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On the Poincaré series associated to the p-adic points on a curve
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1. Introduction. Let p denote a prime number, Z, the ring of p-adic
integers and Q, the field of p-adic numbers. Let [ (x ¥) denote a p-adic
power series in two variables x and y over Z,. For ne N we define N, to be
the number of elements in the set

{(x, yymod p"| (x, Ne(Z,)* and f(x, y) =0}
We define the following Poincaré series:

=S N,T".

We will prove that P({T) is a rational function and give a set of candidates
for the poles of P(T) for special cases of the singularity of f(x, v}, ndmely
1. if the singularity is analytically irreducible, and
2. if the singularity is non-degenerate with 1espect to - its Newton
diagram.
The concept of non-degeneracy is iniroduced by Varchenko in [227. We
will give its short description in the following paragraph. Let

F O v =3 tipm X" 3",

Suppaose f(0, 0) = 0 and define
S = {(n, me N a(,,,,,,,# 0}.
Then we define Newton's polyhedron as the convex hull of the set

U in, myeN?],

nRiesS

Newton's diagram is defined as the union of all compact faces of that
polyhedron, and we denote it by A(f). Let y be a face of 4(f), and

E a(u,m) X" ym'

(nm) ey

I, for every face 7, there exists no (x, y) €(C;)* (C, being the completion of
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the algebraic closure of @) such that the two partial derivatives

j;:.x (x, y) = and .f;:’.y (x, y) =0

‘then we call the point with coordinates (0, 0) a singularity which is non-
degenerate with respect to its Newton diagram. We prove the following
theorems:

THEOREM 1. Let f (x, y)e Z,[[x, ¥]] converge over Zﬁ. Suppose [ has only
a singularity at (0, 0) and is analytically irreducible. Then P(T) is a rational
Sunction and the absolute values of the poles can only be of the form 1, p~?,

p*~ 1 where o ="', » being a characteristic exponent of the curve.

TureoreM 2. Let f(x, y)e Z,[[x, v]] converge over Z2. Suppose [ has only
a singularity at (0, 0) which is non-degenerare with respect to its Newton
diagram. Then P(T} is rational and the absolute values of the poles can only
be of the form 1, p%, p~! where o =slope(y)—1 if slope(y) <1 and «
=slope(v)™! —1 orherwise. Slope(y) is the .slope of u face y of the Newton
diagram.

An analogous idea was used by Driggs in his thesis [7]: we investigate
the curve f (x, y) in the neighbourhood of the singular point with the use of
Newton-Puiseux series, and in the neighbourhood of a regular point with the
use of the usual Hensel lifting procedure.

We remark that for a general Q -rational variety we can define a power
series P(T) in an analogous way. The question of the rationality of P(T) was
posed by Serre in [19] and answered by Denef [3]. We refer to those authors
for exact definitions in the general case. We can also define an analogous
Poincaré series in the archimedean case. For the results in that direction we
refer to Loeser [14].

2. Some general theorems. Let S be an open compact subset of (Z,)%. Let
us denote by N;(S5) the number of points in § mod p that can be lifted to
a Z -rational point on feZ, [[x, y]].

Lemva 2.1, Ler S <=(Z)* be an open compact region in which
fx, e, [[x,y]] has no singular Z,rational point. Then Pg(T)
=Y N,(S) T is a rational function of T with denominator 1—pT.

The proof of the lemma is essentially Hensel's lifting procedure. We refer
to Serre [19], p. 147.

We now turn our attention to the singularity, We remark that Z:
without a circle neighbourhood around (0, 0) can be covered by compqct
open neighbourhoods. That case is dealt with in the previous lemma. In
order to use the Weierstrass preparation lemma we make the following
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construction: we rewrite [ as

f= A1 4#0)

where the f; are homogeneous polynomials of degree i, We can write f; in the
following form:

Za!xldl

Because this form is not identically zero, we can find a Z,-rational peint
(b, 1) so that

Za;bi == (),

We are perfectly allowed to set x’ = x+by and y’ = y because the number of
(x', ¥ymod p’ equals the number of (x, y)mod p' and if a pair (x', ¥) mod p'
can be lifted then so can the corresponding pair (x, y) mod p, and vice versa.
So we make this change of coordinates and we may assume that 3*
appears with a non-zero coefficient.
We are now going to refer to a few seemingly unrelated lemmas. They
will all be used in our theorem,

Lemma 2.2 (Weierstrass preparation th.). Suppose f(x, yye Q,[[x, y]] is
a power Series converging in a neighbourhood of (0, 0). Then if
0 J’)xzﬂiyi (ay # 0),
i

where d is the first exponent in the -infinite sum with non-zero coefficient, then
we can write

Jix, y) = ulx, Jf}(yd‘l"ld—ﬂx)ydml'*' Ao ()
where u(x, y) converges in a neighbourhood of (0, 0) and u(0, 0) 0 and the
A:{x} comverge in a neighbourhood of 0.
For a proof we refer to [10], p. 404.

Lemma 2.3 {Newton-Puiseux expansion theorem). If f(x, y) is a monic
irreducible polynomial in Q,(x))[v] and if deg, f (x, ¥) = n, then

Fix, 9 =1Tr-3 a o xH).

w i

The product is over the set lw| w" =1} and the @ are in a finite algebraic
extension field k of Q,. If (0,0)=0 then the Puiseux series Za et X"

converges in a nezghbour hood of 0.
Proofs can be found in [1], p. 25 and in [8], p. 118.
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3. A partition of a neighbourheod of (0, 0). In order to control the
rationality of Za x'" we want to have information about the field Q, {x'/"!,

ie. @, extended with an sth root x'". The choice of the nth root will be

explamed later. We will divide a neighbourhood of zero into disjoint classes
so that @, {x'/"} is the same field for all x in each class. Let us fix a p-adic
unit u, with p-adic expansion

Ug xao+a1p+oc2p2-l—.. !

e O P

where o is in {1, 2,..., p—~1] and the other o are in {0, 1,2, ..., p—1},
Let us take a look at all x so that x = up™** with u = uy, mod p" and both n
and k(0 €k < n) fixed. We can choose an nth root of x as follows: we write
u as
=uy(l+z) (zep"Z))
so that :

ul™ = w1422 (zepm o)

If the constant m is chosen large enough, then for (1+2z)* we can choose the
nth root obtained by binomial expansion (which is Q -ratlonal) and for uy”
we choose a fixed nth root. We obtain also (p"*#)'/" = p'(p!/" and take as
nth root of p a fixed number. We collect this information in the following
lemma.

Lemma 3.1. In a class C{ug, k) in a neighbourhood of zero consisting of x
of the form x=up"™ (12 0) so that u=uy, mod p™ we have, with the
convention of raking n-th roots as above, that

Q, {x*" = @, fufl"
is a fixed field.

In the following sections we will always refer to this partitioning of the
neighbourhood of zero.

4. Lemma about the rationality of a Newton-Puiseux series. We turn our
attention to a neighbourhood of zero and count the number of points mod pf
on a series y— 3 a4, x"/". Because we will count only points in Z, mod p' and

the Puiseux series are only defined in a finite algebraic extension of )y WE
will need a lemma which controls the rationality of }_:a xi,

Lemma 4.1. Let C be a elass as described in Secr:on 3 and let x¥" be an
n-th root us described in the previous section. Then the image of the map

C— Q; (algebraic closure of Q) |

x>y ot X
=

is a subset of Q, or has a .finite intersection with Q,.

icm

Poincaré sevies associated to the p-adic poinis on a curee 13

Proof. Suppose the field Q, {g; ', x'/"} is strictly larger than @, {x""}.
Then take as basis of Q,, |, 0’ x”"} over Q, (x'/"! the elements A, = 1, lz,
Agy oiis Ay g = 1). We write the Newton— Pmseux series as follows:

Laol " = ST e ) = ST e, (20, i),
i i

The summation is not identically zero for a j with 2 <j < g, thus there are
only finitely many @, [x'"}-rational values because a non-zero power series
in one variable on a compact set has only finitely many zeros, So we may
suppose that the field Q,{a '} is contained in Q,{x'"}. Take a basis
Ags -ony 4y for @, {x'"} over Q,. Now

m-1

x=up" = p (Y w p)l+prpt (2 €Z,).
r=0
So
m~1
pk]n( Z u, pr)lln(l +pmz)1/n Pl‘
r=0
By putting
(1+pmz)tmp =
and
a; (.l)i :Zngllj thh CUE
J
m—1 in )
(PF( X wr)" =T el with ¢, eQ,
~ r=0 J
we obtain

z{:a‘,wixffn _Z(Zculj (Zeu J)
We see that we obtain

Z Aj p;i(v)

where the p; are power series in the variable v. Either p,(v), ..., p, (v} are
identically zero and in that case all y-values are Q,-rational, or at least one
pi(0)#0, 2<5j< g, and then only finitely many y-values are Q,-rational.

5. Lemmas about the number of elements mod p' on a Newton-Puiseux
series. In the following, let us denote the order function in Q, by ord. We
suppose that e is the ramification index of a. finite-dimensional field
extension k of @, and denote the order function in & by ordk We know that
for rational xeQ,, ordk(x} = ¢ord(x).
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Lemma 5.1, Let Y ;X" be a Puiseux series with first non-zero exponent

Ein. Let C be a cluss whose image under a Puiseux series is Q,-rational. Let x
and x' be in C with ord(x) = ord(x). Then

ord (¥ a; x"—Y a, x*")
i i

= ord (x ~x') — ord {x) + ord, (a;)/e--(é/n} ord (x) + ord (¢/n).

Proof. Let k be the field generated by @, x' and all @', Suppose
the ramification index of k over Q, is e. Write

Ug =0'10+CC1 p'+" . +Oﬂm_lpm~1,
x =uy{l42) p"*E,

By binomial expanding (14 2)%, ze p™ Z, (we suppose that m is large enough
“to allow the binomial expansion), we obtain

in+k

X =ug(l+2)p

ord{14z§f = ord (1 +az).
So
o (x*—x") = ord {at(z— 2') p*"*9?) = ord («)+ord (z —z') +w ord (x)
= ord (&) + ord (x — x}—ord (x} +a ord (x).
Thus

ord, (3 @ X" =Y a; x"I") = ord, (a; (x¥" ~ x"&/m)
i i

= ord, (a;)+ e ord (¢/n) + e ord (x — x')— e ord (x)
+e(é/mord(x).
The lemma follows. =

ProposiTioN 5.2. Let C be a class whose image under a Puiseux series is
Q,-rational. Suppose the first non-zero exponent of the Puiseux series is &/n.
The number of solutions of the congruence

y—3 a;x"" =0 mod pf
j

in the class C with x having prescribed fixed valuation In+k so that

In+k+m<i
is
ps—(m+k+m)+(1—¢In}(!n+k)—f‘ if ém <1,
. P ntkem =4 if én=1 and A <0,
prrintkrm it Ein=1 and Az 0)or ¢m>1,
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with A a constant depending on the first non-zero coefficient and the first ron-
zero exponent of the Puiseux series only.

Proof. Let us count the number of eclements with fixed valuation
mod p'. We know that the (In+k)-th p-adic digit up to the (h-+k-+m—1)-th-
digit are uniquely determined by the definition of the class. The {In+k+ m)-th
p-adic digit up to the (i—1)-th digit can be chosen freely. So there are
p iRkt m choices.

Let us now investigate how the number of y mod p’ is associated with
the number of x mod p. We treat the case ¢/n < 1. The variable y is not
completely determined for a particular choice of an element x mod p! in this
case. Put x = g (1 +2) p** and take the &/n-th power. Because the derivative
to the variable z of (1+2)¥" is not zero for z =0 we can apply Hensels
lemma to guarantes surjectivity on a neighbourhood of 1. By the preceding
lemma we have ptt~mUntR =4 ghoices for ymod p'. Multiplying the number
of choices for x and y together we obtain )

i—(ntk+tm+(1-&min+tk)~ A

p

choices. The other cases may be proved in a similar fashion. w

ProrosiTion 5.3. Let F; be the number of (x, y) mod p! such that:

1. x is in a small neighbourhood of zero, ie. ord(x) =In+k > lon+k
(for 1, = Q).

2. ord(x) = In+k such that In+k+m < i

Then the Poincaré series ) F,T' has possible poles

with absolute value p*™™ ' and p~ if &m <1,

with absolute value p~ ' otherwise.

Proof. Let us consider the most difficult case, namely that the first non-
zero characteristic exponent is &/n < 1. It is clear by condition 2 that to
calculate F; we must count all solutions (x, y) with x having a valuation
In+k satisfying

In+k+m<i.
So
I<ifn—tkin—min and [>1,.

For technical reasons we are going to look at all i = A modn, so i =A+jn
with A a fixed number between 0 and n—~1. Se

l<j+C

where C is a constant which is independent of the summation index in the
series. In the following we use capital letters for constants independent of the
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surmemation index, without making this explicit every time. We define B = C
if C is an integer number and B = [C]+ 1 otherwise. The notation [ ] means
as usual the ‘largest integer equal to or smaller than’. So

I <j+B.
Therefore to determine F, with i = A+jn, we have to look at all x with
valuation In+k such that
b <! <j+B.
The preceding Proposition 5.2 says that for one such | we have

pi‘-(ln"i~k+m] {1 —&/nHIntk)—A

solutions.
So

A+ Jjn
2FumT
7

18
2 (Z p(J.+jn)—(1n+k+m)+(1 - §/n)(1n+k}~m-—A) Tl+jn
i {

where the inner sum is over
lo <l <j+B.

We neglect all constants independent of j and | because they have no effect
on the poles and the rationality to obtain

Z(Z pjn-u:'l) Tl-’jj".
‘ Jod
We neglect 7% and obtain
Z(Z p_'“)(p T)J’n'
il
The inner sum is easily calculated as
(P ey
| _Fp"é——l '

The first summand clearly gives the denominator 1-p"T" with pole of
absolute value p~*, the second summand is more interesting, the denomina-
_tor is essentially 1—p""¢ T* which gives a pole of absolute value p¥"~!, The
proofs of the other cases run along the same lines and are easier. m

ProposITION 54. Let C be a class whose image under a Puiseux series is
Q,-rational. Suppose the first non-zero exponent of the Puiseux series is &fn.
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The number of solutions of the congruence

y—Y a;x"" =0 mod p'
i

in the cluss C with x having prescribed fixed valuation In+k so that

h+k<ig<hh+k-tm

pio @R A gy o
plrlnthEmt A i Ein =1 and A < i—1—(In+k+m),

PP =1 otherwise.

Proof. Let us first count the number of elements with fixed valuation /n
+k mod pl. Because the (In+ k)-th p-adic digit up to the {in+k+m—1)-th
digit are uniquely determined we have only one x with the valuation -+ k.
But, for one x, again as before, y is not completely determined because the
leading non-zero exponent is < 1. Because ord (x— x") is at least /n+ &+ m we
have y determined from the ((&/n)(In+k}+m+ A)-th p-adic digit up to the
(i — 1)-th digit. Thus we have for y in the case é/n < 1 exaclly pi~ @it o~m-4
choices left, If £ =un, so that the first non—zero exponent is 1, then v is
determined by x up to the (fn+k+m-- A— 1)-th digit. This leaves us only free
choices for y if In+-k+m+4 <i—1,ie A <i—1—(In+k-+m). Then we have
piotintktmt A extra choices for y. m

Proposrrion 5.5. Let 8; be the number of {x, y) mod p' such that:

L. x is in a small neighbourhood of zero, ie. ord(x) = In+k > lyn+k (for
Iy & 0, -

2otk <igintk4-m

Then the Poincaré series Y. S; T' has possible poles

i

with absolute value p™* and p" ' if E/n < 1,

with absolute value p~ ' otherwise.

Proof. Let us again consider the most difficult case, namely when the
leading non-zero exponent is &/n < 1. To calculate S,, we must count all
solutions {x, ¥) with x having a valuation In+k satisfying

m+k <igIntk+m,
So by subtracting k and dividing by n, we obtain
[<i/n—kin<Il+min and >,

For technical reasons we are going to sum over all i =4 mod n, 50 i = l+jn
with A a fixed number between 0.and n—1. '

2~ Acta Avithmetien 31.1
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So
l<j+An—kin<

Therefore to count S; with i = Z+4jn, we have to ook at all x with valuation
In+k such that

[+mfn.

Iy <l<j+B<I+C.

This is only non-trivial if C > 0. In that case we define D = B—C if B—( is
an integer number and D = [B—C]+1 otherwise. We define F = B—1 if B
is an integer number and F = [B]+1 otherwise, Then ! satisfies

4D < <j+F.

We remember that by Proposition 5.4 we have to calculate
ZE pj.+jrr"(€/n)(ln+k)— m"«A) Tl+jn
i 1 .

where the inner sum is over all ! satisfying
j+D <

We neglect all constants independent of j and ! because they have no effect
on the poles and obtain

[ <j+F.

Z (ijn-gfl) T}H—jn.
. i
_ We neglect T* and obtain
Y (X STy
j i
The inner sum is easily calculated as
(p™99+ 2 —(p
1—p~#

This gives us clearly the denominator 1—(p"~%) T" with pole of absolute
value p¥"~1. The rest of the theorem follows in a similar fashion. m

-i)U' +F)

LemMa 5.6, Let ) a; x¥" be a Puiseux series. Suppose it maps a class C in
Q,. Then the Poincaré series of y—Y a; x"" associated to the class C in a small
enough neighbourhood {(x, y)| ord(x) > N; and ord{y) > N,} is rational and
has possible poles

with absolute.value p¥"*, p~' and 1 if &/n < 1,

with absolute palue 1 and p~' otherwise.

Proof. We know that the Newton-Puiseux series f(x) = Za X s

contmuous at .x = 0. Take a neighbourhood of y =0 on the y- ax1s of the
form N = {y| ord(y) > N,}. Now f~*(N) is an.open set on the x-axis which
contains zero. We now take a neighbourhood {x| ord(x) > N,} which is
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completely contained in £~ '(N). We compute our Poincaré series associated
to the class C in the neighbourhood {(x. y}| ord(x) > N;andord(y) > N 2.
We apply Propositions 5.3 and 5.5. The analogue of Proposition 5.3 where’
we count the number of (x, y) with ord(x) > i runs along the same lines of
the proof of Proposition 5.3 and is easily seen not to obtain new poles. m

6. A singularity which is non-degenerate with respect to its Newton diagram.
Suppose we have a Newton diagram of the form described in Figure 1.

lpo, Go)

Fig. 1. A part of the Newton polygon of a curve with starting point (p,, ¢o) and end point
Py, q1) of a face y

We use a reasoning which is described in Brieskorn’s book about singular-
ities ([2], p. 635), to obtain information about the singularity. The trick is to
find new coordinates (u, ») so that the singularity is more easily described.
We are going to take a lock at the compact face y. The endpoints of y are as
indicated in the figure: (pg, go) and (py, q;). Let (pg+a, go—b) be the next
lattice point on p. So god.(a, b) =1 and y has equation bp+ag =e The
lattice points on y are (pg+xa, go—xb), x =0, 1, ..., k. Now ged.(a, ) =1

.and consequently we can find natural numbers ¢ and d so that d/c > b/a and

ad—bc = 1. So the line [ with equation dp+cg = f with f = dp0+cqo lies
completely below the Newton diagram (see Figure 2).

Fig. 2. Relative position of the line | and the face y

Let U be the plane with coordinates (u, v) and let 7 be the mapping
n U— C,z,
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which maps (u, ) to (x, ) =@ v", ¥*v*). The jacobian of = is
(ad__bc)(uc-kd—lva'rb—d)-

If x-y is not zero then u>v is not zero either. We calculate the pullback of f,
in the coordinates (u, v): '

fy(n (M, U)) — Z arpqlua‘pwteq pr-i‘.uq_
(rq)ey

S, v)) =" Y apu?* = v ul (Y, i m))
v P4

=v*ul (Z a‘(po A e,y 1) uk)‘
]
We define g(u) as
g(u) = Z a(p0+xa,qo—xb) ux.
%

The singular points (x, ¥) so that x-y does not equal zero on f; correspond
to those (u, v) for which u-v does not equal zero and both the partial
derivatives (v°u/ g(u)), =0 and (v*u’ g(w), = 0. This is equivalent to g(u)
= ¢'(u} = 0. This means that g(u) cannot have roots with multiplicity strictly
larger than 1. We formulate this in a lemma. :

LEMMA 6.1. Let v be a compact face of the Newton diagram and let /, be
its associated polynomial. Then the polynomial g(u) defined in this section has
no roots with multiplicity strictly larger than one if the singularity is non-
degenerate with respect to the Newton polygon.

In the following, let us consider the Newton diagram of a compact face
still in the non-degenerate case.

Let f., be the associated polynomial of the compact face 4. Define the
polynomial f, by writing f,(x, y) = x*y”j:(x, y) such that x ¥ 7, y ,l’ﬁ.

THEOREM 6.2. Let y be a compact face of the Newton diagram with
associated polynomial f,. The Newton expansion of f, has the following Sform;

j: — ”(y_ tx"”’),

whgre the product runs over all t which are roots of g(t") {the polynomial g is
defined in the introduction of this section)

rd . .
Proof: f, has equation Za,,q xPy% It is now understood that (py, go) is
on the y-axis and {p,, ¢,) is on the x-axis. The equation of the line v which

passes t}lrough (pp, qo') and (py, qy) is bp+ag = ¢. We recall the first step of
Newton's approximation algorithm (see [2], p. 494). Consider

f:(x: y) = Z Gy X7 V1.

»a
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The summation is running over all lattice points (p, q) satisfying p+(a/b) g
= ¢'/b. We then substitute y = tx** and obtain

F (x, tx®) = ¥ a,, 11 xe P,
' palsy

Because (p,.q) = (pp—xa, go—ub) (x =0, ..., k), we obtain
2 apth = g™
q .

where g(u) is the same polynomial as before. We know that g(u) does not
have double roots so g(t~?) also has no roots with multiplicity larger than
one. All the roots of f, have the form y = 1o x*® with ¢, a root of g(t~"). The
theorem follows. w

The Newton diagram described in Figure 1 is also the Newton diagram
of [] f”;, where the product is taken over all compact faces y of the Newton
diagram. This is because the fact that if f = 0 and g = 0 are the equations of
two- curves, then we can find the Newton diagram of f-g=0 by tying
together .the Newton diagrams of f = ¢ and g =0 (see Figure 2), thus the
Newton diagram consists of the product of all f,. By following Brieskorn [2],
p. 639, a sketch of proof based on induction is as follows:

1. We note that the monomial x? y? of an endpoint (p, g) of a face of the
tied diagram can be written in a unigue way as a product of a monomial of f
and a monomial of g. ' '

2. Below the composed diagram there are no points of A(f-g) (i.e. of the
Newton diagram of f-g), because 4(f-g) = A(f)+d(g) and A(f) and Alg)
have no points of the composed diagram.

Lemma 6.3. The curve with equation H f; = 0, where the product is over
all compact fuces v has the following property:

1. The Newton-Puiseux series which are solutions of f, = 0 have first non-
zero exponent afb where bja is the slope of y. _

2. Any two solutions of f, =0 differ by the coefficient of x°®.

Proof We use the preceding Lemma 6.1 and Theorem 6.2 and the
information on composing a diagram consisting of different curves f; n

We generalize this to an arbitrary curve,

Lemma 64, Suppose (0, 0) is a singularity of f(x, y) = O which is non-
degenerate with respect to its Newton diagram. The curve with equation
f(x, y) =0 has the following properties as regards the Newton-Puiseux series
which are solutions of f(x, y) = 0:

i '1. Either the first non-zero exponents (i.e. slopes of the Newton diagram)
are. different, or :

2. if they are equal then their associated coefficients are different.
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Proof. We have proved this for the case ] f,. We remark that for the
first (= left above) compact face y, of the Newton diagram, we have by
applying Newton's expansion theorem x, b, different solutions with firsl
exponent a,/b; . The coefficients of these exponents are the roots of g (). We
take the product of all these solutions, say g(x, e, [[x]][y]), and remark
that the Newton diagram of f(x, YWe{x, ¥) is the same as the Newton
diagram of (x? p* H_f;)[f: , With the same coefficients a,,, of the monomials of the
support of the compact faces. The Newton diagram in fact changes as
indicated in Figure 3. =

!

Fig. 3. On the left-hand side the Newton tﬁigram of f{x, y) and on the right-hand side the
Newton diagram of f{x, yyg(x, ¥).

F =P =x—x, glx.=y-x

7. A descripti_on of a singularity in the case of analytic irreducibility. We
recall here a few important notions of the theory of Puiseux series. We refer

}0 [23] for more details, A Puiseux series can be rewritten in the following
orm;

. b
Z 41,,' x1 + b1 xmlf"i +Z Cl;r_’,' x(ml z)/n; +b2 x'"z/("1"2>+ o
i i

—qki vl i
+Zx(mg 1+dinyny ny 1+ngmg/(n1n2...ng)+zci x(mg+i}/n‘
i -
13
Let us define rational numbers called characteristic exponents as follows:
My =Wy /ng, xy =muf(ng Ry, ..., %y = mng ny...n,) with n=n, My ...n, and
{my, n)) =1 for all j.

LE{V[MA 110 f (x, e Q,[[x1] [¥] is monic and irreducible and if'we take
two Puiseux series, say ¥ a0} x*" and ¥ a; @b X", from the Newton- Puiseuwx

. i i
product expansion of f(x, ), then the exponent of the first non-zero term of

2 Gl X" a,0h X is a chargcteristic exponent.
i i .

Proof, Suppos_e the coefficients of the first characteristic exponents are
equal. Thus w,/w, is an m, fz .. My-th Toot of unity, We claim that w,/w, is
. an H, _rzs..;n9=th root of unity. This is because (my, ny) = 1, so there exist
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integers a and b so that an; +bm, = 1. Thus because w;/ew, is an 1y 1,...7,-
th root of unity we infer that w,/w, is an nyny...n,~th root of unity. This
means that

{nty +i)/n {mq+i)ny...n {my+iyn {(mq +ing...
Yagx T TR = Y gy T g T
i i

Suppose that the coefficients at the second characteristic exponent are also
the same, 1e. w,/w, is an m,(ny...n,)-th root of unity. Then we can prove
exactly as above that ,/w, is an n;...n,th root of unity. We can proceed
further by induction. m

8. The rumber of solutions mod p' of a system of Puiseux series. We stress
the point that in this section we are going to calculate the Poincaré series
Y N; T' where N; is the number of solutions mod p of a system of Puiseux
series where in contrast with the previous sections the points (x, ¥) do not
have to be on the locus defined by the system of equations. We are going to
look at the Poincaré series of a system

y= 2,437 =0,
J
y=2byx" =0,
7
y—Lzx" =
7

for x in one class C so that all Puiseux series are Q,-rational. We may
suppose that the first equation has a leading exponent which is equal or
smaller than the leading exponents of the following series.

We may also suppose that the coefficients of the series which begin with
the same characteristic exponent are different and the order of the equations
beginning with the same first characteristic exponent in the system is so that
the p-adic absolute values are ranked from small to large. Then we can
rewrite our system of equations by subtracting the first equation from the
second up to the last fo obtain

y=2.4x" =0,
f
> (a)— by " =0,
7
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We are first going to calenlate N; which is the number of solutions of
y—y a;x" =0 mod p,
i

2l —b) X" =0 mod p,

- We may suppose that the second equation has leading exponent &/n which is
the smallest leading exponent of all Puiseux series in the system and also has
a coefficient a;—b, which is the coefficient with smallest p-adic absolute
value among the Puiseux series with smallest exponent &/n. It is then clear
that in order to calculate the Poincaré series of the system we have, by
making an x-neighbourhood as small as necessary, to calculate the Poincaré
series of the system of modular equations

{a;—bs}x"" =0 mod p!
and

y—2 a;x" = 0 mod p'.
I

- Proposirion 8.1. Let F; be the number of (x, v) mod p* with x in a class G
such that

{ag—bg) x*" = 0 mod pf

with x having a valuation satisfying the following conditions: '
L. x is in a small neighbourhood of zero; ie. ord,(x) = In+k (I, » 0 and
1> 1), .

2 ord,(x) = In4+k such that In+k+m <i.
Then the Poincaré series Y F, T' is rational and

{

if &n <1 there are no poles,
in all other cases the possible poles have absolute value pet,

Proof. Writing a,—b, = d; we see that x is a solution if (e still being
the ramification index of k over Q)

ord p'—(ord, (d))/e < ord x¢"
or

ord p' — 4 < ord x%/";
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equivalently, since ordx =ln+k
i—~A<(&/n)(In+k)

or
i/6‘+B <1
By condition 2
In-+-k+m <i
or
[ <i/n—kin—mjn
or

[ <in+C.

For technical reasons we are going to compute this Poincaré series for i
= A mod &r. So i = A4j(En). The foregoing inequalities combined become jn
+D <! <jé+E. It is clear from this inequality that if the exponent /n < 1,
there is no [ satisfying this inequality if j is very large. For the other cases we
have to calculate the following Poincaré series by Proposition 5.2 of Section
5, case 2 (we neglect A) and case 3:

Z(Z pw,;@n)—!n—b- m) A+ idn
P

where the inner sum is over all [ such that
n+D < <jE+E.

We put F =D if D is an integer number and F = [D]+1 otherwise. We put
G = Eif E is an integer number and G = [E]+1 othe_rwise. So by dropping
all constants which are independent of 4 and ! and T* we have to.calculate.

Y (5 plien =) en = (3 p= iy (p Ty,
F i :
So the inner sum is easily calculated as

(pw N)(j{ P G . (p'" n)(jn +F)

p""-—-l

The first summand gives the denominator 1 —T%" and the sewgd gives the
denominator 1—p~ """ T4 which has as consequence poles with absolute
value p"*™t, Lo

PropostrioN 8.2, Let 8; be the number of (x, y) mod p' with x in a class C
such that

(&~ by x¥" = 0 mod ¢
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with x having a valuation satisfying the following conditions:
1. x is in a small neighbourhood of zero; ord(x) =In+k (I; & 0),
2. in+k <igInt+k+m
Then the Poincaré series has passible poles with absolute value 1.

Prool. We obtain by repeating exactly the first lines of the proof of
Proposition 8.1

E+B <.

By condition 2, [ is also constrained by
Int+k <i<In+k+m,

Therefore
ijé+B <

We consider this for i = A mod &n, ie. i=A+j(¢n). Then the inequality
becomes '

L<ifn—kin <4+ m/n.

jn+C <l <jE+D<I+E.

We put F = C if C is an integer number, F = [C]+1 otherwise; G =D if D
is an integer number, G = [D]+1 otherwise; H = E if E is an integer number,
H =[El+41 otherwise. So the inequality becomes

Mm+Fgl<ji+G<I+H.

From the first two inequalities we see that if n > £ (i.e. £/n < 1) there are no
solutions for /. If & = n, then the solution set for ! is possibly not empty if F
< G and H > 0. By the last inequality [ satisfies also jE+G—H <! and !
<jé+G. So F <€ G—H (otherwise we do not have to sum) and thus by
Proposition 54 (take eg. the second case of that proposition) the sum
is equal to

Z(Z pJ. vl—j(@’n)*ln—k—mﬂ-:l) Tl*‘j({ﬂ).
F
By neglecting all constants which are independent of j, I and T* we obtain

Z(Zpﬂ;n Iﬂ T_,'»,n Z(zp-ln pT,)j'f”

J
where the inner sum runs over all ! satisfying
JEFG—H <l <ji+@G.
The inner sum is easily calculated as
(P—n)(j¢+_6) (p—n)(f§+'G—H~1)
p"~1 '

p "1
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Summing over the first and second summand we obilain the denominator
1—T% If &n>1 we have Lo sum over
[<jé4G I+ H,
so [ satisfies
JE+G—

The number of [ is constant thus we have as denominator again 1 —T" w
We collect the information of Proposition 8.1 and Proposition 8.2 in
Lemma £.3.
Suppose all x are in a class on which all Puiseux series ar¢ rational,

< <jé+G.

LeMma 8.3, Suppose

g3 dpxt =0,
J

_V""Z bj )C'ﬁ" == 0,
J

..........

is a system of Puiseux series. Suppose the smallest beginning exponent which
oceurs in a Puiseux series in the system is &/n. Then the Poincaré series of a
class C assoviated to the system is rational and

if &/n <1 there are no poles,

in all other cases the possible poles have absolute value 1 or p”"‘g !

Proof Combine Proposition 8.1 and Proposition 82. m

9. Intersections of different classes. It is possible that ¢ different classes,
say C(uy, k), ..., C{uy, k) have a non empty intersection mod p’. Suppose g is
a fixed natural number, 0 g <m and that wy =u, =... =u, modp?
Consider the same system of equations as in the previous section. Suppose
that the o classes C(u;, k), 1 £j € « have a Q,-rational image on all Puiseux
series in the system. Let (x, ) be a point such that ord(x) = In+k. Remark
that we do not demand as in Section 8 that (x, y) lies on the locus defined by
the system of equations. We are going to calculate the Poincaré series
Y Nipiieg TR0 We have to compute as in the previous section the
i

Poincaré series of (a;— by x¥" mod p"***¢ If &/n < 1, there is by analogy
with the previous section nothing to count. If é/n =1, then we' obtain
Nippigs g = plothrantinrkrmtd The Poincaré series is

Zp_l‘n+k+q-~(1u+k+m+A) Tln-HH-q_

3
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The denominator is I — 7% so the absolute value of the poles is 1. We collect
the information in the following lemma.

Lemma 9.1, Suppose given a system of PuiseuX series as in the previous
section. Let Cluy, k), ..., Clu, k) be o classes such that wy =u, =... =y,
mod p%, 0< g <m and all Puiseux series have a Q rarional image on each
class. Let Ny, i+, be the number of elements (x, y) mod p***4 satisfying the
system of equations mod pt e where x e C(u;, k) and ord(x) = ln+k. Then
the Poincaré series 3 Niyie, T 519 is rational and has

7

no poles if &/n < 1,
peles with absolute value 1 in all other cases.

10. Proof of the main theorems. Because our proof is very computational
and requires many steps we now explain the subdivision of our reasoning:

1. Suppose we have a plane curve f'(x, y) with a singularity at (0, 0), Z2
minus a very small neighbourhood around (0, 0) is handled by Hensel's
lemma (Lemma 2.1). The denominator is there 1—-pT

2. We now take a look at our neighbourhood of (0, 0). The Weierstrass
preparation lemma (Lemma 2.2) prepares us to make the Newton expansion
(Lemma 2.3}. We may replace our curve f (x, v) with a finite polynomial in y,
because wu(x, y) is a unit in the ring Z,[[x, y]] and consequently the
valuation of u(x, y) is constant on our small neighbourhood, So the poles
and the rationality will not be changed.

3. We make the Newton-Puiseux expansion and divide (Section 3) our
neighbourhood of (0, 0) into disjoint classes to have control over the
rationality of the Puiseux series which are only defined on a finite algebraic
extension of Q,.

4. Let us fix one class C. For this class C we look at all Puiseux series
which have a Q,-rational image on C (Section 4). For all these Puiseux series
we calculate the Poincaré series according to Lemma 5.6. We repeat this for
all classes. If &/n < 1, this gives poles with absolute value p¥*~1, p~tand 1,
and in all other cases with absolute value 1. In the case of an anajytic
irreducible turve we can avoid the case that the first exponent is smaller than
one by interchanging the roles of x and v,

5. Our analysis of a singularity in the case that the singularity is non-
degenerate (Section 6) and the singularity is analytically irreducible (Section
7) tells us that if we have to compute the Poincaré series of a system of
‘equations we have essentially to compute the Poincaré series of the modular
equation (ay—bg)x*". The coefficients a; and b, are different. So &/n is a
leading exponent of a Puiscux series in the product expansien of f(x, y). The
leading exponent {/n is, in the case of analytic irreducibility, a characteristic
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exponent, and in the case of non-degeneracy the multiplicative inverse of a
slope of a face y of the Newton diagram. If in the case of non degeneracy
the equations x = mod p' or y=modp occur in the system of equations,
then the Poincaré series assoctated to these systems are easily sesn not to
give new absolute values of poles.

6. Let us again fix one class €. We have caleulated our Poincaré series
for a number of Puiscux series. We have counted too many points mod ph
So we lake all systems of two Puiseux factors, all systems of three Puiseux
factors, and so on. -Qur Poincaré series becomes the sum of the Poincaré
series according o the preceding point minus the Poincaré series of all
systems of two equations plus the Poincaré series of all systems of three_
equations and so on. This gives poles according o Lemma 8.3 with absolu.te
value #/é —1. The number n/¢ is the inverse of a characteristic exponent in
the case of analytic irreducibility, and the slope of a compact face of the
Newton diagram in the case of a non-degenerate singularity, '

7. Let Cluy, k), C(ts, k), ..., Ciy, k) be o classes. Then their intersec-
tion mod p' is possibly not empty for infinitely many i. By the definition of a
class these iniersections can only occur for those x with a valuation In-+k-+g
={ where ¢ runs from 0 to m—1 (Section 9). So the sum of the separate
Poincaré series attached to the o classes as described in the previous points is
not the Poincaré series of f(x, y) with x in one of those classes. We have to
subtract all Poincaré series of systems of two equations according to Lemlpa
9.1 where in every system of equations we consider all cquations. with
Puiszux series rational on our two classes, then add all Poincaré series of
systems of three equations and so on.

8. We did not take into account the zero solution mod p’. Doing that
gives a denominator 1—T with absolute value 1.
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Upits in parametrized p-adatropic number fields
by

FarLEY Mawyer (Jamaica, NY}

0. Introduction. In [2]-[4] H. Cohn studied fields generated by polyno-
mials which assumed values of powers of 2 at several consecutive integers. It
was felt that these fields might yield independent units parametrically. We
make the following generalization;

Derinimion 1. Let p be a prime. Let f(x) = x"+a,., x" '+ ... +dq.
g eZ, 0 i <n The polynomial, f, is said to be p-adatropic if there exist
n+1 consecutive rational integers, ¢;, such that |f(c)| is a power of p.

From finite differencing the following lemma is known:

Lemma 1. Let f(x} be a monic polynomial of degree n and let xo= R. Lei
W= f(x%+k), k=0,1,...,n Then

(#) (=t

CororLARY 1. Every p-adatropic polynomial has degree greater than or
equal to p.

Proof. Since p divides each term on the left of (), it must also divide
the degree, n.

Tusorem 1. dn a field generated by a p—adatropic polynomial of degree p,
the prime ideal (p) must split completely.

In what follows we will normalize against translation so that the powers
of p ocour with abscissas near 0. Specifically, xo = —n/2 if n is even and x,
= (1-n)/2 otherwise. We will also avoid the symmetry f; ()« +/5(—8)
which gives rise to the same field since these polynomials have the same
ZEros,

It follows from Corollary 1 that there are no linear p-adatropic polyno-
mials. Furthermore, this result dictates that the only p-adatropic quadratic
polynomials are those where p=2. These 2-adatropic polynomials were
studied extensively by H. Cohn [3]. We summarize his results:

Let v = (—1)*2%. The only parametrized family of 2-adatropic guadratic
polynomials is the one given by f(x) = x*+(1—v)x+v. Let f(f) =0 We



