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1. Introduction. The Liouville numbers ¥ ¢ (ge Z, > 2) are formed
k=0
by rapidly converging series. Generally, we consider the gap series

0 oD =3 oz%,
k=0

where ¢, 0 and ¢,e N, and the radius of convergence r is positive. Cijsouw
and Tijdeman [2] proved the transcendence of o (o) for ae @ with 0 < |o <7
under global growth conditions depending only on ¢, and ¢,. Bundschuh and
Wylegala [1] considered the algebraic independence of values of o(z) at
algebraic points. The author [6] gave some further results about the alge-
braic independence of values of o(z) at algebraic points.

Furthermore, Mahler [4] considered the more general gap series

(2) Fola)= ) ft,
k=0

where there are increasing sequences of natural numbers {4} <, and {,}5,

satisfying
D=l St <Ay Sy < .. <l Sy <...
such that
f=0 Gy <k <) but £ #0, f %0 (n=1,2,.),

and the radius of convergence R, is positive. Assuming fieZ (k =1, 2, ..),
Mahler gave a result about the transcendence of values of Fy(c) at algebraic
points.

In this paper we consider the transcendence and the algebraic indepen-
dence of values of certain gap series, which have the form of (2} and algebraic
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coefficients, at algebraic points. In Section 2 we prove a fundamental
theorem about the algebraic independence of values of gap series at algebraic
points. In Section 3 we give some applications of the fundamental theorem.
We establish the transcendence and the algebraic independence of values of
F,(z) at algebraic points, and the algebraic independence of values of o (z)
and its derivatives at algebraic points. In particular, all the results of [1], [2],
[4] and [6] are corollaries of our fundamental theorem.

It is a pleasure to acknowledge my indebtedness to Professor R.
Tijdeman for his helpful suggestions.

2. The Fundamenial Theorem
2.1. Formulation of the Fundamental Theorem. Let P Clzy, ..., z,]. We
1 .
put &(P)= ) deg (P), and denote the length of P, ie. the sum of the

i=1 .
absolute values of the coefficients of P, by L(P), and the height of P, i.e. the
maximum of the absolute values of P, by H(P). For aweQ, if P(z) is its
minimal polynominal, then d(P), L{P), H(P} are called the degres, the length,
the height of «, respectively. We denote them by d(«), L{x) and H(x),
respectively. If o = a'®, o, ..., a® are all the conjugates of a, we put

[¢] = max (1, oV, L ey,

For a, f €0, we have
x4+ f é_erl?ﬂ and Iﬂﬁsi_{llﬂ

For oy, ..., a,c @, the number Me N is called a denominator of ay, ..., o, if
Moy, ..., Mo, are all algebraic integers. We denote the least denominator of
@, ..., % by den(ay,...,e). We- denote the positive constants by
Ny, Cy, C4, ... These constants and the constants in < are all independent
of n.

Let s, teN, = 1. Suppose that

(3) Fz2)= 3 fu2t v=1,2,...,9
k=0
are s power series satisfying the following conditions:
~For any v (1 <v<s),
(i} f;l,kEQ (k == O:r lt 2a .H).

{ii) There exist increasing sequences of natural numbers [4, .12, and

v, =
e .

{.u'v,n_ n=1 Sﬂ-tisfying

Omlv,l gﬂv.k <‘1v,2<#v.2 <. <1v.n€nu'v.n<*” .
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such that

j;',k =0 ()uv,u <k < ’1\1.n+1)» but .f;,n‘,‘ﬂ #* 0: j;':)*v,n-i-l ¥ 0 (T? = 1, 2, )

(iii) The radius of convergence R, of series F, is positive. We put

Dn = [Q(.fl,ﬂs '--afl,u],"ﬁ --'a_/_;.Os ""f;'-ﬂs,n): Q]:
A, = max m,

£
OSkSny,
1€v&y

Mn = dﬁn(fi,o: "*1.]‘1.‘11'”: " 'afu,ﬂ; ---aj;.ps',,)b
and for any v (1 < v < s} put

.uv.k )

Pylz)= 3, fan",
:;A‘ &

) oy k™ Ak

pv,k (Z) = Z fv,h#-).v'k.zh = Pv,k(z)/zzv'k (k = 17 2: )
h=1{ .

Then we have

' -7 . o
(4) F@)= Y Pa@ =3 pu@z™ (1<v<s).
k=1 k=1
FunDAMENTAL THEOREM. Suppose that series (3) satisfy

(5) lim (max u,,+logd,+logM,)D,/ min A, ,,; =0,

Ao [ Svss 1€vEs

and that a,, ..., 0,0 with 0 <|oy| <... <[] < min R,. If there exists an

1€vEs
increasing sequence of natural numbers 1k, = {ko(ay, ..., 0)}iz( such that
(6) P la)#0 (n=1,2,. 5v=1,..., su= 1, ..., 1),

and for any nonempty subset J of the set & = {(v, (1 <v<s, 1< /.'té 1
there exists (vo, po) = (Vo (), o (T))e T satisfying ‘
g Bm 3 (P, 1Py, (gl = 1,
nr o (v uhed R
then F (a1 €v<s, 1 <p<t) are algebraically independent.
Remark, Our proof also vields the more refined assertion: Let & be a

. nonempty subset of . If for any nonempty subset 7 of .#* there exists

(Vo po) = (vo(F), po(F)) €7 salisfying (7), then F,(z,) (v, p) .9} are alge-
braically independent. '

2.2. A criterion of algebraic independence. For Pe Z[z(, ..., z/], we put
AP =2DL(P). o
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With any (6, ..., 8)e C' we associate an order function of ue N (see [3] Limma 2. Ry, 2 R, (I Sv<s, LS p<).
Proofl, If 0 <|f] < R,, then
O(u}f);,...,@,)=Sup10gJP(91,...,9,)J“1, ; By
sl )l 1B < Z LAl moax (Jat, ], ).
where the supremum is taken over all Pe Z[zy, ..., z] such that =2y

Since |a,/. |l < R,, the lemma follows.
Lemma 3. If (5) holds, then

The following properties are obvious: lim (max p,,+log 4,+logM,) D,/ min 4, ,, = 0.

0@ 0,,....0)< 0@ 8y, ..., 0, @) for (0, ..., 0)eC" and peC. nrren 1Evss fsvss

20 0,,....,0) <0 B, ...,0) for u,veN, u<o. : X

3 O@uo| 6y, ...,0) =00 8,,...,0)+0] 0y, ...,0) for u,veN. D, <D

LeMma 1. Suppose that @ = (0, ..., 8.} = C has the following propert) L T
For any subset T=18,,,...,0,} <© consisting of | (1 <I< L) element A, < Irgfisluvn Cy " Ay,
there exist | infinite sequences of complex numbers

- MU fy p
fﬁ ﬁ-—: - tavn(T}Jn 1 évé” M"<C%Ev£a 'Mn:
the lemma holds. ,

Suppose that the sequence {k,}%, satisfies (6). We put

PBy,....,0)#0 and AP)<u.

Proof. Since we have

such thu
UJ limﬂv,rt:Huv i v H I>O( )(V=1,~-:I)a

- k=1 k- 1
: = 2 Pl = 2, Pyylary),
(11) Z fgv.n—g_u\.J ~ max |9\1,ﬂ_6ﬂ‘,! (n - OO), V o Z " # kgl i
v 15vsI o w
(iii) There exists a sequence of natural numbers [u,}72, = {u,(T)} 72 | wit : Coun=Foa@)—Pyn= 3 Pl div,k =¥ P
U, —+ 0 as n— oo satisfying k=k,
max |8, ,—0, | <exp{—0{w) 0,4 .., O4)) (2 ng(T)). m=12.;v=1 . 55 u=1..1.
1svs] . .
' Lemma 4. If (5) holds, then for sufficiently large n,
Then 04, ..., 0, are algebraically lndependent g
Proof. See [7] |q-7v,u,ni < va.kn (a,u)l < ‘,Pv,ﬂ,ni (1 TVRS, 1< Hs t)"
23. Auxiliary lemmas. Let o, ...,4c0 with 0 <t <... <]« Proof. Since My ‘pyi,(a,) is & nonzero algebraic integer, we have
< min R,. We put ‘Norm (Mkn"pv,kn(‘z#})l >1
1<vss :
% ) therefore
- (8 Fo )= srla )™ (1gv<s; 1<, : A o n B
® 202 L pa)s (Tevssilsuso o Pus ) oy 00, ) |
and denote the radius of convergence by ﬁ\,‘ . We put (=12, v="1L.,su=1..,1. |
D, = [O(pplo) IS, 1S pugt, 1< " .Q], Taking ¢ such that .
A, = max Ip, (e, : ' |0£r! <g< 1quR"’
Lsvsy £vE
1545 _ by Lemma 2 we have
= den(p,,( Syss. l<€<p<e 1<k <n) va,n.(OC,uN < thv’"
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for sufficiently large n. Since 0 < o~ '|z,| < I, we get

(10) |3 poale) o
K=n

< Y (ol <o )
k=un
By Lemma 3, noticing lim 4,,/4, .1 =0, we obtain

H%0

(Tgvgs, Isu<gy).

1"‘ n Av n I oy n
lim (o~ Moo ) T Ml T (M A,) ) =0,

hence from (9) and (10), we have

| Y Pl <CilPufn)l (ISv<s L<u<),
k=ky+1

for sufficiently large n, where 0 < C3 < 1. Therefore the lemma follows.

LeMMA 5. If ac O, then
o] 3 (max (den (), [a)) ™.

Proof See [5], §1.2.
Lemma 6, For ue N and sufficiently large n,

o(ul ¢1,1.m ®1,2,n: ARRE] @1,t,n> LR cp.s.l,ns ¢s,2,m BN 453,2.11)

@( max ,u\,!k"_l+logx{kn_1+long]:_1)ﬁk"_1 'logu.

Y

Proof. Denoting m = st, we suppose that

- Ny )
P(le---a-‘m = Z Z pl "‘:nT

iy =0 =0

with p,_; eZ, deg, (P) =N, and that

APy=2L(P) S u.
We have

(11) Py=N,+...+N, <logu, LP)<u.

Suppose that
o == P(¢1,1,n: ¢1,2,m rrey djl,t,m ERRE (ps,i,m ¢s,2.m rery ¢s,r,n) ?é 0'
We have
d{a) < Dy -y,

max A -1

1<ves Lo
den(a) <€ (C="7° Mk,,~1)m’,

o Bwg- 1

[l <€ LP)- (b, 1) €355, o,

icm
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where 4, Cs > 1. Hence by Lemma 5 and (11) we get
~logla| € (max py, -1 +log 4, ~1tlogM, _)D, _, logu.

1Svsy

Therefore the lemma is proved.

24. Proof of the Fundamental Theorem It is enough to verify the
conditions of Lemma 1 for

O = {Fx) (1<v<s, 1<)

Put
= (1<v<s, 1<u<).

Let T be any nonempty subset of @, and the set of sufﬁxal tuples (v, y) of T
be 7. By (7), there exist an infinite subsequence ke biey = ke ()52, of

tkyine s and a tuple (vo. po)e. 7 such that
'P"vkt #N = O(JP\'O k[ ( F‘D)i) (?’l - OQ)

for (v, wye 7 \(vy, tg). By Lemma 4 we get

[lpv.u.i,,' IP\-O ol U (n - (IJ)
kl -1
for (v, whe T \(vy, io). Taking 0,,,=0,,,(T)= Z P,i(x,) for any
(v, e 7, condition (ii) of Lemma 1 is verified. Furthermore from (6) and by

Lemma 4 condition {i) of Lemma 1 is also verified.
In order te verify condition (iif) of Lemma 1, we put

B = Ba(T) = (max p, _1+logAkl -1+long, -0 Dy, - min Ay

1€vss 1€vLs

and

= u,(T) = [exp(1/</B.)]

By Lemma 3, u,— o (n— o), From Lemma 6, noticing property 1° of

Section 2.2, we get
(12) Oy, @y, (v, e 7))

1
—==( max Hok, -n1‘|’10gAk, —1+108Mk, —1)Dh1 -1-

\/[J'” 1svss

From (10), we have

min A

(13} ‘ vouoll <C60 fn<C1$v-<.s

V.k;"
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where 0 < Cg < 1. By Lemma 3, we have

lim —F{max Huy -1 +1ogAk k1+logM,¢l -1 Dk, -1/ 121113 Avk,
UL 1€y 1svss

lim /B, = 0.

oo
Hence frorﬁ (12) and {13), noticing log C; < 0, we deduce that
¥ogaiad €XD(— O] s, (v, e 7))
for sufficiently large n. Therefore condition (iii) of Lemma 1 is verified. The
Fundamental Theorem is proved.
3. Applications

3.1. Transcendence. For series (2) we suppose that all the coefficients
he0. We put

DSIO) = [Q(fﬂa '=f Q]
AP = max{ £, 1, ..., m),

MSlm = deﬂ (AfD! ey f;y)s

and

#x
Pilz)= 3, fd",

B= 2y
R A
PRGEEDY fh+:¢hzh (k=1,2,..).
h=0
Then we have
=Y P =Y plo)z™
k=1 k=1

In the Fundamental Theorem taking s =t =1, we deduce the following
THeOREM 3.1. Suppose that series (2} has algebraic coefficients and satis-

fies .
(14) im (p,+log AP +log MY DY /A L. =0

and that aeQ with 0 < ju| < RD Then Fo(oc)eQ if and only if there exists a
constant N = N (a) such that
P (=0 (k=N

Remark 1. If all fieZ, then D® = M® =1, 49 < ¢, and the

icm

fies (14), and that o, ...,
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condition (1_4) becomes
lim (/25 1) = 0
N oy
Hence Theorem 3.1 implies the result of Mahler [4].

Remark 2. if 4, =y, (n=1,2,..), then series (2) becomes series (1).
Hence Theorem 3.1 implies the result of Cijsouw and Tijdeman [2]. Inverse-
ly, noticing Lemma 3 and applying the theorem of [2] to the serics

- A,
Folr) =3 b, )2 ™,
we deduce Theorem 3.1.

3.Z. Algebraic independence.

THEOREM 3.2. Suppose that series (2) has algebraic coefficients and satis-
a,eQ with 0 <|ay| <... <|a| < Rq. If there exists
an increasing sequence of natural numbers (k1% = {k{ay, ..., ¢)} 2, such
that

(15) Pk"(ay);éo n=1,2,..;

(16) log (n=ng),  or (1~ o)

=0 (flk")_

(lgsu<rgi),

then Fo(aty), ..., Folay) are algebraically independent.

.Proof. In the Fundamental Theorem we put s=1. Tt is enough to
verify condition (7). For any v (2< 1<t} and g <+, since |a,| < e, from
(16) we obtain
J.k"

Pyl g

Py, (o) |y, ()]
Hence (7) is verified and the theorem is proved. _
Remark 1. Taking A, =, (n=1, 2,...) in series (2), we deduce the
theorem of [1] from Theorem 3.2
Remark 2. Put

3
Bl

= ¥ pl)2* u=1,...,0.

k=1
Ifp)=01<pu<ge) for ks#k, (n=1,2,..), then (15) and (16) imply
that the radii of convergence of series (17) are equal. This fact suggests us the
following

" TueoreM 3.2, If condition (16) of Theorem 3.2 is replaced by

an Fui2)



304 Zhu Yaochen im“

(16a) the radii of convergence of series (17) are equal and finite,

then Fol(aq), ..., Folw) are algebraically independent.

Proof. As above it is enough to verify condition (7). Let R, > 0 be the
radius of convergence of F u{(z). For any 7 2<t< 1) we take @, 0 such
that

Imr— 1|

(18) Ro <@, <R
for
and
- Jot.|
(19) Ry <gy <01
|ar—1|

By Lemma 2, |x,| < Ro < R,. Hence from (18) we have
(20) ' loy| < Jta] <. < Joty—s] < 01 < R

From (20), for sufficiently large n,

(21) [Py, ()] < (o1 Jot,d (e <1).

From (19), there exists an infinite subsequence Ik,
{k, = such that

(22) Py, ()] 2 (07 " foc)
From (21) and (22), noticing (19}, we get
1P, @l o, o o, 02l 4] *i,
n <(2 ;x) <(2 t~1) =0 H— o0
1By, G oy ol e

for p <. Thus we obtain (7), and the theorem follows.

)

lkin

3.3. Further results about the algebraic independence.
TuroreM 3.3. Suppose that series (3) satisfy (5) and

{23) don =41, +0(1)  (v=1,2,...,3),
and that ., ..., 4,cQ with 0 < | <... < |y < min R,. If there exists an
1€vss

increasing sequence of natural mumbers [k,} % satisfying

Pola)#0 (n=1,2,..5v=1,..,8 p=1,...,1,

and

(24) Ipv,icn (Og_u)l = O(Ip\:,k"(mu)l) (” -)co) (T AN 'ES 1: ey _I”),
Do, (22)

(25) log|" <0 (n2ng) or =olhy) (ow)  (4<1),
pl.k"(a:) f

then Folo,) 1 €v<s, 1 < <) are algebraically independent.
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Proof. We verify condition (7). For any pu (1 € u < 1), from (23) and
{24) we obtain

(26} 1Py (@)l = 0 (1P, (@))  (n— )
for v > v. For any 7> 1, from (23) and (25) we get
JPsk (au)i |psk {‘:‘#)l |rx I Al’k”
(27) g — (J—) -0 —
Py @ b @l (n= o)

for < 1. From (26) and {27) we deduce that
[Py g, ()l < [Pay, (o)l <. <P, (0]
‘<JP1.k,,(fxz)] ‘<|P2,kn(“zJ|_<--- '<fps.kn(ﬂ2)|

<Py (0)] <[P, (0}l <. <[Py, ()],

where the symbol f(n) <g(n) means that f(n)/g(n) — 0 (n — oa). Thus (7) is
verified. The proof is complete.

CoROLLARY. Suppose that series (1) satisfies

hm (e, +loga,+logm,)d,/e,.1 =0,

where d, =[Q(co, ..., ¢,): 0], a, = max(m, e m), m, = den(ecq, ..., ¢,),
and that wy, .., 6 €0 with O <oyl <... <|u| <r, then o¥(x,) (0< v
Ls—1,1 < u<t) are algebraically independent.

Remark 1. If s =1, then (25) becomes {16}, hence Theorem 3.3 implies
Theorem 3.2.

Remark 2. Similar to Theorem 3,2/, condition (25) of Theorem 3.3 may
be replaced by the condition

(25a) The radii of convergence of series (B) are equal and finite.
TreorEM 3.4. Suppose that series (3) satisfy (5) and
(28) Avn~Ai, (H—o0) (v=1,2,...,9
and that oy, ...,0,e0, 0<|oy| <...<|e) < min R,. If there exists an

1€vRy
increasing sequence of natural numbers (k1% = k(o ..., 2)) % satisfying

P £0 (n=1,2...:v=1, . .9,
and :
pv.kn (Ocv_)

PTJ (yr)

ol

(29)  log

<0 (mzn). or =o0(iy) o=y (v<a),

then P,(a)) (1 v <s) are algebraically independent.
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- Proof. From (28) and (29) we get
IPv,kn (av)l =0 (IPr ky, (az)‘)

for v < 1. Therefore we deduce the theorem from the remark of the funda-
mental theorem.
Remark. Condition (29) may be replaced by the condition

(n— o)

(29a) The radii of convergence of the series

= Z pv,k(av)zlv'k .(V :‘I, -..,IS)
k=1 ) )

are equal and finite.
Tueorem 3.5. Suppose that series (3) satisfy (5) and

¥

(30) : S Ain ™ Jom

I=1

1<v<s)

< oy < min R,. If there exists an

A &vLs

and that a, ..., 0, Q with 0 <|uy| <.

increasing sequence of natural numbers 1k,, 12y = {ky(ay, - at)} %y such that
P la)#0 (=12 . ;v=1..,s5 p=1,...,1),

and if the radn of convergence of ser:es 8 satisfy

Gy 0<Rv1- —R‘,‘,—R\,<oo =1 .8

then P(z,) (1 <v<s, 1 Su<t) are algebraically independent.
“‘Proof. As above we verify condition (7). Let 7 be any nonempty subset

of &=/, ,u)(1<v<s 1<,u<t) We put ’
vg =max{y (v, pe T},

. Mo =max (. (vo, WeT}.

We prove that there exists an infinite subsequence {k, )= = fk‘ (7N, of
{k,32, such that .

(2 Pug, ()] =

fOI' (V, ,Ll) Gﬂ-\(“o: Ju-())-,
Take 03, g4, g5, satisfying

O(Prgi, () (n— o0)

lot 1l . -
(33) %Rm <o <R,,
. ‘ f‘O

(34) R

icm
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(35) . 05 < min Rv.
- 11<V0
By Lemma 2, |« <R,, -ﬁﬁvo- Hence from (33) we have

(36) ol < 05 < Ry
for u < pg. From (36), for sufficiently large n,

) g
(37 Py, (] <€ (05 o) "

for p<up,. By (34), there exists an infinite

= 1k, (T ) ner of | {k,} = | such that

subsequence {k; };%

- )'v "
(38) 1Py, )l = (@3 o).

From (37) and (38), noticing (34), we obtain

(39) P, (@) = 0(1Pygs, (@) (= )
for pt < ptp. Furthermore, from (35), for sufficiently large n,

'1v, "
(40) P, ()] < (05 o)™

< t. Noticing (30) and g5 |«,,| < 1, from (38) and (40)

(n— o)

for v <vp and 1 €
we deduce that

@ Pos, @] = 0(1Pugu, (4)l) (1= c0)

for v <vy. By (39) and (41) we obtain (32). Thus the theorem is proved.

Remark. Ifs=1and i, =pu, (n=1, 2, ..), then we deduce the results
of [6] from Theorem 3.5.
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Diagonalizable indefinite integral quadratic forms
by

DownaLp G. James™ (University Park, Penn.)

1. Introdection. Let L be a Z-lattice on an indefinite regular quadratic
O-space V, of finite dimension n 2 3, with associated symmetric bilinear form
[ VxV— Q. Assume, for convenience, that (L, L) = Z, namely the scale of
Lis Z. Let x4, ..., x, be a Z-basis for L and put d = dL = det f{x;, x;), the
discriminant of the lattice L. We study a Hasse principle for diagonalization,
that is, we investigate the set @ of discriminants with the property that all
indefinite lattices with discriminant in &, which diagonalize locally at all
primes, also diagonalize globally over Z. Since all lattices diagonalize locally
at the odd primes (see O’Meara [5]), the local condition is only significant
for the prime 2. A result of J. Milnor states that all odd lattices L with dL
=="4 1 have an orthogonal basis (see Serre [6] or Wall [7]). Thus +1e 2. It
is also shown in James [3] that +2ge¢ < for all primes g = 3 mod 4, but
241¢ 9. We prove here the following

THeorEM. Let p=1mod4, p=5Smod8, g=3modd and g

= 3 mod 8 be primes with Legendre symbols (ﬂ) = (P—) = —1. Then +tde%
P r.

jor the following values of d:
1,2,4,q,2q. g% 24%, 2q9¢', 2, pq, 2pa, 2pp’, 207, 2p'q.

For each of the discriminants 4 considered in the above theorem, except
d =4, the local condition that L, diagonalizes is equivalent to the global
condition that L is an odd lattice, namely the set | f(x, x)| xe L} contains at
least one odd number. An exact determination of % appears very difficult. In
fact we will exhibit de % with d containing arbitrarily many prime factors
(sec Proposition 2). .

Let i = i(L) = i(V) be the Witt index of V. Then (i) denotes the set of
discriminants of lattices: L on spaces V with Witt index at least / which
diagonalize over Z whenever the localization L, diagonalizes. It is also useful
to introduce the stable version % (co) of discriminants where dLe % {c0)
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