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Let now g,(c?) # 0 for je§, where S is a set of cardinality ¢; +1. We
have for je S

(=" ),

hence by the inductive assumption f;(y) has at least as many terms as
k

(J,_é,,)um-,);"’v ie. by Lemma 5 and by (32) at least H {c;+1) terms. It
(=2
k
follows that f{x} has at least []({c;+1) terms, but this is exactly by
f=1

Lemma 5 the number of terms of (x—&)"
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ACTA ARITHMETICA
XLIX(1987)

Perfect powers in products of integers from
a block of consecutive integers

by

T. N. SHorey (Bombay)

To Professor P. Erdds on his 735th birthday

1. Erdds and Selfridge [5] confirmed an old conjecture by proving that
the product of two or more consecutive positive integers is never a power.
We consider a more general guestion. For an integer v > 1, we define P(v} to
be the greatest prime factor of v and we write P(I) = 1. Let m> 0 and k 2 2
be integers. Let d,, ..., d, with t> 2 be distinct integers in the interval
[1,k]. For integers 1> 2, y >0 and b >0 with P(b) <k, we consider the
equation

(N (m+dy)...(m+d) = by

For /22, let v, be a real number satisfying 0 <y, <1 If x>1 and k*
< m< k', then equation (1) implies that P(m-+d;) < k for 1 i< 1 and hence

t <o lk+m(k).
See Erdds and Turk [6], Lemma 2.1. For m > k', we have
TreoREM 1. Let ¢ >0 and 0 <u < 1. Suppose that equation (1) with
2 123, m>k, t=zvk
is satisfied. Then the inequalities
3 . 1 B >1(1+ 21—-34u
e nEr L te T a1

imply that k is bounded by an effectively computable-number depending only on &.

We observe that (3) with an optimal choice of u is somewhat stronger
than

| .
V;?‘vi(l‘i'l_—l‘).

We apply Theorem 1 together with Lemma 6 of [9] to derive
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CoroLrLary 1. Eguation (1) with (2) and

) >1O+ 42— 8147
) A S YT I VY6 T T

implies rhat k is bounded by an effectively computable absolute constant.
This is an improvement of Theorem 1 of [9] where we showed that
equation (1), with

1 1 ‘
¥ z
Iz4, m>k, F?2(1+[“2+6)k

or
=3, m>k, me(itlogk) k**), 12 Ck

for some effectively computable positive number C < 1, implies that & is
bounded by an effectively computable number depending only on & If [ = 3,
we see that Corollary & is a considerable improvement of the result men-
tioned above. The improvement depends on the method of Roth [8] as
elaborated in Halberstam and Roth [7] on the difference between consecu-
tive Hree integers. If | exceeds a sufficiently large effectively computable
number C,, it is shown in [9] that (4) can be replaced by

vk = k7YY k) + 2.

The proof of this resull depends on the theory of hnear forms in logarithms
and the value of C; turns out to be very large. Further, in view of this result,
we remark that Corollary 1, in fact, improves on earlier results of [97] only for
[ £ C,. The proofs of Theorem 1 and Corollary 1 also depend on the above
mentioned result for [ sufficiently large together with a theorem of Baker [1]
on the approximations of certain algebraic numbers by rationals.

i =2 we prove

TheorEm 2. Let &> 0. Equation (1) with

log log_li

I=2 2 =k—(1—¢
(5) , m>k* t (1—e)k oz k

implies that k is bounded by an effectively computable number depending only
on &.

This is an improvement of Theorem 2 of [9] where we assumed that
logloglogk

logk
Theorem 2 answers a question of Erdds [4], p. 88. The proof of Theorem 2

depends on a theorem of Baker [2] on the integer solutions of a hyper-
elliptic equation together with elementary arguments of Erdds [3] and [4].

t 2 k—(l—g)k
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For earlier resuits on equation (1), see Erdds and Selfridge [5]. For a given k,
it follows from Theorem 2 of [10] and a theorem of Baker [2] that equation
(1) with I = 3 and y > 1 implies that max{m, y, I) is bounded by an effective-
ly computable number depending only on k. Also, by Baker [2], equation (1)
with { =2 and 12 3 imphes that max(m, y) is bounded by an effectively
computable number depending only on k.

I am thankful to R. Balasubramanian and the referee for their comments
on this paper.

2. In this section, we shail prove Theorem 1. Let 0 <& < 1. Suppose
that equation (1) with (2) and (3} is satisfied. Then, by Lemma 6 of [9], we
may assume that [ is bounded by an effectively computable number depend-
ing only on & Let >3 be fixed. Let & =¢/500/°). We assume that
exceeds a sufficiently large effectively computable number depending only on
I and ¢,. Denote by ¢;, cs, -.., ¢¢ effectively computable positive numbers
depending only on I and ¢,. We put

T == (I—i—%)vfl <2, T, =071=-DfI-1), ,=U421-1)

and.
13 =tf(21—1), 1,=2-=1)/I-1), f___kl—t,?ﬁal-
Notice that

g vt gy

FYTESTINE

21y {1—13)14 =

since ! = 3. Further observe that
(1—13—8)(ta—81) > (L—13) 14—, (1 +1,)
and 7, < 5/2, since = 3. Therefore
(6 (1—1y—6) (T4 —81) > 2—11 —46E;.
Let N be the least positive integer such that
7 e+ At 2.

Notice that N is bounded by an effectively computable number depending
only on ! and &,.
We see from equation (1) that

(®) m+d =axl, 1Kist,
where a; and x; are positive integers satisfying

9 Pla) <k, (x. [] .p) =1.

psk
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Observe that ay, ..., g, are distinct, since m > k" Put § = {4y, ..., . For
every prime p <k, we choose an f(p)eS such that p does not appear to a
higher power in the factorisation of any other element of §. Denote by S, the
subset of S obtained by deleting from S all f (p) with p < k. For a given p<k
and an integer ¢ > 1, observe that there are at most [k/p*] multiples of p*’
in §,. Then

Tl @< 11 R PR

wesy psk
(This fundamental argument is due to Erdds [4], Lemma 3.} Hence

n C.‘Egkk, lSd;P—R("\).

ey
Consequently there exists a subset §; of §; such that IS, = ¢  k with ¢,
- =1g,/16 and
(10) a; < k5, weS;.
Now we see from (8). (2) and (10) that x; > T and hence, by (9), x; > k with
a;€8,. Further we prove

, . I-z
LeMua 1. There exists a subser S; of S, such that [S3l = ok “1

and

X >‘klvr175“
whenever a;€S;.

Proof of Lemma 1. We may assume that m < k*, otherwise the
lemma follows from (8) and (10). Denote by §; the subset of 5, such that x;
is prime whenever a;eS,. If x; is composite, we see from (9) that x; > k2
Therefore we may assume that |S,] 2 ¢, k/2. By prime number theory, there
exists a subset S5 of S, such that ss:=|Ssf = ¢, k/4 and

(11) X = oyhklogk, aels.

By permuting d,. ..., d,, we may assume that a,, ..., a,; are elements of 55
and

(12) Xy <x2 <...<x55.

For distinct integers i and j with 1 < i, j < s5, we see from (8) and (11) that
0 < g xi—a;xi| <k<nx

where 7 is the constant appearing in Lemma | of Halberstam and Roth [7].
For 1 <1 <355, we consider the inequalities

K (=) < 4l

Now we see from (10) and Lemma 2 of Halberstam and Roth [7] that there
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exists pp, with T <, < k' such that

X

— 24713
g X lk

! Z Cy x;
where gty = 1. Procseding inductively, we find integers 1 =p, <y, <...
< g < §5 such that g, <(f—1)k" for 2<j< R with R = [csk’ °*] and
(13)

Put

F2 SRk :
Xy ZCaXg kU 2SR

X, ,—
Hj 1

b= [RIVF1], 0<r <N,

and, for simplicity, we write X, =x, . By (12) and (13), observe that

T
Xo=Xo, 2o fX2,, 1<r<N.
In particular, we have
X, zefX;: . 1<r<N,

which, together with (7), implies that

(14 X, =ef*
Now we see from (14), (6) and (12) that
X B T < <R,

This completes the proof of Lemma I.

Proof of Theorem 1. Let 0 <¢ < I. Suppose that equation (1) with
(2y and (3) is satistied. Then, as already observed in the beginning of this
section, we may assume that [ is bounded by an effectively computable
number depending only on e Let [ 2 3 be fixed. Put £, = /{500 P). Denote
by cg, €5, ¢,o and ¢, effectively computable positive numbers depending
only on { and ¢,. We may assume that k = ¢g with ¢y sufficiently large and
we shall arrive at a contradiction. '

Put s, = |S;|. By permuting the suffixes of d, ..., d,, there is no loss of
generality in assuming that ay, ..., ag, are elements of §5 and a; <a, <...

<a,,. By (10) and ¢ < 2,

s3—1 &
Y Iog( +1)€, 2logk.
j=1

J
4
Now we apply inequality s3 2 ¢ k'™ of Lemma 1 to conclude that there
exists u with 1 € u < s; such that

a,.,\ _cqlogk
i 1 < 9 .
(15) log (Tﬂ ) EED!
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By (8) and (15), we obtain

(“wl)m_ *u
a‘lu x,u:+1

Now we are going to apply a theorem of Baker [1] to obtain a lower
bound for the left hand side of inequality (16). In the notation of this

theorem, we put a=la,,,, b=la, m=1 and n=1I Observe that
1< p, <L By (15), we see that

2k

<

(16) 0#

TR
Ay X+t

[« 3

—b 2eqlogk
a<b<a and (a )< Co 108

b )~ P!
which, together with (10) and (2v,—1) > Lf({—1), implies that
13 (leglogh)2k2 7T 5 g BT DU
Further

2 (a+b) < APk < kT
Therefore » is bounded by

®' o= L+ (14 12, D2y — 1)L

Notice that »' <! and ¢™"' < 8/2'a,,,. Hence we apply the above mentioned
theorem of Baker to conclude that the left hand side of (16) exceeds

(1n ’ (Cro@u+y X q1) 70
Combining (16) and (17), we obtain
x4 < ek
Now we apply Lemma 1 to conclude that
(18) (2—1y—Se)(I—3) < 1 +e,.
By (3) and (17),

2—34+u s &
9g —Seym 2y o
(19) 2= =38) 2 —— (”101)
and
-1 g
20 s i (125,
(20) § 2[——3+u( 201)

By (18), (19) and (20), we see that & < 40¢,! which is a contradiction. This
completes the proof of Thecrem 1.

Proof of Corollary 1. Suppose that equaiion (1) with {2) and (4) is
satisfied. In view of Lemma 6 of [9], we may assume that ! is bounded by an
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effectively computable absolute constant. Let { > 3 be fixed. Now we apply
Theorem 1 with u=4/(2/—1} and

AP-81+7 2 215
20— 1)(2F—51+4) (21-3) 20— D(2I-3)2E—351+4)
to complete the proof of Corollary 1. '

2% =

3. Proof of Theorem 2. Let 0 <& < 1/4. Suppose that equation (1) with
(5) is satisfied. We assume that ¢,, is a sufficiently large number depending
only on & Put ¢;5=c},. We may assume that k >c,5. By (1) with | =2,

(21) m+d, = A, X}, 1<gi<rt,
where 4; and X, are positive integers such that P(A;) < k and 4, is square free.
Further A,, ..., 4, are distinct, since m > k* Put S = {4,, ..., 4,]. Observe
that

Ay A M g (4k).

PEk

Therefore there exists a subset §, of §; such that |S-{ > ¢k/2 and
(22) ‘ Ai S ’\ (10g k)l A(e,ll)’ Ax‘ =] S-;.

Here we have used that the product of v distinct elements of S, is greater
than or equal to v!. Further we see from (5), (21) and (22} that

(23) Xi > k”q', AIES-;.

Denote by 8y the set of all 4,5, with 4; < 3k In this paragraph, we
show that the inequality [Sg| >ek/4 implies that k is bounded by an
effectively computable number depending only on e. We assume that

[Sg] > ek/4.

Let by, ..., b, be all the integers between ci;k and 3k such that every
proper divisor of b; is less than or equal to et k. I b >cis k, then
every prime divisor of b; exceeds ¢y,. Then, by taking ¢y, sufficiently large,
we see from sieve argument that

s < ofs k+ok/32 < ekfle.

Dencte by 5y the set of all 4,¢5; such that 4, = ci2 k. Observe that every
element of S, is divisible by at least one b;. Further motice that

IS5| 2 |Sgl — 7 k > ek/8

if ¢, is sufficiently large. Let ¢,, be chosen suitably. If every b; appears in at
most two clements of Sg, then

S| < 25 < ek/8
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and this is a contradiction. Thus we may assume that there exists b, with
1 <v<s such that three distinct elements of S, are divisible by b,. By
permuting the suffixes of dy, ..., d,, there is no loss of generality in assuming
that 4,, 4, and A, are elements of Sg and they are divisible by b,. Put

B =b ‘4, 1<i<3,
and
R=h"(dy,—dy), R =b7"(dy~dy).

Observe that B,, B,, By and R, R’ are integers of absolute values at most
3c%,. By {21),

B, By(X, X302 = (B, X1+ R)(B, X{+R}.

Now we apply a theorem of Baker -[2] and (23) to conclude that ks
bounded by an effectively computable number depending only on &

Thus we may assume that |Sy| < ck/4. Denote by S, the complement of
8, in S5. Then '

(24) IS0l > ek/4.

Let 4;, A;, 4, and A, be elements of Sy, such that
(25) A4, = A, A,

Put

(26) A ={m+d;)(m+d)—(m+d}(m+d).
If 40, then (21) and {25) imply that

27) 4] 2 ((4; A) (A; X2 (A; X7 > 3km,

since A;, A;€S,5. On the other hand, we see from (26) and m > k* that
(28) Al < 2km+k* < (2k+ 1) m.
We see that (27) and (28) are inconsistent. Hence 4 = 0. Then

di+dj=du+dw didj=dpdw

since m > k*. This implies that d; = d, or d; = d,. Therefore i = g or i =1v.

Thus we have shown that there is no non-trivial relation (25} among the
elements of S;,. Now we apply Lemma 4 of Erdds [4] and (22) to conclude
that

(29) IS0l < 3k(log k)2,

By (24) and (29), we see that k is bounded by an effectively computable
number depending only on ¢. This completes the proof of Theorem 2.
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