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Introduction. The purpose of this paper is to give a refinement of Schertz’s
class number formula related to elliptic units. We are going to study some
non-Galois cases. Let K/Q be a finite non-Galois extension, k be an imaginary
quadratic field, and put L = Kk. We denote by h the class number of K and by
E the unit group of K. Suppose that L/k is an abelian extension. Then Schertz
[6] has shown a class number formula related to elliptic units as follows:

THEOREM (Schertz). Notations being as above, one can construct a group
F of certain elliptic units of K such that

(0.1) ch/hy = (E: FE,)

with an explicit constant ¢ depending only on the construction of F. Here, h, and
E, are the class number and the unit group of the maximal absolutely abelian
subfield K, of K, respectively.

In this formula, h, can be known in various ways because K, is absolutely
abelian. But the constant ¢ is much more complicated and not so small in [6].
Now, to know the class number h, we shall make ¢ as small and explicit as
possible. Then we have the best possible construction of F in Schertz’s formula.
Namely,

THEOREM 1. Notations being as above, suppose that the Galois closure L of
K is dihedral over Q and cyclic over k. Let n = [K:Q]. Then we can construct
a group F of certain elliptic units such that

0.2) h=(E:F) if nis odd,
0.3) 2®h/hy=(E:FE;) ifn=4o0r 2, (2,)=1.
In (0.3), K, is a quadratic field and b is a computable positive integer.

The proof of Theorem 1 is described in Section 3. For that purpose, we
prepare some properties of Z-modules in cyclotomic fields in Section 1.
Schertz’s result above is described in Section 2 precisely. Finally, in Section 4,
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we discuss a few more cases where L/Q is not dihedral. In particular, in the case
where [K:Q] is the product of two primes we prove Theorem 2 which,
together with Theorem 1, cempletely give a formula for n = pq with primes p,
g. The class number formula (0.1) is previously studied in detail by H. Hayashi
[1], K. Nakamula [2], [3], [4] when n=3,4,5,6.

1. Preliminaries on cyclotomic fields. Let m be a positive integer, > 2. Let
{={, be a primitive mth root of unity and put Q, = Q({). Let J be the
complex conjugation of Q,, and let Q,; be the fixed field of Q,, for J. Then
Q. is the maximal real subfield of Q,,. Let © (resp. O*) be the ring of integers
of Q,, (resp. Qn), and D,, (resp. D,}) be the discriminant of Q,, (resp. Q). Let
N be the norm on Q,/Q. Let &,(X) be the mth cyclotomic polynomial:

o,(X)= [] (X-0)

(a,m)=1

Throughout this section, p always denotes a prime number.
Let ne Q. We define the function @} from {+1} to Z according to the
value &,(+1) as follows

o,(x1) ifn>2 neZ,

Q;‘(il):{l if neQ—Z.

When n=1 or 2, #*(1) = #%(—1) = 1 and &*(—1) = 3(1) = 2.
We recall that m > 2, then &,(+1) is known as follows:

p, m=p’azl,
1, otherwise.

(1L.1) ®,(1) = {

Since ®,(—1)=[](—1-¢) =[] +¢,),

®,,2(1) if m=2(mod 4),
&, (—1)=< &,(1) if m=0(mod 4),
@, (1) if m= +1(mod 4).

Therefore,

p, m=2pazl,
1, otherwise.

(1.2) ?,(=1)= {

Note that N({—1) = @,,(1). We shall only use &% (1) as the absolute norm of
some ideal # (0). When we use @¥(+1) as the meaning of some positive
integer, we can use @,(+1) instead of ®¥(+ 1), without confusion.

Let p=({—1)0O. Then p is a prime ideal of @ when m is a prime power,
otherwise p = 0.

The following lemma is known (see Washington [7], Lemma 4.19).



On Schertz’s class number formula 191

LEMMA 1. The discriminant of the maximal real subfield Q,, is given by

IDm| = (m®™/T] p?™/ =D&, (1) Bz (1)),
plm
where p runs through all prime divisors of m.
Here, the factor &,,(1)®,,.(1) equals p or 4 according as m or m/2 is p° or
2% where p is an odd prime. Otherwise, @,(1)®,,,(1) = 1.
Let {, be an mth root of unity. We consider a Z-module given by the
following formula:

m—1
(1.3) M=) Z({-1)+{, (77 =1)).
j=1
Since m > 2, M # 0. Denote by d(M) the absolute value of the discriminant of
the Z-module M. Suppose {, = +1.
LEMMA 2. Let {,=1. Then M = pn0O*, and
d(M) = &,,(1)*|Dy.

Proof. Since {, = 1, we have M = Z’}'QIIZ(Cj+C_"—2) from (1.3). We
shall prove the above in 3 steps.

1. M is anideal of ©*. Since O* = Z[{+{ '] (see [7], Proposition 2.16),
the Z-module M is an ideal of O*. Indeed,

CHTHE+LTI=2) = @+ = O T =) 20+ ),

2. pP2Nn0O* <« M c pnO~. The inclusion M = pn O™ is clear. Since M is
an ideal of 0% and ((+{ '—2)eM,

2RO =((—1)20n0% =+ 1=2)0* < M.

3. P2nO* = pnO*. If p = O then the equality is trivial. Assume p # O,
then p is the prime ideal which totally ramifies in Q,/Q. Let p* = pn0O™*.
Since [Q,,: Q] =2, p* O = p*. This implies that p>nO* = pnO*. Hence
M =pn0O*. In step 3, we saw that [0* :pn0*] = &,(1). Using the formula
for the discriminant of an ideal of an algebraic number field, the lemma
is proved.

LEMMA 3. Let {, = —1 and let m be even. Then M = ({—{"")O* and
d(M) = 0,,(1)@p2(—1)|Dpe].

Proof. Since {, = —1, we have M = Y7} ! Z(¢/—¢7) from (1.3). Further
T =Z[{+{"']. For any integer k,

===+ 3R ) +e((-0TY
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where e=1 or 0. Therefore M = ({—-{"Y)0*. The discriminant of M is
given by

d(M) = IN(C—{ HIDnl,
and
INC=C" O = INE -1 = INC~- l)N(C+1)I—¢ (1)4’ (=1).
The lemma is proved.

Remark 1. The rank of pn@O* as Z-module is ¢@(m)/2. The set
{/+{7#=2] 1 <j < ¢(m)/2} is an independent system over Z. Furthermore
the fact that the set is a basis of pn@* is proved in a way similar to
the proof of the fact that {{/+{7/| 1 <j < @(m)/2} is a basis of Z[{'+{7'].
Similarly, {{/—{77] 1 <j < @(m)/2} is a basis of ((—{~1)0.

Suppose {, # +1.

LEMMA 4. Let {, be a primitive d-th root of unity, where d is a divisor of
mandd # 1, 2. Then there is a Z-submodule M, of M such that the discriminant
of M, on Q, is given by

d(Mo) = (- 1)?™*D &, (1)*|D,].

Proof. Let My =(1+{,)(pn0O~). Then M, is a Z-submodule of M be-
cause pNnO* =YT1Z({*+{"/—-2) by Lemma 2 and

A+ +LTT=2) = ([ =D+ = D) HE - D+ - D)eM.

The discriminant of M, is given by d(M,) = [IN(1 +{)l|d(pnO™)|. Since {, is
a primitive dth root of unity, [N(1 +{,)| = @,(— 1)*™*® _The lemma is proved.

2. Schertz’s results. In this section, we shall describe Schertz’s result and
give the notations. Using the class field theory, there is a positive integer f such
that the ray class field H; modulo (f) of k includes L. Let CI(f) be the ray
class group modulo f of k. The Artin symbol (c, H(;,/k) gives an isomorphism
from CI(f) to the Galois group G(H . /k). Since f = f, the complex con-
jugation ¢ — ¢ is an automorphism of CI(f). Using this fact, we can prove the
next properties. (But the proof is omitted here, see [6].)

The extension H,/Q is Galois, the Galois group G(H,/Q) is the
semi-direct product G(H/k)-<{J), and G(H/k) is a normal subgroup of
G(H;,/Q). Since J ™ (¢, H/k)J = (¢, H;/k), we define ¢’ by ¢. Let U be the
subgroup of CI(f) corresponding to the field L. Since [L: K] =2, U’ = U can
be proved. (See [6, I1], pp. 67-68.) Therefore L/Q is Galois. There is an element
¢o of Cl(f)mod U such that G(L/K) = {(cq, L/Q)J), the Galois group G(L/Q)
is the semi-direct product G(L/k)-{(c,, L/Q)J), and G(L/k) is a normal
subgroup of G(L/Q). For the maximal abelian subfield K, of K, the composite
L, = K,k is the maximal abelian subfield of L. Let U, be the subgroup of CI(f)
correspondmg to Ly,. Then U, = {c* 7’| ceCl(f)}. Let A = CI(f)/U and X
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be the character group of A. Since U’ = U, we define the action of the
automorphism J on X by yx'(c)=x(¢) for any yeX. Let X, = {reX|
x' = x}. Then X, is the character group of U,. The classes of characters
W = (X —X,)/ ~ are defined by the equivalence relation:

x~y if and only if (x> =<x¥)> or (x> ={D.

If L/Q is dihedral, then {y)> = (x> is equivalent to {x’> = {¥'>. Therefore, we
assume that y ~ y’ satisfies (x> = {)') in this section. Later, we shall treat the
case {x’> # {x) in Section 4. For any class w of W, let m, be the order of an
element of w. We take the subset @ of w defined by

o ={¥| 1<j<m,2,(j,m,)=1}

.Then w'vw”’ = w and W "W’ =G. Put r, = #w' = ¢(m,)/2. The rank r of
F is found in [6], namely,

2.1 r= Y ro+re, ro= #{xeX,l xlco) =1, x #1}.
weW

For any class w, let Ua,_, A, and k, be the following:
U, ={ceCl(f)| x(c)=1 for any xew},
A, =ClfN)U,,
k, is the field corresponding to U,,.

Now, F is constructed by canonical elliptic units 6,(a) of L (acA,, we W).
(For elliptic units in the case where H, is the ring class field, see [5].)
For each class w of W, we take integers 4, (i=1,...,r,; aec A,) such that
d, = |det(v;;)] # 0 where

vi= Y Aal(@—1)+co)(x H(@—1) fori,j=1,...,r,.
acAq,
Let 0, = [Jocao, (0,(a)* LM )2e The group F is generated by {6,
i=1,...,r,, e W}. We give the constant c in (0.1) as follows. Let

_ —1)/2 _ 1- 2 —_
ey =n""Y2 c,o=ng 2  and cy= [] d,m
weW

where n, = [K,:Q]. Let ¢, = ¢,¢,¢, and ¢5 = [oew24t,, Where t, = min{¢|
t(U,:1) = 0(mod h,)}, h, is the class number of k. The constant c is given by
€ = C,Cs.

Remark 2. Let b be the number of classes in W which have even order.
Using II, Satz 3.2 in [6], we can take c; = 2 by the choice of 0,(a). For the
number d,, Schertz [6] showed that we can take d, such that d, # 0 and d,,
divides (4m_)?™¥2¢ (1)|{D,;|. But this is not enough for our purpose.

2 — Acta Arithmetica LVIL3
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3. Proof of Theorem 1. First, by Remark 2, we can take c5 = 2° for some
integer b. Therefore, if we prove ¢, =1 then ¢ = 2°. Since L/k is cyclic, we
assume that X = (). Since L/Q is dihedral, y’ = y~!. Hence, the relation
(X' = x' implies that the order of ¥’ is 1 or 2. Therefore,

X — {1, x"*} if n is even,
° T {1} if n is odd.

Therefore, n, = [K,: Q] =1 or 2. Let

_1 if n is even,
€= 0 if nis odd.

Then we have n, = 2°. For the value of x(c,), the next lemma holds.

LEMMA 5. Let notations be as above. Let n=[L:k]. Assume that
n =2, (2,u)=1. Then there is an element b of CI(f) such that G(L/K’)
= {(cob?, L/k)J) and x(cyb®) is a 2°th root of unity. Here, K’ is a conju-
gate of K.

Proof. Let (b, L/k)e G(L/k). Then the conjugate of (c,, L/k)J by (b, L/k)
is (b~ 2c,, L/k). Since (u, 2) = 1, we can choose an element b of Cl(f) such that
x(b~%cy) is a 2°-th root of unity.

By the above lemma, we assume that y(c,) is a 2°-th root of unity. We shall
prove the theorem by considering three cases.

Case 1. y(c,) = 1. Fix a class w of W. Since y(c,) = 1, ¥’(¢c,) = 1 for any j.
Therefore v;j = Y sea,, dia(¥/(@)+¢ /(@)—2). Put m=m, and r=r,. Since
v;;€0* and {v;| Yy'ew'} are all conjugates of v;; over Q. /Q, d, = |det(v;)|
=d([vyy, ..., 1,1 ])"/%, where r=o(m)/2. Let {,=1(c,). Then M
=Y"721 Z({'+{7/-2). Using Lemmas 1 and 2, we have

(3.1 d(M) = &,,(1)*(m*™/[] p™/ P~V &, (1)@, (1))
plm
Assume that {vy,..., 0,4} is a basis of M. Then, from (3.1),
(3-2) d, = ®,(1)(m*™/[] p?™ =V, (1)@, (1)"/*.
plm

We shall compute the coefficient c¢,. Since L/k is cyclic, the correspondence
between divisors of n and classes of W is one-to-one. So, put d,, = d,. We have
[Toewduma™ = [T mn dmm™ ™2, where the product is taken over all divisors
of n except 1 and 2. From (3.2), we have
(3.3) H’ dmm—w(M)/Z = H' 45,,,(1)3/4 l—[’ (mcp(M) l"[ pw(M)/(p- ”‘pm/z(l))_ 1/4

m|n m|n min plm
For any positive integer n, the formulas

(3.4) Yom=n, [[&,()=n
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are known. By comparison of the index of each prime divisor of n, we obtain

(3.5) T[] (m®™ [T pe™e=1) = .

mln plm

Under the factorization of n in Lemma 5, using (1.1),

(3.6) ]_II Pn2(1) = [1 (1) [|I Ppy2(1) = (n/2)°.
mn m|2

Using (3.3)+3.6),
3.7 H’dmm—w(m)/z — p3e-my4

Since L/Q is cyclic, using (2.1), the rank r of E is given by
(3.8) r—ro = (2 o(m—@(2)—o(1))2.

m|n
By the assumption on the degree n, y(c,) = 1 yields that

ro=0, Ko=0 if nis odd,
ro =1, K, is a real quadratic field if n is even.

We obtain r, = e. From (3.4) and (3.8), the rank of E is
r=(n-—1-—e)2.
From the definition of the constants c,, c,, ¢; in Section 2, we have

¢, = n(r—l)/2 — n(n—3+e)/4'

Since ry=e=0 or 1, and n, = 2%,

€y =291 =

From (3.7), ¢, = n®~ ¢~ Hence ¢, = c,c,c, = 1. In this case, the theorem is
proved.

Case 2. x(cy) = —1. If m, is odd then d, is the same as in case 1.
Therefore we shall compare cases 1 and 2 for the value of d, only in the case
where m,, is even. For that purpose, we write ¢}, d,, instead of c,, d, in case
1 and so on. If (j, n) =1, then j is odd and yx/(c,) = — 1. Therefore,

m-—1

vy= ¥ Aulp/@-y7@) and  vgeM = § Z@-(7).

acA., J

Suppose that {v,, ..., v,1} is a basis of M. Then using Lemma 3,
(3.9) dy = (Pp(D)Pp(— 1) D2
By comparison of (3.2) and (3.9),

do/d, = Pp()/(P (D) Dp(—1)'2.
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Put m = 2%u, (2, u) = 1, where a > 1. By the assumption of the degree n, if
a>2thenn=4and &,(1) = ®,(—1)=2. Ifa=1then &,(1) = 1. Therefore,

@ (~1)7M ifa=1,
dofdo = {1 otherwise.

Assume a > 1. Then d,,/d,, = 1. Since x*(co) = 1, r, = 1. Therefore, ¢, = ¢y = 1.
Assume a = 1. Then d,,/d, = ®,,(—1)"/2. Therefore, [wew(d./d,) = u'/. Since
ro =0, the rank r = r'—1. Then ¢} c5/c,c, = (n/2)*'%. Therefore cyjc, = 1. In
this case, the theorem is proved.

Case 3. x(co) # % 1. In this case, by the assumption of n, we have n = 4
and W = {y}. We compute d, immediately using Lemma 4. Then d = 2%2,
Since ny =2, r =0 and r = 1. So ¢, = 1. Now, the proof of Theorem 1 is
complete. )

COROLLARY. Let L be cyclic over k. If the maximal real subfield K of L is
non-Galois over Q then

= 2%hy(E: FE,).

Proof. Since K is the maximal real subfield of L, x(c,) = 1. Therefore, the
corollary can be proved as in the above proof of case 1.

4. Non-dihedral cases. In this section, we consider the case where n = p or
n = pq, both p and g are primes, and the case is not included in Theorem 1. We
consider the automorphism t of order 2 instead of the complex conjugation
J on X. When {x*> # {)), we choose representatives of the class w of W and
give v;;’s which are different from those of Section 2. (More details in [6].) If
n = p, then L has only one character class, therefore, L/Q is dihedral. Suppose
n = pq. Similarly, if p = 2 and q # 2 then L/Q is dihedral. If p=q = 2 then
L/Q is dihedral because G(L/Q) is a non-abelian group of order 8. Suppose
that both p and g are odd primes. Then the next theorem holds.

THEOREM 2. Let K/Q be non-Galois and suppose the Galois closure L of
K is abelian over k. Suppose n = [K : Q] = pq (both p and q are odd primes), and
L/Q is not dihedral. Then we can construct a group F of elliptic units such that if
p = q then G(L/k) is an abelian group of type (p, p) and,

pet2e=app  — (E:FE,);

if p#q and K, # Q then,
2e-D@-12p/p  — (E:FE,).

Proof. In both cases above, the character group X is the direct product
x> x {yr> where x and ¥ are the characters of order p and g, respectively. Since
12 =1 and L/Q is not abelian, we assume that y* # ¢ ~'. We denote by (¥ )*
the subset of (¥) whose element has order m where m is the order of . Let
p=gq. Then we have two cases: (1) y=x"1, 2) ¥ = 1.
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Case 1: W has p+1 classes (3>* and {y'¥>* (i =1, ..., p). In this case,
the construction of F is the same as in Theorem 1. For any class o,
d,=p®*Y* and r_, = ¢(p)/2. Therefore c, = p?*+27~ 34,

Case 2: Xo = (- W'D =W ' # Y (i =1,...,(p—1)/2). Then
W has (p+1)/2 classes (¢ >* and (YPpd*u @ 'p* (i=1,...,(p-1)2). If
w = {Y>* then d, is the same as in case 1. Otherwise, we take v;; in Section 2 as

v = Z Aia(d”'(a)—l)
acAd.,

fori,j=1,..., p where ¢ e (Y*yx)* for some k. Then m_ = p and d_ is the
discriminant of the Z-module constructed by v;’s. We can take d,, = @,(1)|D,|"/?
in [6], I, Satz 1.4. Therefore, ¢, = [Joewd,my" = p®**2P~ 3% where the
product is taken over all classes of W. In the former case, the theorem is proved.

Let p # g. Then X, = {x). Since L/k is cyclic, W has two classes {(y)>* and
{o*. If o = (x>* then d, is the same as in Theorem 1. Let Q}, be the fixed
field of Q,, for 7. Let w = (xy>* and M be the Z-module constructed by v;; in
Section 2. Then M includes the Z-module 2(pn O*) where O* is the ring of
integers of Q% . The discriminant D* of O* is (pq)**?2q* P which is easily
shown by examining the ramification of Q,,/Q3,. If we take v;; as a basis of
2(pn0O*), then d, =2°r92¢  (1)|D**/?. Therefore, ¢, =2@~ D@12 The
proof is completed.

ExaMmpPLE. Let K, be abelian of degree p. Let K o K, and K/Q be
non-Galois of degree pg. Suppose the Galois closure L of K to be abelian over
an imaginary quadratic field k and [L:k] = pq. Then L/Q is not dihedral.
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