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1. Introduction. Let D be a positive integer, x a real non-principal character
Modulo D and L(s, ) the associated L-series. Several authors, such as Polya
51, Chowla [3], Burgess [2], Stephens [6] and Pintz [4], have studied the
Upper bound for L(l, y). The best known estimate is

1 1
1) L(1,pn < 5(1—$+o(1))1030

iy is primitive. This inequality was first established by Stephens [6] when D is
3 Prime. Later, Pintz [4] proved the inequality (1) when D is not necessarily
Prime, The aim of this note is to show the following theorem which enables us
10 improve (1) under certain conditions.

THEOREM. Assume that D is cube-free. Then for any € > 0, we have

1L(1+¢, %)

L(l, p < (ZW +£)logD

:-;{D > Dy(e), where {(s) denotes the Riemann zeta function and D(e) is a constant
€pending only on e.

From this we can easily deduce the following corollaries.

COROLLARY 1. Let D be as in the theorem. Then we have

(/1 .
(-ﬁ+o(l))logi) if x(2)=—1,

A

L, p < (%+o(1))1ogn if x@3)=-1,

(:—S+o(l))logD i 15)= 1,

L

9 D oo,
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COROLLARY 2. Let D be as in the theorem. Then we have

r(2I4+o(l)) logD if x(2)=xQB)=—
(%-po{l))logl) if x(2)=yx(5)=—

L(1, ) << 1
(12+o(l))log1) i xG)=x(5 = —
(3]6+g(1))]ogD i 22) = 23) = 2(5) = —

as D— 0.

These results are improvements of (1) under certain conditions. Combining
these corollaries with Dirichlet’s class number formulae obviously gives bounds
for the class number and the fundamental unit of a quadratic field.

2. Lemmas. Let x be a real non-principal character modulo D and l¢t
¢> 0. For any positive integer n, we put

a,(n) = Zr{d)d‘
dln
and
7(d)
b,_(n) = e
dln d
Then it is easy to see that b,(n) > 0 for all n.

LEMMA 1. For all n, a(n) < b,(n).

Proof. First, we assume that x(n) # 0. Since x(d) = y(n) x(n/d) for any
divisor d of n, we get

x(n)

a,(n) = ( )d‘ = x(m)b,(n) < b.(n),
nt o \d

because b, (n) > 0.

Next, we assume that y(n) = 0. Let n, be the maximal divisor of n such
that (n,, D) = 1. By using the same way as above, we obtain

_X(no} Ro \ .
a,(n) = .Z waye =25 le( d)d
I(”u) x(d) X(”o]‘
= b.(n) < b, (n),
o o e~ (nfmgy ) S Bul)

because b,(n) > 0 and n/n, = 1. This completes the proof of the lemma.
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LEMMA 2. For x> 1 and any &> 0, we have

3 %W t+e 3 X4 0q)

nEx n<x

Where the O-constant depends only on e.

Proof. By a familiar argument, we have
a.(n) x(n) 1 x(n ){ )}
ba k4T & d i 1 o

ngx n n%x n m&zx!nml+= IIEX n C( * )+

1y x(n)
F)~C(1+F-) 3 T+0(1),

n<x

={(l+¢ )Zx—(n—)+o(fz

n€x n<x

i Tequired.

LemMA 3. For x> 1 and any &> 0, we have

by(n) _ log
Y - L(1+e, x)logx+0( = )+O(l),

n<x

Where the O-constants depend only on e.
Proof. By a familiar argument, we get

5 b b,n) =¥ :1(’:1 g L 1 =y xf’:){l g( )+0(1}}

nsx T nsx msxjnm n<xh

(IOg x) z xl(l:)n ( 2 !;:g)-‘-o( z 11+¢)

nex nEx asx

=L(l+e, X)logx+0(logx 5 %)-%O( 5y lolg::)

n>x =1 n
w Ll x]logx+0(l ff)w(n,

4 Tequired.

3. Proof of the theorem. By Lemmas 1, 2 and 3, we see that for x >

an > 1 and
}'a>(}

2) x(n) L1+, %) logx
—_= lo (0} 0o(1).
L0 STive BFTOT YoM
We Mmay assume that 0 <& < 1. Putting x = DU+9/4 jn (2), we get

o 1) 1L +e, )

&
=3 logD+-
nspirens N 4 {(1+e) og +4logD+O(1)
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if D > D, (¢). It follows from Burgess’s inequality [1] that if D > D, (¢), the?

N+H 1
| ¥ xm) SZ:;‘H
n=N+1

for H> D"*®/% Thus, by partial summation, we get

) _

n>pliteya N

M+ > %Q < %slogD+1.

DllteldecpnsD n D<n

@)

Taking
Dy (e) = max {D, (¢), D,(e)},

our assertion follows immediately from (3) and (4).
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On the Kummer-Mirimanoff congruences
by

TaxkAsH! AGOH (Chiba)

L Introduction. Let p be an odd prime, Z the ring of integers, Z,, the ring of

:1; Tational numbers which are p-integral, B,, the mth Bernoulli number defined

1) = ¥ Bkt
k=0
4d ¢, (v) the Mirimanoff polynomial, ie.,
p—1
e,)= Y "' (neZ).
i=1

\Ye denote by [f(v)]§” the value of d™{f(v)}/dv™ at v =0 for the m-times
€rentiable function f(v) of v.

In 1857 Kummer [7] showed that if v and ¢ are units in Z, such that
+@°—1 =0, then the following congruences hold for t = v, g:

(&) [U,0)]¢~2 =0 (mod p),
.) By [U,(0)1¢ 12" = 0 (mod p),

Where U (v) = 1/(1—te*) and g = (p—3)/2.

th In [5] Hasse gives the proof of this result by using the reciprocity law for
€ power residue symbol (see also the proof of Inkeri [6]).

- Here we should note that (v (1)]§ may be replaced by ¢, (t)ifi > 1 and

ll'ea?’ 1 (mod p) (see Lemma 4_ in § 2). Th_us, in the above congruences we shall

[U,(v)]§ and @;4,(t) without distinction.

abo On the other hand, Mirimanoff [10] made the full observation for the
N ve r;esult and proved that the congruences (K,), m=0, 1, ..., g, hold for

"o :'Wlth t'#0, 1 (mod p) if and only if the following congruences hold for

m=1,2,...,49,

)

@p-1(t) =0 (mod p),
M)

(pm+1(t)¢p—1—m(t)50(m0dp)s m=l,2:---’g-
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