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Replacing p—1 in this theorem by p+k {for any fixed non-zero k), the
same proof goes through. . ‘

Now combining the theorem of Erdds and Wagstaff (with p_+k m.placc
of p—1) with Lemma 2, we obtain the assertion of Theorem 4 immediately.
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On multiples of certain real sequences
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J. A, Haigur (London)

Several years ago Professor Erdds suggested to me the following prob-

lem:
I 4, <4d;<... is a sequence of real numbers such that
iminf N™* 3 1> 0Ois it true that, for any & > 0 the inequalities |1 —j,| < &
1,EN

have an infinite number of solutions in i, j, k?

If the 4, are integers the condition reduces to 4] and the question has
a positive answer, by a well-known theorem of Davenport and Erdés ([37,
Thm. 5, Ch. V). I was not able to solve this problem without a further
condition on the sequence. However, it then became possible to weaken the
“liminf” condition to “limsup™:

Tueorem 1. If A4, <4, < ...is any sequence of real numbers such that

(a) AfA; is irrational, i # |,

(b) imsupN™* ¥ 150

2,EN
then, for any e >0 the inequalities |A,—jl| <& have an infinite number of
solutions in I, j, k.

Here we have a situation which is quite different from the integer case.
Besicovitch constructed a sequence with positive upper asymptotic density no
terms of which divides any other ([3], Thm. 4, Ch. V).

Condition (a) arises from the fact that integral multiples of an irrational
number are uniformly distributed modulo 1. This implies (Lemma 1) that the

- sels

0K x—nlfy<efly, O, n=1,2,..}
are almost independent.

[ noticed that this simple lemma makes it possible to prove the
following result;

Trrorem 2. If A; < A, < ... is any sequence of real numbers such that, for
some £ > 0,

limsupy™ ! U [4,, Ay +e] [0, y] >0
n=1
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then for any & > O and any sequence A, A, ... of intervals of length & the set
X of x such that

Aoxéd, (mod 1), n=1,2,..

is at most denumerable.
Note that the condition on A, is satisfied if, for some & > Q,
limsupN™! ¥ 1>0.
I EN

J. P. Kahane and Y. Amice proved [4], [1] (independenily) that if 1, is a
sequence of positive integers with positive upper asymptotic density and 4 is
any interval, then the set X of x such that

Axéd, n=1,2, ...

dyri—An>e, n=1,2,... and

is finite.
On the other hand, if 4,,; > (1+¢)4,, for some constant ¢ > 0, it is not
hatd to show that X is uncountable.

Notation. If 4, B = R we shall write A+B = {a+b: ac A, beB} and if
ieR, A= {la: ae A}.

We shall drop brackets on singletons, so that A may mean {i}. |4
denotes the Lebesgue measure of A.

Lemwma 1. For any o, B, 7, 6, & £ >0, such that aff is irrational, we have
leZ + [y, p+&] N BZ+[6, 3+L1 N[0, ¥1i = yel/af+o(y).

We show
loZ + [y, y+e] N BZ+[6, 6+{1N [0, vl < yel/ap+o(y)

since we may apply this inequality to complements.
Then we have

B~ eZ +Ty, y+el 0 BZ+[8, 8+{1 N[0, y]|
= [/BZ+[0, 5/B1 A Z+(E—/B+10, /B N L~ 3/B, =6
=affZ+[0, ¢/B1NZ+ ([ —y/B+I0, {1 [0, v/B1+o(y)
<eff card (wf/BZ ~ [0, y/B1 Z+(E—y)/F+[0, {/])
= yel/B* a+o(y).
Lemma 2. If A < R,'h'msupy“‘|Ar\ [0, ¥l > 0, u, is any sequence of

positive numbers such that w/u; is irrational i #j and Y. 1/u, = oo, then
=1

An ) e Z+[0, 6] # .
n=1
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Preoof of Lemma 2. This follows from the fact that

10, y1\ G'l mZ+10. €]l = o(y)

n=

which follows from Lemma 1 and any of the standard quasi-independence
arguments, a slight modification of the Borel Cantelli lemma or the lemma of
Paley and Zygmund will suffice.

Proof of Theorem 1. If, for all £ > 0, 4;,, — 4, <& for infinitely many
i, there is nothing to prove.

Otherwise, there is a § > 0 such that 4,,,—A,>édfor all n=1, 2, ...
So, for all £e]0, &7,

limsupy™*| U A,+[0, 6] N[0, p]| = elimsupy™ ¥ 1> 0.
n=1 A<y
Then, noting that

oy

Z 1/4q, = 0o,
n=1
Lemma 2 gives, for any N > 0,
UNjuzn.p] +[O, 8/2] M U ‘4’an+[01 8/2] -'yé @.
nx> 1

n=

Proof of Theorem 2. In the case where the A, are integers A,(x+ Z)
+Z=2A,x+Z so that X = X+2Z.

In this case X is not necessarily periodic modulo 1. However we can
assume without loss of generality that X consists of positive numbers.

We assume X is uncountable and derive a contradiction.

Let ¢ =1+68/2. Then there is a keZ such that [¢* o*™']n X is
uncountable. So there exists a sequence p,e[e", ¢*"'] M X such that u/u, is
irrational, i s and Ly, nZ+d, =@, n, r=1,2,...

Without loss of generality 4, may be closed, so let o,&]0, 17 be such
that

(o, a,+3]+2Z =Z+4,.
Then for any r, n
Aty N Z [0y, 2, +5] = @,
A 3V bty Z 4 Taty/ thy, (0 + )/ 11, ] = B,
Ol mZ¥lee™, @+d)e =0
and so

A‘rﬁ'arQMk m 1/#,,Z+[0, 59_,(_1/2] = @
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which gives
U b= 0~ +[—d07 14, 0] | 1, Z+10, 807 /41 = ©.
r=1 n=1

If =0 r=1,2 ... the contradiction is established by Lemma 2. A
slight modification of the argument will give the general case, remembering
that «, is bounded.
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1. In [1], pp. 36-37, ErdSs posed the following questions. (We use a
slightly different notation and denote the number of distinct prime divisors of
an integer # by w(n).) “Let G(k) be a graph of k vertices x,. ..., x. Let
ay, ..., @ by any set of k distinct integers. Put

o (G (k) = mine (] (@ +a)

where the factor a;+a; occurs if x; and x; are joined by an edge and the
minimum is extended over all choices of distinct integers ay, ..., ¢, Tt is
probably hopeless to determine w (G (k)) except for very simple graphs, but
perhaps one can get conditions on the class of graphs for which w (G (k))
— oo, One conjecture which just occurs to me states: There is a g(r) — oo as
r— oo so that if G(k) has a chromatic number 2 r then w(G (k) =g (). A
stronger conjecture: If G(k) has more than kr edges then (G (k) = g(r).
Perhaps this is too optimistic”.

We shall show that the latter conjecture is incorrect indeed, but that
Theorem 1 implies

o(] [(« +aj)) »logr as  r—

under the additional assumption that w(a, ... &) is bounded. Furthermore, it
follows from Theorem 2 that if G (k) has more than k¥?*r edges or if G (k)
contains a complete bipartite subgraph of type (r, 2) then w (GK) > logr as
r— op. Here » denotes the Vinogradov symbol. Similar results will also be
proved for the products of differences of integers. OQur results are applications
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