% P. Zarzycki

6. Remarks. Let us note that the factor | +O0(1/log x) in Theorems 1 and 2
can be improved, namely it can be replaced by

1+b,(1/log )+ ... +b,(1/log™ x)+ O (1/log™* ' x)

It would be interesting to prove Theorem 1 by the elementarr methods
from [2]. However, it seems that the elementary approach cannot be used for
Theorems 2 and 3, because for problems of distribution of values of
arithmetical functions in sectorial regions the elementary techniques do not
give satisfactory accuracy.
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ACTA ARITHMETICA
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Sub-bases of pleasant h-bases

by

ErnsT S. SELMER (Bergen)

Given an integral basis
A= \ay, a4z, .. a4, l=a <a<..<a

for a positive integer h, we form all the combinations

k

Y xa, x 20,

i=1 i=1
and ask for the smallest integer N,(4,) which is not represented by such a
combination. The number n,(4,) = N,(4;)—1 is called the h-range of A;. In
this connection, 4, is often denoted as h-basi's‘ ' ‘

A popular interpretation arises if we consider the integers a; as stamp
denominations, and h as the “size of the envelope™. More information on t‘he
postage stamp problem can be found for instance in [4]. A comprehensive
treatment of this problem is contained in th‘e author’s research mon.ogr.aph
[5] (freely available on request). We only give here some more definitions

which will be needed below.
k

A representation n = ) x;a; is called regular if we first use a, as often
i=1

as possible, then a,_, as often as possible, etc. This means to impose the
additional condition

j

th-a"(-aj+l. j=1‘2....,k—l.

i=1
If only such representations are allowed, still restricted to at most h addends,
we speak of the regular h-range gn(Ay). Clearly ivl’,(Ak} P g,,(A,‘? for. all A.,‘ arlld
h. In contrast to n,(A,), the general determination of g, (4,) 18 fairly simple,
see for instance [3]. _ ' N

A given integer may have several representations by a basis 4;. A muuma;‘

representation (not necessarily unique) is one with thf: smallest number o_
addends from the basis. Djawadi [1] called a basis pleasant (German:
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“angenehm”) if one minimal representation of n always coincides with the
(unique) regular representation, for all natural numbers n. In such cases, we
clearly have n,(A4,) = g,(A,) for all h. This equality also holds for certain
non-pleasant bases, which are then denoted as weakly pleasant.

Let 4; = |1, a,,..., 4}, 2<i <k, be a “partial basis” of 4,. Then 4, is
always pleasant, and Djawadi [1] gave the following criterion for pleasant-
ness in general: Let (x) denote the smallest integer > x, and put

i-2 a
(M ap = Yidi—y — z ﬂ}”“;‘ i T “__>-
i=1 di-y

regrlar by 1 2

Let further A;_, be pleasant. Then A4, is pleasant if and only if
i-2

(2) n> ) B
§=1

Djawadi’s proof has been simplified by the author ([5], Ch. X).
If the condition (2) is satisfied for all i =3,4,..., k, then all partial
bases A; are pleasant, and we call A, completely pleasant.
Zbllner [6] showed that

(3) k>4, A, pleasant = |1, a,, a;) pleasant, 3 <i<k.

The condition was weakened to “A4, weakly pleasant” by Kirfel [3].
In particular, a pleasant A, always has a pleasant partial basis 43, and a
pleasant A, is thus completely pleasant. For k > 5, there are pleasant A,

which are not completely pleasant. For k = 5, all such bases were determined
by Djawadi [2]:

4 As=11,2,b,b+1,2b), b=4

(where A, is non-pleasant for b = 4).

For k = 6, the similar bases were characterized by Zllner [6]. On the
average, probably “most™ pleasant bases are completely pleasant.

Even if the complete set of conditions (2), for i =4, 5, ..., k, is not

always necessary for pleasantness of A, there are some cases of necessity.
Djawadi writes (1) as

i-2
©) a;+ Z B a;=1ya-_,,
J=1

where the left-hand side is a regular representation by 4;. If then (2) fails, this
representation has a larger coefficient sum than the non-regular representa-
tion y;a;-,, and A; is then not pleasant by definition. In particular, the
condition (2) for i =k is thus always necessary for pleasantness of A,
(whether A4,_, is pleasant or not).
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We have observed the following trivial but perhaps useful generaliza-
tion: If i <k, and 9,4, < a,, the left-hand side of (5) is also a regular
representation by the full basis A,. Hence, if

(6) <i>ﬂi—1 <aj4y (i <k),

a; -y
the condition (2) is necessary for pleasantness of Ay.

If k>3, and we remove the basis elements as, ay, ..., G-, it follows
from (3) with i =k that the “sub-basis” |1, a,, @} is pleasant if A,“ is
pleasant (or only weakly pleasant by [3]). We can prove the following
generalization:

Tueorem. If k=5, 3<x<k-—2, and the partial bases A;, i=x,
x+1, ..., k, are all pleasant, then

A}‘x] = :lv az, amiay ax! ak:
is also pleasant. If in particular A, is completely pleasant, so is AL’ for all x.

Before proving this, we make. some comments:

(i) We must remove a “block™ a,y, ..., @, of elements in A, up to
a,- . The simplest counterexample is given by the completely pleasant basis
A =!1,2, 3,5, 7). Removing a;, we get the non-pleasant basis |1, 2, 5, 7}.

(i) The condition A; pleasant for all i =x, x+1, ..., k is not always
necessary. For instance, the Djawadi basis (4) leads to A% = 11, 2, b, 2b},
which is pleasant by (2).

(i) As an example where the Theorem fails when A; is not pleasant for
all i =%, x+1, ..., k, consider the following extension of (4):

A6=I|l,2,b‘b+ls2bvaﬁ}| b?4s

which is pleasant if ag > 2b is chosen such that (2) holds for i = 6. However,
A® =11, 2, b, b+1, ag) is not of the form (4), and is consequently not
pleasant since the partial basis A, is not.

To prove the Theorem, it will clearly suffice to use repeated removal of
the next largest element, hence to show that

P |
(?) A}‘k V= :1,&2,..., Ay 2, ak|

is pleasant. For this purpose, we substitute a;_, from (1) with i = k—1 into
(1) with i =k, and get a, expressed by A4,_, as

k-3
(8) A=V Vi-1— B2 a2 — & (B V4B a;
j=1

k-3
=Ja,-,— . Bja; (say).
ji=1
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Using (2) for i =k—1 and i =k, this gives
k=3 = k-3 k—2 k=2
i E ﬁj = Tk (yk-—l_ Z ﬁffk_”)‘_ Z ﬁ:‘t] 2P Z ﬁ&m >0,
i=1 i=1 i=1 i=1
in analogy with (2). However, we do not know if (8) corresponds to the form
(1) for the basis (7), where we now need

k=3 "
9 e =7ya-,— 9, P;a; y=(—-).
j=1

*

regular by Ap 3

Equating the two expressions for a,, we get

k=3 k=3
Ja-2+ Y Biay=ya—+ Y Bja;.
i=1 =1

The left-hand side is a regular representation by the pleasant basis 4,_,, and
thus has a minimal coefficient sum:

K-3 k-3
F+ Z B;<y+ z Bi,

j=1 i=1
k-3 _ k=3

= Bi=i- ) ﬂj>0-
j=1 i=1

This shows that (2) is satisfied for the form (9). Since A4,_, is pleasant, so is
also the basis (7), and the Theorem is proved.
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A simple construction of minimal asymptotic bases
by

Xing-DE Jia (New York, N. Y.) and MeLvyN B. NatHanson (Bronx, N. Y)

1. Introduction. Let N be the set of all nonnegative integers. A subset A
of N is called an asymptotic basis of order h if every sufficiently large integer
can be represented as a sum of h not necessarily distinct elements in 4. An
asymptotic basis A of order h is called minimal if no proper subset of 4 is an
asymptotic basis of order h. St&hr [4] introduced this concept of minimality.
Hirtter [1] showed by a nonconstructive argument that there exist minimal
asymptotic bases. Nathanson [2] constructed the first nontrivial examples of
minimal asymptotic bases of order h = 2. In this paper we give a simple and
explicit construction of minimal asymptotic bases of order h for every h = 2.
In particular, it is proved that if h > 2 and 1/h < a <1, then there exists a
minimal asymptotic basis of order h whose counting function has order of
magnitude x*.

2. Results. Let W be a subset of N. Denote by .#*(W) the set of all
finite, nonempty subsets of W. Let 4(W) be the set of all numbers of the
form ¥ ;. 2/, where F e .7*(W). Note that @ ¢ #*(W), hence 0¢ A(W). For
any real number x, let [x] denote the greatest integer n such that n < x, and
(x> the least integer n such that n > x. If A is a subset of N, let hA denote
the set of all sums of h elements of A. Let A(x) denote the counting function
of A.

THeoreM 1. Let h > 2, and let t = (log(h+1)/log2). Partition N into h
pairwise disjoint subsets W, ..., W,_, such that each set W, contains infinitely
many intervals of t consecutive integers. Then

A = A(Wo}u ven UA(”’;'_.].)
is a minimal asymptotic basis of order h.
The proof uses the following two lemmas of Nathanson [3].

LemMa 1. (a) If W, and W, are disjoint subsets of N, then A(W)NA(W))
=0.
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