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L. Introduction. In a recent letter Albert Whiteman [3] enclosed a preprint
of a note on block designs in which he introduced a set of matrices whose
Properties mimicked the Gaussian periods of classic cyclotomy. I suggested to
him that the matrices should be examined further. In reply he gave me
Permission to make this examination myself. This paper is the result.

2. Notation and nomenclature. Throughout this paper, capital letters will
b'e used to denote matrices. We consider square matrices of a kind known as
Circulants. A circulant is an n by n matrix of the form

a a, a, Ap—y

[ ao a1 ap-3
M= Q-2 Gp—; Gg Qn—3

a, a, as Ll

The matrix M depends only on its top row, and to save space we write
M =cir(ay, a,, a,, ..., Gy—y).

We number the rows and columns from 0 to n—1 to allow the use of residue
classes modulo n.
If we write
M=(ai,-) (I,j=0, l,....ﬂ—l),
then

&ij = Qj—;

Where we take the subscript modulo n.
We define Z, by

Z, =cir(0, 1,0, ..., 0).

3 ~ Acta Arithmetica LIII. 4
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Then the general circulant
_Cit(@g, Gy, v s Gp—1) = Aol +0,Z, +a,Z3+ ...+ 0, Z7 L.

It follows from this that circulants commute and the product of circulants is
itself a circulant. The matrix Z, and its powers is a matrix paraphrase of the
nth roots of unity

19 C$ sz LS C"_l-
It may be verified that for

11 1 TEE |

1 C . CZ En—l
T= 1 CZ C4 CZ(H—H

| petope-n | e

T 'Z,T=diag(1,{, %, ..., ")
so Z, is diagonalized by T. Consequently the general circulant is also
diagonalized by T,
T~ 'cir(ay, @y, Gy, ... » @n-1) T = diag(Ya;, Yal', ..., Yal" ).
A well-known result on the determinant of a circulant is

n=1n—1

(1) det(cir(ag, @y, @y, ..., @e-1)) = [1 2 a, L™

v=0s=0

where { = exp (2mi/n). This may be proved as follows. Let M be the circulant
and let

D = diag(1, *, %, ..., ("7 D).
Since det(D) = 1, det (M) = det(DM). If we examine the row sums of MD we
see that they are a power of { times
2) ag+a, 0" +a,l"+...+a, L.

Hence (2) is a factor of det(M). Since this is true for v=20, 1,2, ..., n—1,
det (M) is divisible by the product of these n factors. But since det(M) is
a polynomial of the form aj+... it is equal to the product.

From now on we replace n by an odd prime p and confine the elements
ay, 4y, ..., a,—1 to the rational integers.

3. Cyclotomy. Let e be a divisor of p—1 = ef and let g be a primitive root
of p. Let { = exp(2ni/p). Classic cyclotomy is based on e exponential sums
called the Gaussian periods of p. They are defined by

e—1
n= Z Cﬂ"k“'[ (f:O’ 1’ 2’ s ,el_l).
k=0
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If we define the cyclotomic class ¢(r) (r=0, ..., e—1), by that subset

Xgs Xis Xayaiiy Xpoyq

of
1,2,3,...,p—1

for which the index of x; with respect to g is congruent to r (mod e), then we
€an write

n = Z &,
seci)

The special period
f -
Mo = Z g
k=1

is unamb.iglzlqus since the eth powers (mod p) are not dependent on the choice
of the primitive root g. It may be well to note that the product of a member
of class c(i) by a member of class c(j) is a member of c(i+j) where i+j is
taken modulo e.

LemMA 1. The sum of the n’s is —1.

Proof. Since every number from 1 to p—1 has its own index,
e—1 p—1 1 ¢ )
1+ Y= % 0=1r=0.
i=0 r=0 __C
?De of the most important properties of the periods is that the product of any
Wo of them is a linear combination of all of them. More explicitly we have

LEMMA 2. We have

e=1

Niflivx = 2, (K, BNk +0, 1,
h=0

Where the coefficients (k, h) are the so-called c yclotomic numbers. In fact, (k, h) is
humber of times that a number x belonging to a class c (k) is followed by x+ 1,
@ member of class c(h). The number 6, is defined by

1 ifk=0 and f is even,
0,=<1 ifk=¢/2 and f is odd,
0  otherwise.
Subscripts are taken modulo e.
For proof, see Storer [2], p. 25, together with proofs of the identities
(i) = {(j, i) if f is even,
’ (j+e/2,i+ef2) if fis odd,
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e—1

3) Y G.h=r-6.

ji=0
4. The matrices H,. Following Whiteman, we introduce a set of e matrices
Hy,H,H,,...,H.,
which are paraphrases of the Gaussian periods. We define
H, =cir(ay, a;, 85, .-+, Gp—1)

where

L1 if jee(),
%= otherwise.

For example, if we choose
' p=5Se=2,9=2,¢c0)=14,c(1)=2 3,

then
01001 00110
10100 00011
Hy,=(01010{, H,=|10001
00101 11000
10010 01100
THEOREM 1.

f-1
H= Y Z/=Y Z°"", where Z=2,.
jectr) v=0

Proof. Obvious.
Let J be the matrix, all of whose elements are equal to unity.

THEOREM 2.
e—1
E H =J-1I.
r=0
e~1 f-1e-1 2 p—1
Proof. Y H,= Y Y 2" =Y Z'=J-L
r=0 v=0r=0 ji=1
THEOREM 3.

e—1
HH,o= Y (k, ) H,p+0,f1.
h=0
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Proof. Let H, =(a;) and H,,; = (b;) and let C = H,H,,,. Then

p—1 -1 -1
Gj= E afﬂ'bl"] == Z aﬂ!"ibj—m = E a,bj_,-..,.
m:= m=0 t=0

“fe know that C is a circulant. We need to consider only the top row of C.
Since a, =0,
p-1
Coj= Y abj-..

t=1

Most of the terms vanish. In fact, Cy; is the number of times that there exist
tWo numbers x and y whose sum is j (mod p) and xec(r) and yec(r+k). In
Other words, Cy, is the number of solutions (x, y) of the congruence

(4] gxe+r+gye+r+l. Ej(modp]

There are two cases: Case I, j=0(modp), and Case II, j%0(mod p).
Case I subdivides into three subcases.

Case Ia: k=0 and fis even. In this case the congruence (4) becomes
(x—ye=(p—1)2(modp—1) or x—y=f/2(mod}f).
This congruence has f solutions.
Case Ib: k=¢/2 and f is odd. Then we have
x—y = (f+1)/2 (mod f).
This congruence has also f solutions.

Case Ic: All other values of k. The congruence (4) shows that if f is even
then e divides k, which is impossible. When f is odd (4) gives

2(x—y) =f(mod 2).

This is also impossible. Thus Case I implies that Coq = f0,.

. Case II: j#0. Let jec(h+r). Substituting into (4) and dividing both
Sldes b}, gxe-i-r givw

l+g(y—x]e+k = g(m—x}¢+h (rnod p)

This means that, for j > 0, Co; = (k, h) in case jec(h+r). Hence this proves
corem 3, :

THEOREM 4.

Y HH, = (J=D+@I-1)b,.

r=0
Proof. Use Theorems 3 and 2 and (3).
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5. The period polynomial. An important feature of cyclotomy is the period
polynomial, the irreducible monic polynomial which the e periods satisfy. We
use the notation

e—1
D,(x)= [] (x—n)=x*+x*"'+...+b,.
=0

That this polynomial plays a role in the theory of the matrices H, is evident
from the following theorems.

THEOREM 5. The characteristic polynomial of each of the matrices H, is

®(2) = —(A-N) [P ANY.
Proof. The characteristic polynomial of H, is the determinant of the
circulant
det (cir(—4, @y, a;, ... , @5-1))

where

_J1 if rec(k),
&= 0 otherwise.

By (1) this determinant is
Tl (-i+ 3 al) = == ] G=n¥ = —G-N.@Y.

This does not depend on r.

THEOREM 6. The p eigenvalues of each H, are the same and consist of f and
the e periods g, Ny, ... , Ne~1, the eta’s having multiplicity f.

Proof. The result follows directly from Theorem 5.

THEOREM 7. The determinant of H, is f[®,(0)) .

Proof. Set A =0 in Theorem 5.

Formulas for ®,(0) in terms of the standard quadratic forms are known
for certain values of e. We tabulate them for e <5 below.

2.(0)
1
{p— (= 1"} /4 .
((1+3)p—1)/27, @p = P +2Tm?), | = 1 (mod 3)}
(p—1)*—4p(a—1)*}/256 where p = a*+b?, a =1 (mod4)
{848p? (x +5)—p(x® + 10x? + 40x + 80 + 625w (u* — %) — 1250w?}/25000
where 16p = x2 + 50u? 4+ 500% 4 125w?, xw = v* —u*—4uv, x = 1(mod 5).

[V ]

6. Eigenvectors of H,. Corresponding to each of the e+1 distinct
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eigenvalues of H,, given in Theorem 6, we have an eigenvector depending on
one or more free parameters. Let the vector (y,, ¥, ..., ¥,-1) be defined by

(xo, xll e ’xp—l)Hr= [yﬂ‘ yl’ ¢ Syp—l)

Where each y; is a sum of precisely e of the x’s. Then if (xo, X,, ..., X,~1)
1s an eigenvector of H, corresponding to the eigenvalue 1 of H,, the
components x; must satisfy the following system of p linear equations

) yy=ax; (J=0; Loy p—1).

If we choose the eigenvalue f of H,, we have the comparatively simple
result, b

THEOREM 8. Let V be the p-dimensional vector
V=(at, a,...,00) (x##0).
Then V is an eigenvector of H, corresponding to the eigenvalue f of H,.
Proof. The system (5) becomes

v =Jx%;.
One solution is
Xog=X;=X;=...=Xp,; #0

because each y is a sum of e nonzero terms. Hence V is an eigenvector of H,
Corresponding to the eigenvalue f.

~ The eigenvector corresponding to the eigenvalue n (any one of the periods)
1S not so obvious. For p=3, e=2, f=1 we have

o = @, 'f:=w2-

The eigenvector of H, corresponding to 7 is
(1x2, 1%, X,).

The eigenvector of H , corresponding to n is
(*x3, 15, X,).

For p=3549g=2 e=2, f=2, the eigenvector of H, corresponding to n is

(=x3+7nx4, —NX3—NX4, NX3— X4, X3, X,).
The eigenvector of H, is
(x3= (4 Dxy, (4 Dx3+ (+ 1)xg, (1+1)x3—x4, X5, Xa):
7. Symmetry among the H,. We observe that for p=3, e =2,

010 001
Hy=|001| and H,=[100
100 010
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are asymmetric matrices, whereas we see in Section 4 for p=5,g=2,e=2,
H, and H, are symmetric. The question of symmetry is answered by

THEOREM 9. The matrices
Hgy H 500 3 Hizyg
are all symmetric or all asymmetric according as f is even or odd.
Proof. Suppose that f=(p—1)/e is even. Then
—1=p—1=gP~ V2 = gol12 = (4/12)¢ (mod p)

is an eth power residue of p. Hence if rec(k) then p—rec(k).
Let H, = cir(0, a,, a,, ..., ap—1) = {a;;}. Then

a,=0a- (@r=12,...,p-1).
Since H, is a circulant,
O = Qj—j = Bp—j+i = Qi—j = Xj.

Hence H, is symmetric.
Conversely, suppose that H, is symmetric. Then for every ordered pair
(i, j) we have

aj_,'=ai_j or a, =dp—y (k=0,1,2,.-.,p_1).

This implies that —1 is an eth power residue of p. But by Euler’s criterion it
follows that

(=1Y =(=1)*"Ve =] (mod p).

This proves that f'is even. This theorem is a paraphrase of the well-known fact
that the n’s are real if and only if f is even.

8. The discriminant of the H, This matrix is defined as the product
A=4,= ] H—H)

i<j
It is a polynomial in I and J. The simplest case is that of e = 2.
THeEOREM 10. 4, = pI—J.
Proof. Let y(k) be the Legendre symbol mod p. Then
H,—H, = cir(x(o), y 4 0§ SR X(P‘—l))
and
A, = (Hy—H,)* = cir(by, by, ..., by—y)

where

bi='3 1()r(+.
i=0
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Obviously
by=p—1.

If i > 0, the sum b, is one of Jacobsthal’s character sums [1] and equal to —1.
Hence

4, =cir(p—1, =1, —1,..., —=1) = pI —J.
THEOREM 11. Let p=3f+1 and let 4p = 1*+27m?*. Then
Ay = m*p(pI—J).

Proof. For e = 3 the cyclotomic numbers (i, j) can be expressed in terms
of p, I, m (see Storer [2], p. 35). For example,

18(0, 0) = 2p—16+2l,
18(0, 1) =2p—4—1—9m,
18(0, 2) = 2p—4—1+9m,

(6) 18(1, 2) = 2p+2+2I,
(1,00=(2,2)=0(0, 1),
©0,2)=(1,1)=(2,0),

2, 1)=(1,2).-
By Theorem 3 we have '
HoH, =(1,0H,+ (1, DH, + (1, 2)H,,
H,H, =(1,0H,+ (1, )H,+ (1, 2)H,,
H,Hy,=(1,0)H,+ (1, )Hy+ (1, 2)H,,
™) H%=(0,0)H,+ (0, DH, + (0, 2)H, +f1,
H? = (0, 0)H, + (0, )H, + (0, 2)H, +f1,
H% = (0, 0)H,+ (0, )Hy+ (0, 2)H, +f1.

By definition,
J4, = (Hy—H,)(H,—H,)(H,—H,)
= H H}+H,H3+ H,H}— H,H}— H,H}— H,H}.

Using Theorem 3 twice on each of the six terms, multiplying both sides by 18,

?nd using (6) and (7), we can express ./ 4, as a linear combination of the H’s as
Ollows

@®) J4y = m[Ho+H,+H,— (p—1I].
Using Theorem 2 and squaring (8) we obtain

Ay = m*(J—pl)* = m*(p*I—2pJ +pJ) = m*p(pI —J)
Which is the theorem.
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On unit equations with rational coefficients
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B. BRINDZA* (Sydney) and K. GYORY* (Debrecen)

To the memory of Professor V. G. SprindZuk

1. Introduction. Let K be an algebraic number field of degree n with ring of
integers Oy and unit group Ug. Many numbertheoretical problems lead to
equations of the types

(1) ax+by=c in x,yeUy
or more generally .
(2) ax+by=c in x, ye0,\{0} with max {|Ng,o(X)|, INx(»I} <N

where a, b and c are given non-zero elements of K and N > 1 is a given integer.
For surveys on equations (1) and (2) and their applications we refer to [15], [8],
{97, [10], [20], [11], (18], [6] and [12]. Equation (1) is called a unit equation.
For N = 1, equation (2) becomes equation (1). Further, for N > 1, equation (2)
can be reduced to finitely many unit equations. The number of solutions of (1)
can be estimated from above by a bound which depends only on n (cf. Evertse
[3]). Moreover, most of the unit equations have considerably fewer solutions
(cf. Gyory [7] and Evertse, Gyory, Stewart and Tijdeman [5]). These and other
related results will be referred to in more detail at the beginnings of Sections
2 and 3.

The main purpose of the present paper is to considerably refine the results
of [7] and [5] in the important special case when the coefficients a, b, ¢ in (1)
are rational numbers. Furthermore, we shall establish our results for the more
general equation (2) having rational coefficients a, b, c. In this situation (2)
cannot be reduced in general to equations of type (1) with rational coefficients.
It will be enough to deal with the case when, in (1) and (2), @, b and ¢ are
pairwise relatively prime positive integers (cf. Section 2). We shall show
(cf. Section 2, Theorem 1) that for all but finitely many triples (a, b, c)e N* with
coprime a, b, ¢, equation (2) has at most one, so-called trivial, solution.

* Research supported in part by Grant 273 from the Hungarian National Foundation for
Scientific Research.
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