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Changes of sign of error terms related to
Fuler’s function and to divisor functions II

by

Y.-F. 5. PETERMANN (Genéve)

1. Introduction. Let f: [1, o] - R. In [6] we define what we mean by the
number of changes of sign of /" in (1, x),-and denote this number by X /(x).
Since the functions we consider there are error terms for summatory functions
of arithmetical functions it is also of interest, when imvestigating their changes
of sign, to ask how many there are on the integers.

We say that f has N changes of sign on the integers in the interval (1, x), if
there are exactly N integers m, 1 < m < x, such that f{m—1) f(m} < 0. This
number N we denote by N(x).

‘We consider the [our error terms

{1 R(x):= ; w(n)—%x{
o 6
@ H(x)-—-nsx -l
2 w1
3 Fi(x)i= g(n)_%x2+_§+€25__),

ngx
o) n*  logx y+loglnm
n e T T

i

4 Fo ()

ngx

where ¢ is Buler's function, ¢(n) denotes the sum of the positive divisors of n, y
is Fuler’s constant and ¢ is Riemann’s zeta function (see Rematk 3 in [6]
concerning the choice of F.,).

In 1967 Frd6s comjectured [1] that

(5a) No(x) = Cx+o(x)  (x—0)
for some positive constant C; in 1985 he proposed [2] the weaker
(3b) Ne(x) = Q(x)  (x-»00).
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In 1951 Erdés and Shapiro [3] proved that

(6) R(x) = @, (xloglogloglogx),

and hence that

(7 Np(x}->o0  (x-—c0).

The only other result in the literature is due to Proschan (1971, [9])
(8} Ng(x) 2 IL(x)+0(1)  (x—o0),

where 1L.(x) is the smallest integer k such that the 4k-fold iterated logarithm of
x in a sufficiently large basis is either smaller than 2 or undefined.
In [6] we prove that

e Xx)=Cx+o(x) (x—o), iff=RorH,
where

2 2
10 z2-l—-——|=1
(10) C 3(1 24) 1.57004. . .,
and that )
(11) Xo(x) = Cx+ofx) (x—o0), ff=F_ orF,,
where

8 15
12 =1 ) =
(12) C 3(1 4n2) 1.65345...

In Sections 2 and 3 of this article we show that
2
(13) N (x) = (mﬂs)loglogx+08(l), for any e > 0,

if f is any one of the four error terms R, H, F_,, F,.

To look at sign changes of a function is to consider its oscillations about
the value zero. In the hope of improving (13) we consider more generally the
oscillations of f about any real value r and seek estimates of N r+(x), where

fn)—r if f=H, F._
14) * ) s » Foys
14 o {f(n)—m it =R, F,,.
The results we obtain in Section 4 can be summarized as follows. Let

3/n2  if f=H, R
15 C = s s Ay
a3 Cs {n2/12 if f=F,,,
and’

N _ fexp(A(logx)**(loglogx)~Y%) if f = H, R,
(16)  g(x) =g x):= {xzwssz : ) iff=F,,,
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where A is a certain positive constant. Then, with an implied constant
independent of r, the estimate '

a7 Nyx) = Qg(x))

is true for all ¥ > C or (non-exclusively) for all ¥ < C. (In the latter case, (17)
would add significantly to the information provided by (13) for the case r = 0.)

Moreover, when f = H or R, and under the assumption of the Riemann
hypothesis, (17) remains true for

(18) g(x):=x"2"t  for any &> 0.
2. F_, and F,. Let

(19) Foix(m):=F_(n—K

and

(20 Fyxaln)i= Fyln)—Kn+L,

where the error terms F_, and F, are as in (3) and (4).
THEOREM 1. Let K < n%/12 and L be any real number. Then

@1 Np_, ) > Cloglogx-+0¢ (1)
and ‘ o
(22) Nr, w8 2 Cloglogx+ Oc £,r.(1),

for any positive constant C smaller than 2/log?2.
‘We will use the relation

3 3 P~

due to Pillai and Chowla [8]. The general idea is to use the proof [5] of
(24) F_{x) = Q_(loglogx)

to exhibit many integers n for which F_,(n) < 0, and then with (23) to find
after each such n a not too distant integer m such that F_,(m) > 0.

We will prove that (21) and (22) are true for some constant C > 0. With
Remark 4 in [5] and straightforward refinements in the proof, one can then
easily see that they are also true for any C < 2/log2 (see [4], pp. 62-63).

We observe that (22) applies to E (u):= F ()—u/2—{(—1)/2, since
1/2 < n%/12, but that (21) does not apply to E_,(u):= F_, (w)—(y+log2n)/2,
since (y+log2m)/2 > =?/12 (see [6], Remark 3).

It follows from (24) that there is a positive constant C such that

(25) Ffl(y)—K < —Cloglogy



324 Y.-F. S. Pétermann

icm

for arbitrarily large integers y. We require a lemma concerning these integers,

Lemma 1. If K < n%/12 and if the integer y satisfies (25) and is sufficiently
large, then there are integers y, and y_ such that

1 /n?
y<y, <2y and F_,(y,)—K >§(%—-K :
2 2y <y. <y and y. satigfies (25)

We first deduce Theorem 1 from Lemma 1. Let yo'satisfy (25), and be
sufficiently large to ensure that the lemma applies to all y > Yo satisfying (25),
We then have at least two changes of sign of F_, on the integers in (y,, ¥8),
two more in (y§, 3), and in general at least 2/ in (y,, y3). Now let x be such
that loglogx > 2loglogy, and define the integer [ by

(26) <<yt
Then .
(27 (I+1)log4 > loglogx—loglog Yoo
so that
loglogx
28 —e e
(28) P> 2log4 '

We have therefore obtained (21) with C = 1/log4. Then (22) for the same C
follows from the known

(29) Fi)—Ky+L=y(F . ()~K)+o()+L

(the best estimate to date of the error-term is due to Recknagel [107), and from

the fact that the y, of the lemma are such that F_i(y;)—K > K > 0, where
1

=2
Ko=22
2(12 K) depends&only on K. m

Proof of Lemma 1. The existence of y, is an easy consequence of (23),
We prove the existence of V.. Let p, denote the kth prime, and let

logp
30) A= T p™  whero a.:= | 82|
( _ % p];gk P W er.c a, [ iog 2]

If y is fixed, define »n by
(31) An > 4y & Au—ll

For simplicity we adopt the convention that in this proof, inequalities
involving y are meant to hold for all sufficiently large y. A similar remark
applies to inequalities involving A, :

The proof of (24) provides an integer m*, 1 < m* < 42, such that
y- 1= A,m*—p, satisfies (25) (see [5], (52)); and Vo2 Ay~p, > A2 > 2y. We
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proceed to verify that y . < y*. By (30} and the prime number theorem we have

2
(32) log A =[1~°§l’—"] T logp ~ THOE™
: p

" log2 | % &r log2 ’
whence
(33) A, = A7)
and by (31)
34 A, < ()T <yt
Consequently,
(35) y-=Am*—p < A2 <y*. =

3. H and R. Let N ;(x) be defined as in Section 1, R and H as in (1) and {2),
and set

(36) Hy(m):= Hn)— K
and
37 Ry(®):= R(n}—Kn.

We proceed to prove
THEOREM 2. If K # 3/m?, we have

(38) Npg(x) 2 Cloglogx+O¢ (1),
and
(39) Np, (x) 2 Cloglogx+ O g(1),

where the positive constant C may be chosen arbitrarily close to and smaller than
2flog?2.

The proof combines the method of Erdds and Shapiro [3] and
a refinement of the method used by Pillai and Chowla in [7] to show
that H(x) = Q{logloglogx). The general idea is basically the same as
in Section 2 but the proof is somewhat more involved. The main reason for this
is that unlike the sequence used in [5] to prove F_,(y) = Q2_(loglogy), the
sequence used in [3] to prove H(y) = Q_{loglogloglogy) is a non-explicit
subsequence of a sequence which also contains the s used to prove
H(y) = @, (loglogloglogy), and might be very sparse (in view of [9]).

We shall prove (38) and (39) (and also Lemma 5 below) only in the case
K < 3/n*, the case K > 3/r” being very similar. The reason why our method
does not apply to K = 3/n? will be clear in view of (53) below.

The result in [7] is in fact much more precise than

" H(x) = Q{logloglogx),

3 — Acla Arithmetica L14
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namely -
(40) H{x+logloglogx)— H(x) = Q_(logloglog x).

We show in Lemma 2 that there are many x after which H decreases rapidly,

LemMA 2. Let f: R* —>R™ be increasing and unbounded. Then there is
a function m; RT - Z% with

(41) m(x) ~ logloglog f(x)  (x—c0),

such that for every sufficiently large x, there is a positive integer. % satisfying
(42) x—X| < f(x)
and
(43) H(x+m(x)—H(x) € —Cm(x),
Jor some positive absolute constant C.
Proof. Let
(44) Pu,p):= ] p (@>uz1).
u<p=yp

For each sufficiently large x, there is an integer m > 1 such that
(45) P(Le) < f(x) < P(L,e™");

by the prime number theorem this implies that

{46) m ~ logloglog f(x) (x— o).

Considgr now the system of congruences

z+1 = 0(P(1,e),
z+2 = 0(P(e, e*),

(47)

We use the method of [7] to produce an integer % satisfying (42) and {43). Let
X, be any positive solution of system (47). Using a classical theorem of
Mertens, we obtain the existence of a positive integer k such that

: 1 1
(48) 11 (1——) <=, if x® 2 e
X<pEx* p 2
This in turn implies, since x, is a solution of {47), -that
+1) 1
(49) @bty 1 .
Xo+t <3 Gkst<m);
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therefore, as m—co,

Z plxo+t) 6 1 6
(30) H(xg+m)—H{xg) = Z‘k_xo_‘;t_—gm+ ol < (E_;t? m+0(1).
So if m is large enough, and x; is any positive solution of (47), we have
(51) H{xy-+m)—H{xy) € —Cm,

for some positive absolute constant C. And since m = m(x) is defined by (45),
we have m— o0 as x — o0, 0 that (51) holds for all sufficiently large x and for
any solution x4, > 0 of (47). We also note that if n runs through Z, then
X, = X+ nP(l, e} runs through the solutions of (47). Hence if x > 0 and x
is the solution of (47) such that xy < x € Xy4+1, then xy4y > 0 and

(52) fx—xyidd < P{L, &) € f(x).
This concludes the proof, if we set xy,. 1 =X. =

Lemma 3. Let K < 3/n*. Then for some positive constant C = Cy and for
every sufficiently large real number x there is an integer ye(x, 2x) satisfying
H,(v) > C.

Proof. This follows easily from [7], (3.10), which implies that

3
(53) Y. Hyln) ~ (;E;mx)x (x—o0). ®
nEx

LemMA 4. Let K be any real number. If H(B) is sufficiently large and if

A:= [ p. then there is an integer m such that
<n

’ A—B<m<A—B and Hy(m) < —1.

Proof. This follows easily from the main result of [3] which implies that
if A:= J[ p and x = 4*, then '

PsB

(54)

b

Y H(4n—B) = —H(B)+0(1)

uniformly in B as B— oo (see [5], Remark 1). =
LEMMa 5. Let K # 3/ If x, is sufficiently large, and if

(55) X, = 18%.., (k=1,...,n),
where

(56) n=o(xy) (X)),
then

(57) . N (e™) = 2n.
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Proof. As announced, we give the proof only in the case K < 3/n%. Some

of the estimates below are valid only for x, large enough; for brevity, we will

not point this out at each occurrence.
Take f(x}=x/3 in Lemma 2; then m ~ loglogiogx as x—oo.

By n applications of Lemma 2 we obtain a sequence of integers xj < xj

< ... < x,_, satisfying

(58) Xof2 € Xbo  Xpoy < 2X,-1 = X,/9

and

(39) Xit1 Z Xp+1/2=9%,>4x; (k=0,...,n-2),
and such that

(60) |H(x)| > C'logloglogx, (k=0,...,n—1)

for some positive constant C’ (x, is the x of (42); x; is either X, or X, +m(x,) of
(43); and we may take for €’ any constant smaller than C/2, where C satisfies
(43)). Because of (60) there is a positive constant M such that

61) He(x)| >M  (k=0,..,n-1).
Now let & (0 € £ <€ 1) be such that

(62) en of the x; satisfy Hglx) < —M,
63) the (1 —¢)n others satisfy H(xp) > M.

The constant M can be chosen sufficiently large to ensure that Lemma 4
applies to B = xj, #f x satisfies (63).
© By Lemma 3, each x; in (62) provides a change of sign of Hy from
~ to + in {x, 2x{). Since 2x;, < Xp41 by (59), and H(1) > 0 for K < 3/n?, the
x; of (62) ensure the existence of 2en changes of sign in (1, 2x;,-) = (1, x,).
Consider now the xj in (63). Let A,:= H p; then
pPSxk

Ay = gtreis g x oo

By Lemma 4 there is an m, such that

(64) A% < my, < A —x,
and

(65) Hy(m) < —1;
because of (64), we have

(66) et +o{1))xf < m, < 23 -i-uu))xic_

By Lemma. 3 again, there is a change of sign of Hy from — to + in (m,, 2m,).
By (59) and (66), 2m, < my since '

2my, € 2300 < Ay — gy S My
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Therefore, the x; in (63) provide us with 2(1—eg}n changes of sign in
(mq, 243_,), that are distinct from those provided by the x; of (62), since
X, < M.

Finally,

243 | = BUHAI-1 o pBEn-: o g
concludes the proof of Lemma 5. m

Proof of Theorem 2. Asin the proof of (21}, we establish (38) for some
C > 0, and leave it to the reader to verify that it is true for any C < 2/log2 by
refining Lemmata 4 and 5 (see [4], p. 72).

Choose a constant M, 0 < M < 1/log18. Let X > e; then sect

(67 n={Mloglog X7,

(68) X = éﬂlogX,

and

(69 X, =18x,-; (k=1,....,n).
Lemma 5 can be applied if X is large enough; we obtain
(70) Ny (X) = 2[Mloglog X],

and (38) is proved for any C < 2/log18 and for K < 3/n°.
To prove (39) we note that the values of x used in the proof of Lemma 5 to
exhibit sign changes of Hy in (1, ¢™)} are such that either

(71) Hyx)>C=>0

by Lemma 3, or

(72) He(x) < —1

by Lemma 4; this together with the familiar [7]
(73) R{x) = xH(x)+ 0(x)

proves (39) for each X and C for which (38) holds. ®

4. Improvernents for many unidentifiable K. Let Hy and F_, x be defined
as in (36) and (19). We proceed to prove the following results concerning their
changes of sign on the integers.

THEOREM 3. If

(74) K <3m? <L,
then
(75) Ny () + Ny, (x) > Cg(x)+ Og,L(1),
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where
(76)  g(x):= exp(C'(log x)*/*(loglog x) /%),

and where C and C' are positive absolute constants.

CorOLLARY. For g as in (76), we have
an Ny (x) = Q{g(x)

for every K < 3/n2 ar every K > 3/n® (or both). For the constant implied by Q in
(77) we may take the C of (75).

TurorReM IRH. If K and L are as in (74), and if the Riemann hypothesis
holds, then (75) and (77) remain true if we replace g by

(78) gH) = X1,
Jor any & > 0.
THECREM 4. If

(79) K <n*/12 < L,
then )
(30) N o) +Np_ () > Cx273P82 4 0g (1),

where C is a positive absolute constant,
CoroLLARY. We have

(81 Ny, xx) = Q(x*727352)

Jor every K < n*/12 or every K > n2/12 (or both). And the constant implied by G
may be taken equal to the C of (80). .

These results can be extended to the functions Ry of (37) and Fy g, of (20)
by using (73) and (29).

Proof of Theorem 3. From [10], (3.2), it follows that
(82) 2 Hy() = (3/7* — K)x +0(x/g(x)),

where g is as in (76) and K is an arbitrary constant. This implies, if K and L are

as in (74), that there are positive constants A,, 4A_, B and M such that
whenever

(83) mz=M,
there are integers n, and n_ satisfying
(84) n. &(m, m+ Bm/g(m)),

{85) n_e(m, m+ Bm/g(m)),

icm
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(806) He(n)> A,
and
87) Hyn)< —A_.

On the other hand by Lemma 2, if x is large enough, we can find an
integer m such that

(88) me (x, x+Bx/g(x))
and
(89) \H(m)| > Clogloglogm > max(|K|+1, L+1),

for some positive constant C.

Now let x be large enough to ensure the existence of m; satisfying
{83), (88) and (89). If H(m,) > 0, a change of sign of H, in the interval
(my, m,+ Bm,/g(m,)) is guaranteed by the existence of n_ satisfying (85) and
(87). If H(m,) < 0, H, changes sign there because of n, as in (84) and (86).
Then if we let N be the larger of n_ and n,, Lernma 2 provides an integer #, in.
(N, N-+BN/g(N)} satisfying (89).

We then proceed with m, as with m,, obtaining another change in sign of
H, or H,, closely followed by an integer m, satisfying (89).

We coniinue until we reach m,, where £ is defined by m, < 2x < m,4,. It is
easy to see that if x is large enough,

glx} |,
(90) > [ﬁ}

the fact that B does not depend on K or L completes the proof of the
theorem. = :

We now prove the corollary. It is clear by (75) that (77) is true for Hy or
H, (or both) if K and L satisfy (74). Now on the one hand, the m; used in the
proof satisfy (89), whence

(1) |H(m)|—»cc  as x—c0.

On the other hand, the constants 4, and A in (86} and (87) may be chosen

arbitrarily close to, but smaller than, 3/n*—K and L—3/r? respectively.
The latter shows that if (77) is true for some K < 3/n? then it is also true

for all K’ e(K, 3/n); that it is also true for all K’ < K is a consequence of (91).

Similarly if (77) is true for some K > 3/n? then it is true for all K > 3/n% =
Theorem 3RH now follows easily from a result obtained by Suryana-

rayana [11] under the assumption of the Riemann hypothesis,

(92) Y Hn) = %x+0(x”2+“) for any ¢ > 0.

nEX
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The proof of Theorem 4 is also very similar to that of Theorem 3. We use
Recknagel’s [10]

2
(93) Z F_,(n) = %x+0(x1°9/332),
and the following remark instead of (88) and (89). If
G4 Co=Tlp (a>0)
pSa

and x,:= nC,, then
@95 F_i(x)~F. (x,—1) = CloglogC,
for some absolute positive constant C and for any positive integer n, provided

that a is large enough. Hence, if B is a positive constant, we can for any large
encugh x find an integer m such that

(96) me(x, x+ Bx273/382
and
o7 [F_ (m)—=c0 as x—co.

Added in proof. [ have recently obtained improvements on this paper’s estimates in On the
distribution of values of an error term related to the Euler funetion, which is to appear in the
Proceedings of the Number theory conference held at Laval University {Québec) on 5-18 July
1987,
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