, we then have integers
p(1), . . . , p(w), matrices Ũ

(i)
w , i = w, . . . , s, where Ũ

(i)
w = U

(i)
w−1Mi,w with a

regular m×m matrix Mi,w, and we construct a regular m×m matrix V (w)

and get Ũ
(i)
w+1 = Ũ

(i)
w V (w), i = w + 1, . . . , s.

We define h(w + 1) := h(p(1), . . . , p(w)) to be maximal such that (with
Ũ

(w+1)
w+1 := (zk,j))

∗
zk := (zk,p(1)+...+p(w)+1, . . . , zk,m) , k = 1, . . . , h(w + 1) ,

are linearly independent over Fq. Then for every p(w + 1) ≤ h(w + 1)
and every d(j), 0 ≤ d(j) < qp(j), j = 1, . . . , w + 1, there are exactly
qm−(p(1)+...+p(w+1)) integers n with

(x(1)
n , . . . , x(w+1)

n ) ∈
w+1∏
j=1

[d(j)q−p(j), (d(j) + 1)q−p(j)) .

This is no longer true if p(w + 1) > h(w + 1). So h(w + 1) depends only on
the sequence x̃n and on p(1), . . . , p(w) but not on the special construction
of the matrices V (k). Of course not all w-tuples p(1), . . . , p(w) can occur
in this construction. Those which can are called admissible. (For the case
w = 0 we have to make the obvious adaptations in the notation.)

Lemma 3. For the discrepancy D
∗
N0

=: D of the initial point set xn, n =
1, . . . , N0, we have

N0D < qs
(
2st0 + 2s + q +

t0−1∑
m=1

s−1∑
w=0

∑
(p1,...,pw)

qm−(p1+...+pw)−h(p1,...,pw)
)

.
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(The last summation is over all w-tuples p1, . . . , pw which are admissible
with respect to m, and the quantity h of course also depends on m.)

P r o o f. For i = 1, . . . , s let β(i) :=
∑∞

k=1 β
(i)
k q−k. Let B :=

∏s
i=1[0, β(i))

and for any C ⊂ Is let A(C) be the number of x̃n, n = 0, . . . , qm − 1, in C.
Let

Θ :=
⋃

(p1,...,ps)
admissible

β(i)
pi
−1⋃

b(i)
pi

=0

i=1,...,s

( s∏
i=1

[ pi−1∑
k=1

β
(i)
k q−k + b(i)

pi
q−pi ,

pi−1∑
k=1

β
(i)
k q−k + (b(i)

pi
+ 1)q−pi

))
.

(This is a disjoint union.) Then

Θ ⊂ B ⊂ Θ ∪ Λ

where

Λ :=
s−1⋃
w=0

⋃
(p1,...,pw)
admissible

β(i)
pi
−1⋃

b(i)
pi

=0

i=1,...,w

( w∏
i=1

[ pi−1∑
k=1

β
(i)
k q−k + b(i)

pi
q−pi ,

pi−1∑
k=1

β
(i)
k q−k + (b(i)

pi
+ 1)q−pi

)

×
[ h(p1,...,pw)∑

k=1

β
(w+1)
k q−k ,

h(p1,...,pw)∑
k=1

β
(w+1)
k q−k+q−h(p1,...,pw)

)
×[0, 1)s−w−1

)
.

We have
A(Θ)− qmV (Θ) = 0 .

For every interval in the definition of Λ the quantity A equals
qm−(p1+...+pw+h(p1,...,pw)), and the volume of these intervals is equal to
q−(p1+...+pw+h(p1,...,pw)). Therefore

|A(B)− qmV (B)| ≤
s−1∑
w=0

∑
(p1,...,pw)
admissible

qwqm−(p1+...+pw+h(p1,...,pw)) .

Since maxi=1,...,s |x(i)
n − x̃

(i)
n | ≤ q−m, the result follows by standard

methods.

Let now c ∈ N0 and r ∈ N be fixed. Let m ≤ t and (p(1), . . . , p(r−1)) be
admissible with respect to m. Let Ũ

(r)
r := (zk,j) be the new constructed ma-

trix with respect to these parameters. Again let
∗
zk:=(zk,p(1)+...+p(r−1)+1, . . .
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. . . , zk,m) and let p := p(1) + . . . + p(r − 1). These definitions depend only
on g1, . . . , gr and not on gr+1, . . . , gs.

We define

M := {(g1, . . . , gr) ∈ (Fq[x])r | there exist m ≤ t and

p := (p(1), . . . , p(r − 1)) admissible such that
∗
zk ,

k = 1, . . . ,m− p− c , are linearly dependent over Fq} .

(In this definition
∗
zk, k = 1, . . . ,m − p − c, are viewed to be linearly inde-

pendent if m− p− c ≤ 0.)

Lemma 4. |M|, the number of elements in M, always satisfies

|M| ≤ c′sq
rt−ctr ,

with a certain constant c′s depending only on s.

P r o o f. We have (with p := p)

|M| ≤
t∑

m=1

∑
p admissible

∑
�

|M(λ, p,m)|

where the last sum is taken over all λ := (λ1, . . . , λm−p̄−c) ∈ (Fq)m−p̄−c \
{(0, . . . , 0)} and where

M(λ, p,m) :=
{

(g1, . . . , gr) ∈ (Fq[x])r : p is admissible

and
m−p̄−c∑

k=1

λk
∗
zk = 0

}
.

We have Ũ
(r)
r = Ũ

(r)
1 M with a regular m×m matrix M .

Let

Ũ (r)
r :=

 z1
...

zm

 and Ũ
(r)
1 :=

 u1
...

um


with uj := (uj,1, . . . , uj,m) = (vj , . . . , vj+m−1) if gr(x) = v1x

t−1 + . . .
. . .+vt (vk := 0 if k > t), and M := (σ1, . . . , σm) with σj = (σ1,j , . . . , σm,j)t.

Then the system
∑m−p̄−c

k=1 λk
∗
zk = 0 is equivalent to

m∑
k=1

ξkσk,p̄+l = 0 , l = 1, . . . ,m− p ,

where ξk :=
∑m−p̄−c

j=1 λjvk+j−1, k = 1, . . . ,m.
We consider two cases.
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(a) 2m − p − c − 1 ≤ t. The above system in the variables ξk has rank
m−p since M is regular. For each of the qp solutions (ξ1, . . . , ξm) the system

ξk =
m−p̄−c∑

j=1

λjvk+j−1 , k = 1, . . . ,m ,

in v1, . . . , v2m−p̄−c−1 has rank m. Therefore we have qm−c−1 solutions
(v1, . . . , v2m−p̄−c−1) for the initial system. Hence g1, . . . , gr−1 may be taken
arbitrarily, |M(λ, p,m)| = qrt−m+p̄ and consequently∑

�

|M(λ, p,m)| ≤ qrt−c .

(b) 2m−p− c−1 > t. In this case (for any of the qp solutions ξ1, . . . , ξm

of
∑m

k=1 ξkσk,p̄+l = 0, l = 1, . . . ,m− p) the system

ξk =
m−p̄−c∑

j=1

λjvk+j−1 , k = 1, . . . ,m ,

in the variables v1, . . . , vt may have rank less than m.
If λl 6= 0 for at least one l with 1 ≤ l ≤ t−m + 1, then the system has

rank m.
If there is a τ with 1 ≤ τ ≤ 2m− t− p− c− 1 such that λ1 = λ2 = . . .

. . . = λt−m+τ = 0, λt−m+τ+1 6= 0, then the system has rank m − τ . We
have

|M(λ, p,m)| ≤
{

qrt−m+p̄ in the first case,
qrt−m+p̄+τ in the second case,

and therefore in case (b),∑
�

|M(λ, p,m)| ≤ qrt−c +
2m−t−p̄−c−1∑

τ=1

q2m−p−c−t−τqrt−m+p+τ

≤ mqm+(r−1)t−c + qrt−c .

So

|M| ≤
t∑

m=1

∑
p

p̄≤m

(mqm+(r−1)t−c + qrt−c)

and the assertion follows.

Now we finish the proof of the theorem. For given c as above we de-
fine a sequence G0, . . . , Gs−1 with Gr−1 ⊆ (Fq[x])r and with the following
properties:

(i) If (g1, . . . , gr) ∈ Gr−1 then (gi, x) = 1 for all i.
(ii) For all j < r we have (g1, . . . , gj) ∈ Gj−1.
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(iii) For all m ≤ t and all (p(1), . . . , p(r − 1)) which are admissible with
respect to (g1, . . . , gr) ∈ Gr−1 and m, the vectors

∗
z1, . . . ,

∗
zm−p̄−c are linearly

independent.

Let

G := Gs−1 and c =
⌈

log(2sc′st
sqs)

log q

⌉
(with c′s as in Lemma 4 and d·e denoting the next larger integer). Then

c′st
sq−c <

1
2s

q−s

and therefore

|M| ≤ 1
2s

qr(t−1) for every r .

Then

|G0| ≥ qt−1

(
1− 1

2s

)
,

|G1| ≥ qt−1

(
1− 1

2s

)
qt−1 − 1

2s
q2(t−1) = q2(t−1)

(
1− 2

2s

)
and going on in this way we get |G| ≥ qs(t−1)/2.

Now we consider

Σ :=
1
|G|

∑
(g1,...,gs)∈G

t−1∑
m=1

s−1∑
w=0

∑
p

qm−p̄−h(p ,m,g)

where the last sum is over all p = (p(1), . . . , p(w)) admissible with respect
to m and g1, . . . , gs. We have

Σ ≤ 1
|G|

t−1∑
m=1

s−1∑
w=0

qt(s−w−1)
∑

(g1,...,gw+1)∈Gw

∑
p

qm−p̄−h

≤ 2qs
∑
m

∑
w

q−t(w+1)
∑

(g1,...,gw+1)

∑
p

qm−p̄−h

≤ 2qs+1
∑
m

∑
w

q−t(w+1)
∑

(p(1),...,p(w))
p̄≤m

m−p̄∑
i=m−p̄−c

qm−p̄−i

×
∑

(λ1,...,λi)∈(Fq)i\{(0,...,0)}

∑
g

1

where the last sum is over all (g1, . . . , gw+1) ∈ Gw for which p is admissible
and λ1

∗
z1 + . . . + λi

∗
zi = 0.
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By the estimate for
∑

� |M(λ, p,m)| in the proof of Lemma 4 with
m− p− c = i and r = w + 1 we get

Σ ≤ 2qs+1
t−1∑
m=1

s−1∑
w=0

q−(w+1)t

×
∑

p
p̄≤m

m−p̄∑
i=m−p̄−c

qm−p̄−i(mqwt+i+p̄ + q(w+1)t+i+p̄−m)

≤ c′′cts ≤ c̃(log N)s(log log N)

(here c′′ is again a constant depending only on s and on q) and by Lemma 3
the result follows.
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