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on radical extensions of fields and an application
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WiLLiAM YsrLas VELsz (Tucson, Ariz.)

The theorem due to Schinzel to which the title alludes characterizes
when F ((‘/E), F (T/l_r) are F-isomorphic, where x™—a, x™—b are irreducible
over F and charF tm.

In order to state this characterization we need to develop some nota-
tion. First of all we shall make the firm convention throughout this paper

that all extensions are separable, this will obviate the need for stating that
char F tm.

By {,, we shall mean a primitive mth root of unity and
77;,} = C2t+€2_11-
Given F, let N = co if y,F for all 1, otherwise let N = max {t: yyeF}.
Observe that if #,eF then ek for all k <t since 0o = 240,01
Let F* denote the multiplicative group of non-zero elements and F¥ the

multiplicative group of kth powers of F*. We shall write a = b(F*) to mean
that ab™'e F*. We can now state Schinzel's theorem.

TrrorREM A. Let x™ —a, x"—b be irreducible over F. Then F (T/c_l), F (Q/l_n)
are F-isomorphic iff’ either

(i) a = b(F™, for some i prime to m, or

(i) N <o, 2¥*m, —a, —beF? and a= b (2-+n,n"* (F™), for some. i
prime to m.

In his 1975 paper [8], Schinzel characterized when

[Flty, ...,o):F]=n,...m, where o;'eF*.

As a corollary to these studies Schinzel obtained the above result. In a 1982
paper [1], Acosta de Orozco and Vélez studied the lattice of subfields of
F ("\f&) over F, where x"—¢ is irreducible over F, and obtained A as a
corollary. :
Recently [10], by using several elementary results dealing with radical
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extensions we have been able to give a morc direct proof of Schinzels
theorem. In this paper we shall generalize Schinzel’s theorem in the following
fashion. We shall characterize when the two algebras

Fixx"~a), F[x]Ax"—b)

are F-isomorphic, that is, we shall generalize Schinzel's theorem by deleting
the condition on irreducibility.

The generalization, besides being of interest in its own right, has some
immediate applications. Gerst [4], Jacobson and Vélez [6] bave shown that
0%/ a), Q(T/E) are arithmetically equivalent ifl cither (i) ¢ = F*(Q™), (i, m) = 1
or (i) 8|m and a = b 2™2(Q™), (i, m) = 1, where of course x"—a, x"—h arc
irreducible over Q. Jacobson and Vélez then went on to determine when
Q(%), Q(.':l/l—)) had isomorphic adéle rings. By using a result of Iwasawa
(Lemma 7 of [57), Q(%), Q((’/—b) have isomorphic adéle rings iff

Q%/a) ®5.0, = Q(2/b) @0 0,
for all primes p.

However, Jacobson and Vélez showed (Theorem 2.2 of [6]) that the
above tensor product holds for all odd primes p given that Q('Q-‘?A), Q(Q,"’E)
are arithmetically equivalent,

Thus the two fields in question have isomorphic adgle rings iff

0(7/a) @905 = Q(2/b) ®¢ Cs.

However this isomorphism is equivalent to determining when the two
algebras '

QIx(x"—a), @, [x]f(x™~b)

are ,-isomorphic. This was accomplished in [6] but the analysis was very
detailed and used quite a bit of arithmetic information. As the reader can
now see, the generalization of Schinzel’s theorem can now be applied to
answer this question.

A word now about the organization of this paper. In Section 1 we shall
collect together the resuits that we shall need from the theory of radical
extensions. In Section 2 we shall prove the generalization of Schinzels
t%]eorem and in Section 3 we shall apply these results to the study of adéle
rings. '

Finally a word of thanks. It was Professor Peter Roguette who encour-
aged me to find a more direct proof of Schinzel’s theorem {this appears in
[10]) and he also mentioned that a generalization of Schinzel’s theorem was
preferable and more natural to the very detailed analysis that appeared in

[6].
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1. Statement of results on radical extensions. Let K/F be an algebraic
extension. If me K, op(2) = o(x) shall denote the order of aF* in the quotient
group K*/F*. By degp(x) =deg(x) we shall mean the degree of the field
extension F(a)/F, T(K/F) shall denote the torsion subgroup of K*/F* and
T, (K*/F*) the elements of T(K/F) of order a power of p.

ProposimioN 1.1, Let ole)=m=2%n, n odd, ¢ >0 and a =a™

() LoeFW\F iff —acF? iff F((,) = F{e™?. Further, if deg{o™ < 2¢
then { e Flo)\F.

@) If pillm (p¥lm, p*t fm) and (3,¢ F@)\F then p* = degfa™?).

(i) If {,¢F and there exists an element dcF(x} with o(8) =p' and
p Xo(w) then CF,EF(fx),

Proof. For x™—a irreducible, the first part of (i) is part (a) of Theorem
1.8 of [3], however the reducible case is similiar, The second part of (i) is
Lemma 2.2 of [9]. Part (1i) is a special case of Lemma 1.5 of [3]. For part
(i11) if x™—a is irreducible, then this result can be derived from Theorem A of
[3], while for the reducible part we would use Theorem 5.1 of [2].

"Prorosimion 1.2, Let {,¢F and K = F({4).

(i) If N=oo then T(K/F)y= {,F*: for all n>=Z,,.

(i) If N < oo then T,(K/F) = {1 +{ N F*> = Z y.

(i} If p is odd then T,(K/F)= <CFSF*: §pseF(C4)>.

Proof (i) and (ii) are a special case of Theorem A of [3], however a
short. proof can also be found in Lemma 1 of [7]. Part (iii) is a special case
of Corollary 14 of [3].

Notation: Let o(¢) =m = 2°n, n odd. Then set oy =" and o = o
where E, O denote even and odd respectively. Since n and 2° are relatively
prime there are integers x, y for which ax--2°y =1 and o = afaf,.

ne
Ed

2. Proof of the main theorem. It will be convenient to first prove a slight
generalization of A (Theorem 2.2). However, we will begin with the following
lemma.

Lemma 2.1, Let x™"—a, x"--b be irreducible over F and {,eF. Then
F(%}, F (2‘/!;) are F-isomorphic iff u = b'(F™, (i, m) = 1.

Proof From A we have that the two fields are F-isomorphic -iff either
(i) or (ii) hold. Now (ii) states that N < co, 2"**|m, —a, —beF* and

a= l‘)i(2—|-112;\;)""'2 (F™y, (Lm=1.

Since {,eF, —1&F? and -—aeF? implies aeF? contradicting the
irreducibility of x™—a if a is even. Thus (i) cannot hold, so thercfore (i) holds
and we have that a = b (F™), (i, m) = L.
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THEOREM 2.2. Suppose that a, b¢ FP for all p dividing m and let m = 2°n,
n odi.

Then the following statements are equivalent:

(a) There are roots o™ = a, f” = b such that F{a), F (p) are F- isomorphic.

(b) Either (i) a=b'(F™, ({,m) =1 or (i) N <0, 2% ! m, —a, —beF?,
and a= b (21,5 (F")

(c) The algebras F[x}/(x™—a), F[x]/(x"—b) are F-isomorphic.

Proof. It is obvious that (c) implies (a}.

Suppose (a) holds and further, without loss of generality, we may assume
that F(x) = F(B). Let p be odd, then since a¢F” we have that X" is
irreducible for all s. From this it follows that

n = degag = 0(dp) = deg B = o (Bo).

Thus dega =degf = 2" n, f <e I f =e¢ then x"—a, x"~b are irreducible
and we may apply A. Thus we may assume that f < e From 1.1(i) we then
have that {,eF(a)\F, F({,) = F(@™?) = F(§™? and —a, —beF>
Clearly dega = deg(xg) deg{xy). Further, if opg,)(ag) = 2% then by 1.1,
= Ory) (Be) = 271

From the above we see that both «, § satisfy irreducible binomials of
degree 27" 'n over F({,). Thus by 2.1 we have that

azf*ln — (ﬁz.f"ln)i(F(C4)zf“ ln)J (I, -1 n) = 1.

So we have that

@ = @y e F ).

Further y"eF since o™, f"eF. By 1.2 we have that y= y;{,¢c, where
ye F*e T,{F (L)/F), kIn and ceF. Thus we have that

=T e T LY =1, ceF,

and thus
a=am=>hbyrem, (i, 2 'n=1.

Further, y2%eF, so ygeF", thus a=b'c], for some ¢;eF, 50 oy
= fle Lk (i,m =1 for some k. (Re(.dll the notation of Section 1))
If /=1, then F(og) = F(fi) = F({,). However the elements of order 2¢

in T, (F({4)/F)} form a cyclic group, thus a; = B ¢4, (j }, 2) = 1, Then we have
that, with nx+2%y = |,

a=agah =pEAY ey e (=B e 00k and  (jnx+i2%y, 2°m) =1

and by raising the above to the mth power we have condition (b) of the
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theorem. E"l"hus we may assume in the following that f>1,s0 (i, m} =1
If 92°= —c¢?, then a = —b'c"c™. However, —b eF? (as noted in the first
paragraph) and i odd yields that ¢ F? a contradiction (recall that a¢ F? for

all p|m). Thus —y2°¢F2

If N=co then yg =, c; and 33 =(—1¥¢c
and a = blc. )", (i, m)=1.

If N <o, then yg =(1-+{ V¢, and y&° ={{ y(2+n,x)* ' c3*. Thus

CJZ‘ "¢ F and in fact it must be 1 since —y2°¢ F2. Thus, if e < N, then j must
be even, so j=2f and

a=b({ n02+ ?TZN))ze"j' (cr )" =
If ¢ > N then

2°. Thus j must be even

b (2 n,mY cac)™.

2y=1 and a=bQ2+ny™*c", (G, m=1.

It is then easy to check that if j is even then we have condition (i) and if
j is odd we have condition (ii). Thus (a) implies (b).

Finally we want to prove that (b) imphes (c).

If a=hc" (i,m) =1, ceF then it is obvious that the two algebras
F [x]/(x — a), F [x]/(x™—b) are F-1somorp1nc Thus suppose that N < co,
2V m, —a, —be F? and a = b (2+n,y)"? ¢™ Let § denote a fixed root of

x"—b. Since —beF? and b¢F? we have that F({,) = F({,x) = F(f™?), thus
CZNEF(ﬁ)' Now (1 +‘:2N)2 = é'zN(Z'*' ?'I'ZN): 30 €2N+1 iV 2'5‘?721\: EF(ﬁ) Since
24 m, we have that { y,, = {},, for some j. Thus '

BiC2N+1 N 2+’71NC = ﬁi\/ 2+?12NC.'{HCEF()8)

However,
B 2+ e = B 25 ) e = a

is a root of x'"wa, s0 let O£=ﬁiC2N+1../2+ﬂ2NEF(,3).
Since —a is also in F? we have that { v+, /24 #,~ € F(a), thus BeF(x)

and since (i, m) = 1, this implies that F(x) = F(f). So we have two roots o™
=g, f™=b with F(x)=F(f) and

a= Pl J2+n,nc

1f we multiply this equation by %, and let k run from 1 to m we have
that

F((}a) F(CkﬁC2N+1\12+772N) F(L5BY).
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This last equality holds for the following reason. Recall that

Uoner /240, = 2{1+0,0) F((B ™) = F(B™?) = F(L4) = F({,n).
Thus

Cover V2w e F (B, so FUAB Lner 20 m,m) = FIALE).

However,
FB Lone 1 /2 ,n )™ = FIB)™2 (14 L, 0)"?) = F (™)
since we are assuming that 2¥*!|m thus 2¥|m/2 and (1+CZN)2NG F, so

{oven \/Z—EN@F(C& Bl ne \/im:"—ﬂ::\:)»

thus ¢ £ is also in this field, so equality holds.
Let ze Z be such that zi = I {mod m) (recall that (i, m) = 1), then

F{{na) =F (5 8) = F (L5 B),

so the mapping (5o into £ B gives a bijection between the roots of x"—a
and x"—0b such that corresponding fields are equal, thus F[x]fx™—a),
F[x]/(x™—b) are F-isomorphic.

Before proving the main theorem we have to do some preliminary work
and set up some notation.

Given x"—a with distinct roots «y, ..., q,, let & =a, be such that
ol Colx) fori=1,...,m Let o(&) =7, " = and m=rm’. Then ™ = a
= (&)™ = (a')". Thus ae F™, further it is obvious that m' = max !¢: ¢|m and
ae F}.

LemMMA 2.3. Let r =2°n, n odd. Then x"—a' is irreducible over F. Further,
if 2°*Ym then —a'éF?* and x" —a' is irreducible over F.

Proof. Since n is odd, x"—a' is irreducible over F iff &' ¢ F¥, for all p
dividing n. So Jet pln and set y = o"'?. Then y is a root of the binomial x”—¢'
and y¢F since o(y) = p. If @' = ¢” then y = ¢{,. If p*||n then from y = ¢{, we
obtain that o = { "”F However, since pflm we have that C cly = \9/0 is
also a root of x"—a, yet o(’(?fg) < r, contradicting the mmzmahty of the
order of o. Thus 4'¢ F? and x"—a' is irreducible.

Suppose that 2°7'|m and let oy = o I —a’ €F? then \f—a eF. Since
2¢*1m, we have that al,.+1 15 also a root of x™—a. However
(e = d L= /=d'eF, s0 o) <12,

contradicting the minimality of the order of «.
- Thus we can conclude that —a'¢ F2
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However, if deg(a;) <2° then by 1.1{i) we have that —« e ¥?, a conira-
diction. Thus deg (o) = 2 so x"—d' is irreducible over F.

LEmMMa 24. Let G be a torsion abelian group, H a finite subgroup of G
and g G. Let be Hy be such that o(b) < o(hg) for all he H. Then o(b)|o(hg),

for all he H.

Prool Let G, = (H,g>. If G, is a p-group then the assertion is
. k

obvious. Thus let G, = ]_[ Gpp (s pd = L i1 5] and each G, 1s a p-group,
i=1

p prime. Let H =[] H, and g ={g;, ..., g} Then it is obvious that

i=1
Hy=H, gy x... xHp g,.
Further, if b, € H, g; is chosen to have minimal order then in that case it
k
is clear that ﬂ o(b;)|o(kg), for all he H. However, b = (b,, ..., b)e Hg so b

i=1
has minimal order in Hg and o(b)|o(hy) for all he H.

TrEOREM 2.5. With the preceding notation in force we have that

o@|els) and deg(o)ldeg(e), i=1....,m

Proof. To prove the first assertion let

G = T(Fle, (¥F*), H={aF* g=&F")
and apply 24.

Let pf||n, p odd. Since x"—a' is irreducible over F, p’||deg(x). We wish
to show that p°|deg(;), for all i. By the first part of the theorem p* also
divides o(a;), for all i. If {,eF then this implies by 1.1(ii) that p’|deg(x;). So
let us assume that (,¢F.

Let us write o, in the form C,,Cp.(ot’)”(a")d, where (h, p) =1, hp'im, o
=o', o =a" and c(r/pY)+dpF=1. Thus F(a)=F(a"{, @)

If t<s then o', is a root of x*—a, which is irreducible, thus
pfldeg (o). So we may assume that ¢ >s. Then it is clear that (e F( &' J
since ()"~ YeF. Let p*—om; y (@ L ). If j <s this implies that (x' ,)"J
= (x )"JC, JEF(,), 50 (o )“JEF(C, ;) which in turn yields, since j <s, that
\/E eF (C . ). However, F({ e J)/F is abelian, soF(\/_ )/F is also abelian. Since
{,&F thisis a contradiction. Thus we have that j = sand thus p/ = dcgmp, (o'l p,)
by 1.1 (i), so pf|deg(a). 7

Since p was an arbitrary prime divisor of n, this implies that njdeg{s;).

Now let us consider the case of 2. Let us write o; in the form

o = {u, oE 0, where (h, 2) =1, h?|m and nx+2°y =1,
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Thus
Floy) = Fog {pe o 52()-

If t < e then a{, is a root of x**—a, so deg(a)|deg(x,).

If t > e then by 2.3, —a'¢ F* and 2° = deg(x,). Thus we only have to
prove that 2°|deg(ag ().

From the first part of this theorem we have that 2°[o(a). If {4 ¢ F(e)\ ¥

then by 1.1(i1), 2°{deg(o;). Thus we may assume that (e F({, %)\ F.

If r=e+1 then (o Czeﬂjz“’"l = \/:—c?géF and (g {,es ) = — o, s0
0ot {yer 1) = 2°. However, {,eF (sl )\F if —(—a)eF% which is a
contradiction. So 7> e+ 1. Since t—e = 2, we have that F(chCZ,) containg
F{a' {,-.» which in turn contains F({,).

Let 2° = opg (% £,,). Then by 1.1(ii) we have that 2* = degy, oL, 50
= deg (s { ).
If s+1 = e then 2°|deg(x). Thus we may assume that s+ 1 < ¢. Since

(oeg € 2;)25 €F({,), we have that ()" € F ({,, { ,t-s)- However, s < e~ 2,50 we have

that 2/&’ €F ({4, {-..), thus F (*/@}/F is an abelian extension, so F ({,) = F (V)
by 1.1(i), thus ~-a'eF? but this is a contradiction {recall that 2°*"|m implies
that —a' ¢ F?).

We can now prove the imain theorem.

Turorem 2.6, Let m' = max tk: k|m and acF*}, m" = max [k: k|m and
beF*}, m =rm'. Then F[x](x™~a), F[x]/(x"—h) are F-isomorphic iff m'
=m" and there exists a, b'e F with (aY" =a, (Y =b and F[x]{x"—a),

F[x]/(x"—b"Y are F-isomorphic.

Proof. Let a, § denote roots of x™—aqa, xX"—b respectively with minimal
order. Then by 25 deg(x)=min{deg(x), i=1,...,m} and deg(f)
= min deg(f), i=1, ..., m}.

Suppose that F{x]/(x" —a), F[x]/(x™—b) are F-isomorphic. Then clearly
deg(a) = deg(f) = a power of 2 times n. So with o(x) = 2°n we have that
o(p)=2n _

Since the two algebras are F-isomorphic there exists a root f;, of x™—b
with F(x), F(f;) F-isomorphic. Without loss of generality we may assume
that F(x) = F(8).

s Thus deg(x) = deg (). Let o(f) = 27'¢, ¢ odd, where f < f* and n|g, by

Let us first consider the case where 2°**|m. Then by 2.3 we have that

deg(o) = 2°n and {4¢F(@)\ F, so —a'¢ F?, where > = o', This implies that
e f. :

25+1
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Since {, ¢ F(B,)\F (recall that F(x) = F(5,)), we have that 27" = deg(B9.
So 2/'|deg(f) and deg{f)|2'n, so ' < f. Thus f = f and from this we see
that 2/n = deg(f) = deg(x) = 2°n, so f =e.

So we have shown that if 2°7*|m then 2°||o ().

Next let us assume that 2¢*! ¥m. Since the roles of x and f are
interchangeable we may also assume that 2% fm. So 2¢||m, 2/|im and e
= f. Further, since o(f) = 2*n|o(B;) for all i, we have that 2°{lo(8,).

Thus in all cases we have that 2%||o(f).

Let us write fB; in the form

ﬁi = Ck ﬁgCh gh‘ [3%
where k is a power of 2, Al is odd and divides m, (k, I') =1 and if p|h’ then
{,eF. From what we have just shown we have that o({, ff) = 2°.

Let pfiln and p'llo(f), where s <t by 25 If {,eF then by 1.1(ii),
rfldeg (B, and p*||deg(fB;), so s=1t. From this we see that i'|n.

Let us now consider the case where {,¢ F and s <t. Since p*|[(£}), we
see that pf||h. At this point we have to use a little muscle. We have that F ()
= F(B,), where p'||o{(x) and there is an element in F(¢) whose order is pf, s
<t By 1.1(ili) we have that Cp,eF(a) = F(f,.

Let us write {, = {y {5, where {(hy, hy) =1 and hy|n. Thus we see that
P'llhs, and by the preceding paragraph, we have that {, €F{(e«). Thus
{n, Cw Po EF (0) and hy H|n. Further o({, B {4, Cw B5) = 2n and it is a root of
x"~b, Thus if we set ;= B, {, {, then we have that F(a) =F(f; and
o(B) = o(x)=2°n. Let B} =>, then it is clear that a, b'¢F” for all
plr, (@)™ = a, (b)" = b and there are roots o = o, f; = b’ with F(«) = F(B;)-

So by 2.2
Flx)fx"~a}, FIXIAx"—b)
are F-isomorphic. , oy ,
Conversely suppose that there are a, b'e F with (a)" = a, (l?’)” = b, a,
b’ F7 for all p dividing r and F [x]/(x"—a), F[x]/(x"—b) are F ~Jsomorph1c’.
Then either (i) a=>»h¢ with (i, =1 or (i) N <0, NFLy, —a,
~b'eF? and a=bQ+n,y*c, with (., =1 Write m in the form m

= in, m, where (m;, my} =1 and m, is the maximal divisor of m which is
relatively prime to r. Thus any mth reot of unity may be written in the form
g"leZ’ Whm‘e kflml', i—-—" 1, 2.
If (i) then o = fic, s0 {4, {0 = Li, Lk, Bre and thus
F(l, it} = F (L, Ckl Y.

Let zi = 1 (mod #), then F (L, f) = F (5 B) so
F(Ckl Ckz ) = F(Ckza Cil B) = F(Ck2 gil B).
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Hence the correspondence, g, ¢, @ into {,, i, fc gives a one-to-one corre-

spondence between the roots of x™-—a, x"—h respectively such that corre-
sponding roots give the same fields, which implies that

FI/(x"=a),  F[x]Ax"—b)

are F-isomorphic.

In case (ii) we use the same idea as was used in the proof of 2.2, together
with the decomposition of m used above.

On combining 2.2 and 2.6 we have the following:

TreoreM 2.7. The algebras F [x]/(x™—a), F [X]JAx™—b) ure F-isomorphic
iff there exist a', b'e F with ()" = a, (F'Y" = b, m =rm’ such that o', b'¢ F?
for all plr and either (i) @' =V (F)), (i,r) =1 or (i) N <co, 2V Yr, —d
—beF? and a = (b (2+?12N)"'2(F”), where (i,#) = 1.

With such an explicit characterization the following result follows easily.
CoroLLary 2.8. The algebras F[x]/(x™—a), F[x]/{x™—~b) are F-isomor-

phic iff for every prime p dividing m with p||m, F [x)/(x*" — a), F [x]/(x"" —b) are
F-isomorphic.

3. The adéle rings of Q(%}, Q{{’/E}. As pointed out in the introduction,
Q('\"/c_z), Q(%) are arithmetically equivalent (that is they have the same zeta
function) iff either a = b'(mod Q™) or 8|m and a = b’ 2™? (mod Q™), where i
is prime to m in both cases,

If Q(Q/E), Q(Q/i;) are arithmetically equivalent then we can ask when
they have isomorphic adéle rings. This reduces to the question as to when
the two algebras

Qa[x)/(x"—a), Q. [x]/(x"—b)

are Q,-isomorphic. We will now apply the results in Section 2 to answer this
question. _

In the following theorem we shall assume that a is even. If g is odd then
we replace- a by a2™

THEOREM 31 Let x™—a, x™—b be irreducible over Q with a=2a,,
(@,2=1, 0gr<sm (recal the convention about a above), m = 2¢n, t

=2, {(nt,, 2) =1 0<r<e Then Q(\/_ Q(\f have isomorphic adéle
rings i either (i) a = b (mon’") Jor some (i,my=1 or (ii) 8|m and b

= a2"? (mod Q™), for some (i, m) = 1, and either (A) a, = —1 (mod 8) or (B) if

a; = 1(mod 8), then r < e—2 and a,e Q¥ " (that is, a, = | (mod 2+)),
Proof. In case a = b'(mod Q™), then clearly the adéle Tings are isomor-
phic since Q(\/_ T/— are Q-isomorphic. Thus we may assume that
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b' = a2™?(mod Q™). Further, by replacing b by ' (Q(T /b)) ’"/~) since
(i, m) = 1 we may take | = 1 and b=a2"2 So b= a2""2 =q (mod 0", thus
Q2 [XIAx"—a), Q,[x1/(x"—b) are 0 ,-isomorphic.

Hence we have by 2.7 that

(%) Q2 [xJAx"~a), @, [x]/(x"—b)  are Q,-isomorphic iff
(s) 0, [x)/(x* —a), Q5 [x]/(x*" = are Q,-isomorphic.
So we only have to characterize when (%) holds for the case that b

= 2%~} Further, without 1 ity, si i i
= g% . ) oss of generality, since we are dealing with (xx),

we may assume that a = 2% 4;, where 0 <r <e and e3> 3.

If a, =3, 5, 7(mod 8) then a, ¢03. If 4, = —1 (mod 8), then by 2.2, (#=)
holds. Tf a; =3 or 5 (mod 8), then —aéQ2 80 (*x) holds iff there is an j
prime to 2 satisfying b = &' (mod Q2%°), which becomes

2771 2Y gy = (2% a ¥ (mod 02,
50 2°7' 42" = 27 j(mod 2°), thus j = 1+2°7"" ! (mod 2°7"). Thus if we take j

oo g — =r—1 3 1
=142¢7""", then we also need a; =al**"" '(mod 03°). so & "~

= | (mod Q3°) and since a; =3 or 5 (mod §), 2¥ "' # 1 (mod 029,
Thus if a; # 1 (mod 8), then (+x) holds iff a = —1 (mod 8).
Now, let us assume that ¢; = 1 (mod 8), so a; e Q3. Thus define I by

aleQz, < e and [ is maximal with this property. Thus we have that a,
= (¢})*, where if I <e, then ay = +3 (mod 8) (since +da) £03).

Case l.r=e. If [ =g then acQ%°, yet b = a2°~ ' ¢ 0%°, s0 () does not
hoid. Thus we may assume that [/ <e (so a; = +3 {mod 8). Then a
- (222 la,l)zl b - (228"[—1 222_[61,1)21‘

Thus, (*%) holds iff

0, [x]/(xze‘f 0, [x]/(xze_l-gz 2zemt—122e—1a,1)

are (Qy-isomorphic for some choice of &, ;e {+1}. However, since a,
= +3 (mod 8), there cannot exist such an isomorphism by 2.2. So ()
cannot hold in this case.

2e~1 ,
=& 2 a1)7

Case 2 r=c~1. Then b=22""22""4, =22°g, thus we may inter-
change « and b and return to case 1. Thus (x+) cannot hold in this case.
So in the following we may assume that r < e—2.
IF Izr+1, then a=(2@)* ), b=(2""""2(a)* ") and by
choosing j = 1+2°"""! one obtains that
(a0 Y =227 2 (mod 01",
so by 2.6, (%) holds.
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Thus we are left with the, case where r < e—2 and I < .
Since [<r<e—2 [ <e so a = +3(mod 8) and using thls and ap-
plying 2.2 and 2.6 we see that () cannot hold in this case.
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An arithmetic problem on the sums of three squares
by

A. Arenas (Barcelona)

Introduction. As is well known, any positive integer n # 4°(8b+7) can be
expressed as a sum of three integer squares. In general, given a decomposi-
tion of n, n = xZ+xZ+x2, very little is known about the integers x;,. C. F.
Gauss proved that n admits a primitive representation as a sum of three
squares if and only if n£ 0, 4, 7 (mod 8) (cf. [5], Art. 291). Catalan showed
that if n = 3", the three summands could be chosen to be prime to 3 {cf. [3]).

Special representations of integers as a sum of three squares have
recently appeared in connection with the determination of some Stiefel-
Whitney classes (see [117). Let &, be the real bundle over the classifying
space BA, associated to the standard representation of the alternating group
A, into SO,(R). Let w*(¢)eH*(BA,, Z/2Z) = H*(A,, Z/2Z) be its Stiefel-
Whitney class. Since w!(£) =0, w?({,) is the nontrivial element of
H2(A,, Z/2Z) = Z/2Z. 1t is shown in [11] (cf. also [7]), that if n =3 (mod 8)
admits a representation as a sum of three integer squares with (x;, n) =1
and x? < (n+1)/3, then there exists a continuous surjective representation
o: Gal{Q(T)/Q(T)) — 4, of the absolute Galois group of Q(7) such that its
second Stiefel-Whitney class o* w?(£,) is trivial

Given an integer n, we consider in this paper the maximum value I
= I(n) such that n can be written as a sum of three integer squares with !
summands prime to n. We call [(n) the level of n

Obviously, all integers having level 3 satisfy the preceding condition.

The problem of the determination of the level of an integer leads to
compare numbers of representations of this integer by dlffcrent ternary
quadratic forms of a very special type.

Since the number of representation r(n, f) of a given positive integer by
a quadratic form cannot be determined in general, we approximate this
number by the average value r(n, gen f), where gen f stands for the genus of
/. By means of Siegel's Hauptsatz (see [9]) this average value can be
calculated using p-adic densities.

For the forms we are dealing with, we . have that r(n, gen f)

r(n, spn f), where spn f denotes the spinorial genus of f.




