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1. Introduction. Denote by P(n) the largest prime factor of n if n > 1
and set P(1) = 1. For real numbers x, y > 1 let S(x, y) be the set of positive
integers n < x for which P(n) < y. As usual Jet ¥ {x, y) denote the cardinality
of §(x, y). Also let « = logx/logy.

In a recent paper [2] we derived a Turdn-Kubilius inequality for
S(x, y). More specifically, for additive functions f we obtained a general
uppér bound for the variance of the sequence of values f(n), where
neS(x, y). (Additive functions are those arithmetical functions f satisfying
f(mn) = f(m)+f(n) whenever (m, n) = 1) In the range

(1.1). expillogx)?*1 <y < x

the bound was uniform in f and y. In the special case when f(n) = v(n}, the
number of prime factors of n, we were able to estimate the variance
asymptotically. To be precise, in the range (1.1) we showed that as x— o0

(1.2) SZ fvim—n(x, 1} = P(x, O (x, {l1+o(1)}.
Here o

(1.3) n(x, y} = loglog y+1i(xf)

and

(14) @(x, y) = nix, py—alfl—1),

where ¢ = £(x) is the unique positive solution of

(1.5) i1 =qf
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and
max{2,7T)

H(T)= | dtflogi).
2

Interest in (1.2} derives from the fact that when o is much larger than
loglog y, we have @(x, y) = o(n{x, y)). Classically, in probabilistic number
theory, with regard Lo the distribution of v{n) over all integers n > 1 or over
special sequences, it always lurns out that the mean and variance are
asymptotically equal {see for instance Elliott [77], Vels. 1 and 2). So (1.D)is a
natural example where this phenomenon fails. However, we conjectured in
[2] that, as in the classical case, the analogue of the Erdds Kae theorem
holds Tor v(n), neS{x, ), in the range (1.1).

The goal here is to prove Theorem A below which goes beyond our
conjecture in two respects: (i) we establish a Gaussian limiting distribution
by asymptotically estimating the momenis and (i) there is an improvement
in the range (1.1) also,

For simplicity in certain arguments we shall prove Theorem A for Q(n)
(the number of prime factors of n counted with multiplicity) but the result
holds as stated if €(n) is replaced by v(n).

Taeorem A, Let ¢ > 0 he wrbitrarily smail and

(1.6) exp {(loglog x)*7+8) < p < x.
Then for k=1,2,3, ..,
1 1 » 24

1.7)  lim 3 M) —nix, P = | e .
D I G WB G o i, (e = |
Therefore as x — o0

i |
1.8) Fly(0) & — L 07 gy,
( x.y( ) Yix, v mi%;.'y, _____ \,/“Qn ‘__-tm

: $An) = pix.y) <es &y
The convergence in (1.7) and (1.8) is wniform in y and v,
Recently Hensley [8] has oblained a result like (1.8}, more gencrally for
certain additive functions but in a dilferent range, namely

2

(log x)* "% <y < exp [(log %)),

where < 1. More recently Hildebrand [11] has cstablished an analogue of
(1.8) for y < exp {(log x)V2"} along with an estimate for the rate of conver-
gence. Both Hensley {9] and Hildebrand [11] are able to discuss the local
distribution of  as well, which we are unable to do at present. That is they
can estimate

Q= Y 1

neS(x,m
Ay =k
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asymptotically in their respective ranges for values k near the mean, But their
results do not involve moments.

In a recent paper [17] we established an analogue of (1.8) for integers
n < x having all their prime factors > y. There we were able to discuss the
local distribution as well. That earlier paper motivated us to study the
distribution of £(n) in §(x, y) but owing to technical difficulties we restricted
attention first to the study of variance [2]; but this has now led us to
Theorem A.

The method of this paper is based upon the asymptotic analysis of

(19) Vlx )= 3 o
reS(x.p)

for real values = close to 1. We employ a recent technique of Hildebrand
[10] to estimate ¥.(x, y) in the range (1.6). In addition we need to study the
behaviour of certain functions satisfying a Volterra difference-differential
equation. For this we employ ideas due to de Bruijn [4], [5] and certain
improvements on these that were already utilized by us [2]. We interpret
(1.9) suitably in terms of the bilateral Laplace transform of F..{r) and this
yields (1.7) and (1.8). ‘

To prove a result like (1.8) one would normally attempt (o estimate the
Fourter transform of F.,(v) and appeal to quantitative Fourier inversion
(see [7], Vol. 1, p. 69). Such an approach presented difficulties mainly in
connection with the Volterra kernels which turned out to be complex valued.
It is for this reason we chose to use the Laplace transform, in which case the
Volterra kernels are positive (see § 4). The Laplace transform approach had
the advantage of yielding estimates for the moments but the main drawback
18 that in passing from (1.7) to (1.8) the estimates for the rate of convergence
are weak. That is why these error terms are not stated in Theorem A but
they wili be treated later during the course of the proof. At any rate the idea
of ‘quantitative Laplace inversion’ discussed in Section 8 seems new and
interesting for its own sake; it may have many other applications in
situations where the Fourier transform does not succumb to a direct
treatment.

All notation introduced so far will be retained. The < and O symbols
are equivalent and will be used interchangeably as is convenient. Implicit
constants are absolute unless indicated otherwise, usually by subscripts. By ¢
we shall mean a geperic absolute constant and so its value need not be the
same when used in different contexts.

‘The letter p will always denote a prime number. We shall use the Prime
Number Theorem in its strong form

() —1i(1) < tR(1),
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where n(f) = Y 1 and

pEt
(1.10) R(1)y = exp {—c(log £)3° (log log 1)~ '/*}.

Throughout we assume x and y to be sufficiently large to avoid any
confusion in various expressions involving them. Finafly, z shall always
satisfy 1/2 €z < 3/2 so that all estimates will be uniform in z

2. Preliminary estimates for ¥, (x, y). The sum ¥ (x, y) has been studied
in detail (see [57, [6] and [107). As in the case of ¥, we have more generally
for ¥,, the recurrence

(2.1) Volx, )= Y00 00—z 3 Yolx/p, p)

y<n~y"

Sefberg {127 has shown that

W - 1
(2.2 Exzn( ) ) x(log xF~? %1 +0 (TE"SE)}

and the sum in (2.2) can be identified with ¥, (x, y) when y 2
non-vanishing and continuously differentiable in z.

If .\/x <y<xwelet yv'=xin (21). Then by (2.1), (2.2) and the Prime
Number Theorem

x (1 _.‘B%i.)“ di
(23)  Y.(x, ) = A{Z) x(log x ! ( -z f—_—ml—(’-g-f~—m---){1 +0 (1 )}

tlogr log x

x. Here A(z) is

¥
wof 3 ﬂ!ﬂ&&%ﬂ@)ﬁf),
yEpsx P
In (2.3) the substitution t = x'* yields

z | = e (14
tlo&.t "

¥y 1

"(l 1051)'_1 . 1
1 " PP ho
(2.4) {— f OB X drm1~zJ(s b

With regard to the last term on the right-hand side of (2.3) the decomposi-
tion of [y, x] into intervals [x/n-+1), x/n], n=1,2,..., shows that it is

o (log 2ny"” * o~ {log 2ny* -
2.5 et et R A lo 3/2)
(23) <gl BX p<xpti n *(log x)° n<=§;+1 n(Iog\c)’ (A
ol 1
€x(ogaf B T o < x(logxp T,

n=1 H(IOE 2”)
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If we denote by g, (») the quantity in (24) for 1 <« < 2 then by (2.3) and
(2.5)

(26) ¥.(x,y) =A@ x(logxf o, () {1+0(1//logx)} for 1<a<?2

which is actually best possible when z = 1/2.
With the initial estimate (2.6) and the recurrence (2.1) we can show by
induction on [o] that

(2.7) W, (x, y) = A(2) x(log 0~ o, () (1+ 0, (1/ /log x)),  a>1
where

(2.8) g (@) = l—zj Ot L ok : ds for az2.

We omit the details of this derivation, since it will be a repetition of the well
known procedure for ¥{x, v) (see [6]) but only mention that as in (2.3) the
Prime Number Theorem will enable conversion of the sum in (2.1} into an
integral.

Note that by setting ¢.(x) =1 for 0 <o <1 we make g.{x) continuous
for & > 0, and extend (2.7) to o > 0. In view of (2.6) it makes sense to define
@.(x) =0 for o < 0. This will make (2.8) valid for « > 0.

3. The functions g, amd oF. The advantage in comparing ¥, (x, y} with
x(logxy"~! is that we immediately deduce g, (x) to be a decreasing function
of «, because z > 0. But then there are other advantages in comparing ¥,
with x(log y)*~*. So, for this purpose we define

3.1) ¥ () = o, (o) "~
Then (2.8) becomes

x hl
(3.2) al ¥ (o) = 1~ Z[Q (s for o>0.
1
From (3.2) and the initial conditions on g, (x) it follows that
(3.3) == [ gd, Va0
a~1

and therefore by (3.1) we have

o

(34) @ ==: ] e0rtd

a—1

Since g, is decreasing we see from (3.4) that

{3.5) 0<g. (o)< B
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Therefore by iteration of (3.5) we get
(36) 0;{1) & {,<alngm+0(al'
From (3.1} and (3.6) it follows that
(3|7) Q:k (0() = e"a:loga‘l-()(a)
as well.
In view of (3.6) it is of interest Lo check how far (2.6) yvields an
asymptotic estimate for ¥, as a — o¢ with x. But (irst we nu,d to investigate
the behaviour of p¥{x) more closely, as x - +. This will involve the saddle

point method and the study of a certain Vullcrm equation; these will be the
contents of the next three sections.

4. A Volterra equation. The upper bound (3.7) is far too simple for our
purpose. We shall obtain a fairly sharp asymptotic estimate for g¥(x) by
employing a method originally due to de Bruijn [4] and certain refinements
on this method discussed by us [2].

Consider the Volterra equation

1

{4.1) o) = _|'k(oa, B Lle—t)dr,

where & > 0 for all 2 > G and 0 <1 < 1. Also let k be normalised, in the sense
that

1
fkia, ydt =1, Va.
0

We say that the kernel k is stahilising if for every continuous A

lim Afx) =1

o

exists and is finite. The following lemma of de Bruijn [4] provides a sufficient
condition for k to be stabilising:

Livma 1 Let ff be a positive constant «= 1/4 gand & a continuous Sunction
Jor a1 that satisfies

.
Py >0, Y p,= o,
ne ]
where

My= min DH(x),

nSaEnt 2

Then a sufficient condition for k to be stabilising is that
Ve, 0ydt > @ ()
K
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holds for all measurable subsets E of [0, 1] with measure > 8. In this case we
have

3
{4.2) lA@—) <1 [] max{df(1 e 1—#2,,”},

2nta<e

where a =0 or | according as [o] is even or odd.
Suppose that F(x) is any continuous function satisfying

4.3) Fo) = - | Flt}dr.

Let us set

(4.4) Alo) = F(a)/gf (@)

and

(4.5) (e, 1) = k. (2, 1) = (z0¥ (2 — O)(exo ().

Clearly from (4.5) and (3.3) we see that k. is positive and normalised. In
addition on comparing (4.3) with (3.3) it follows that A{x) in (44} satisfies
(4.1).

We know that g {x—1) > ¢, () and therefore by (3.1)

(a*t)zwl

(#.6) o e

oF () = (1~§)Q§‘(m) for 0<t<l.

In particular (4.6) yields

47) kol 1) > 1/
and so )
(4.8) D) » 1/(n+2).

Thus from Lemma 1 we deduce that there exists [ such that

Flx)
el e o 0 as wrsrh e
@9 o7 (@) { W

Notice that from (4.8) and (4.2) of Lemma 1 we have an estimate on the
rate of convergence in (4.9). But we can actually do better. We shail. construct
a special F satisfying (4.3} whose asymptotic behaviour can be estlmgled by
the saddle point method, We can then use the well known technlq.ue of
adjoint equations to get the value of I and therefore an asymptotic estimate
for ¢¥(x). This in turn leads to a superior quantitative version of (4.9).
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5. Saddle point method. We construct the special F by considering a
Laplace integral
(5.1) Fla)= {e ™ p(odr,
W
where p will be determined using (4.3) and W will be chosen in such a way

that the integrand vanishes rapidly along the ends of W, From (5.1) and (4.3)
we are led to

i 5 at b 1
(5.2) Flay=2z | = (E---ww)p(f) dr.
b ¢
On the other hand integration-by-parts of (5.1) yields
— &l t ) ~al ) emm[
(5.3) Fz) =£-»£Q[ + | S pPdt = | —— pnydt
%l X wox

provided the evaluations at the ends of W vanish. On comparing (5.2) and
{5.3) we requirc p to satisfy

et-1
(54) pit)=cz ( ; -)p(r).
In view of this we choose
$ gt ]
(5.5) F(x) =5»}U7 P!’r exp{—asﬂ-z(j} ¢ . dt}a’.s,

where Wis the contour starting at —mi + 0o running parallel to the real axis
upto —mi, then the line segment [—mi, ni], and finally the half line =i to
T+ 0.

Next, let

’ § el — '1
(5.6) ) = a3} = 352 [ “
]
. . d - .
Then the saddle points are given by i 192(5)} = 0. The additional convenien-
an

ce of Wis that there is exactly one such saddle point &, = £ (2) “inside W™,
namely one that satisfies

5.7) z(e 1) = a,.

It is easily seen that

¢ ==& =loga+logloga+

log 1 1
0g oga+0(og1c2)gcx .
loga log?a
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Note from (5.7) {and (1.5)) that
(5.8) Cola) = &y (o/z).

Therefore

(3.9) ¢ = loga+logloga—logz—

logz logloga loglogo’
+ 0 = |.
loga  loga log*«

In the case z = 1 de Bruijn estimated ¥ (x) asymptotically and in [2] we
stated a quantitative version of his result. Since the saddle point analysis
remains the same for 1/2 €z € 3/2 we now give an estimate without proof:

1
5.10) [ R —
( NETAS

|
exp%~o¢fz+zj‘ - dt}{l«i—cp(a)}.
0

In (5.10) the derivative is with respect to s and

—gi(l)~a a5 a—ow
because of (5.6) and (5.9). As in ([2], eqns. (1.12) and {3.8)), ¢(x) satisfies
() @) <a”™ and (i) e@)-@a—w) <,u@™ ™, Yo, and u<1

but here we shall only make use of {i}. At any rate from (4.9) and (5.10) we
have

. Sz g
{5.11) oF (o) = EM@ exp{maéz-f-z § ¢-1 dr}.
]

V2rlgs (6 t

In the next section we shall evaluate both I(z} and the o(1) in (5.11).

6. The adjoint equation. We begin by rewriting (4.3) as

(6.1) (oF (@)} =z {F(@)—Fa—1)}.
The adjoint of the equation is
(6.2) af'(@—1) =z |H(@—H{x—1)).

For any pair of functions F, H satisfying (6.1) and (6.2), the expression

(6.3) (F,H> =z ai FuyH (u)du —oF (o) H(@x—1)
s1

is constant, To verify this note that
2 | F)H@)du} =z {F(2) H(#)— F{a~1)H{@a—1)}

a~1
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whereas by (6.1) and (6.2)
aF o) Hio — 1) = laF (@) Hlo— D+ aF (@) H (1)
=z (Flo)—Fla—1)] H{ax—1)+zF (o) [ H (o)~ H (2~ 1))
o {F (o) Hi{o)— Floo—1) H{p—~ 1)}

and so <F, > in {6.3) does not depend on
As in the case of (4.3) we now obtain by the use of Laplace integrals

. “ ( e 1y
64) H@ = | explas+s—z | et a
- . ¥ '
as a special solution to (6.2}, In (6.4) we interpret
0 ~8
[ = lim | +]

- st~ 3

as the Cauchy principal value. The saddle point for H is &* = &*(a) which
satisfies

{6.5) o+ 1) &% = z(@¥ 1) 1.

Since the principal contribution from the right-hand side of (6.5) is due to
ze* it follows by comparison with (5.7) that

1
(6.6) = a1+ 0 (Wlngg&-)
Analogous to (5.10) the saddle point method yields
2 Fat ] Y 4O (e I
(67) H(w = ST exp{(tx—f-l)é*-—z f( .] dr}il * 0_(& )j
+1(8%) ‘ S e

where ¢ is as in (5.6). In view of (0.6} estimate (6.7) remains unchanged if ¥
is replaced by & {a+1).

Analogous to our earlier estimate in the case z = | (see [ 2], eyn. (3.14))

we now have

(6:8) £ ()& (o) = 5 |~0( ) wzl,

, (&~ 1) o?
From (5.6) and (6.8) it follows (as in [2] eqn. {3.15)) that
(69) GelEe @) = oa (& (=) = uE, 4+ Ofufo),  w <L,

On comparing (6.7) and (5.10) we sec that
{6.10) FljHx) ~e ’/(w‘::) ~1/z a8 -

icm
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because of {6.6), (6.8) and (5.7). By similar reasoning

(6.11) b (o Hi—~1) ~1/6, a8 a— o,
Plugging (6.10) and (6.11) into (6.3) and letting @ — oo we deduce that
(6.12) F, Hy =1,
Next we compute {p¥. >, The initial conditions on ¢* are
0 il a<)
6.13 () == '
(6.13) oF (@) a if O0<a<t,

In the expression
(614) et Hy =2 020 Hidu—agt o) Hec 1)
we let o~ 0%, Since H(u) is continuous for u > —1, it is bounded for
uel0, 1. 8o (6.13) shows that the integral in (6.14) is
& z:i;gg“(u)du =00 as a-—0"

Therefore
(6.15) o}, Hy = lim {~agf(@)H(@—-1)).
a0t

=

In (64), for the outer integral, the Cauchy principal value of | is bounded.

-1
Thus {6.15) yields

-1 i L. | d
(6.16) {o¥, Hy = lim —ue¥(2) | exp {ocs.'mzje dr}qu
a0t - t ] s
" ' - d
= lim agf (@) [ex g oS —z [———md} ’
a0t 1 . ! 5
= lim op¥ (« [f, @, (sys°™ 1 ds,
a it 1

where

It is known (see [5], p. 30) that ¢, (s)—e" as s— oo, where y is. Euler’s
constant. So ¢_ (s} — ¢, Finally, setting u = o5 in (6.16) and using (6.13), we
get

(6.17) ¥, Hy = lim [e ™ uw ™' o, (wo)du = e T'(z).
w0t @ )
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On comparing (6.17) with (6.12) we deduce that in (5.11)
(6.18) I(z) = e” I'(z)

and so we have an asymptotic estimate for o*(x), as o — co.

Actually the method yields more; we can estimate the convergence in
(4.9) quite accurately. As in the case of z =1 {see [2], Lemma 3), (5.7), (5.9),
(5.11) and (6.9) now combine to give

lop o\
6.19)  o*(x—u) = o (o) (“Z_é“) M+o(l), for O<u<l.
In particular the Volterra kernet k in (4.5) satisfies
k(x, ) ~(loga)(a/z)* ™Y, 0<u<l, g~ o0,

This improvement over (4.7) yields a better lower bound for @ (x) than (4.8),
namely,

@ (o) p,nt N8
So by (4.2) of Lemma 1 and (6.18) we get as a — oo
(6.20) Q¥ (@) = ™ I'(2) F (@) {1+ O, (exp { —alVP#1)1
Thus the o(1) in (5.11) and (6.19) may be replaced by O™ ').(*)

7. Asymptotic estimate for ¥,(x, y). We shall now employ a recent
method of Hildebrand [10] to establish

Tueorem 1. Let 1/2 <z < 3/2 and (1.6) hold. Then

Y.(x, ¥) = A(2)x(log y ! (a){l+0 (logoa) (\/BEQ)}

Proof. To begin, we define 4, by
7.1) ¥, (x, y) = A(z)x(log y¥ ™ oF () [1+ 4, (p, )}

In Section 2 it was shown that

1 .
(7.2) A, (v, 0) =0 (~m~w-¢-_-,~;) for x22and y2 \/x.
\/l:)gx
For the sake of convenience let

(73) 42y, @)= sup |4, (v, &), dAF*(y,a)=  sup  |4.(p, ).

/280 S log 2logy Bo' €

(*} In a recent paper, D. Hensley (J. Landon Math. Soc. (2) 33 (1986), pp. 395-406) has
proved a result similar to (5.11) but by a differont method, involving convelutions of g, (2).
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in (7.3) the lower bound log2/logy for o is to ensure x > 2. Clearly
(7.4) Ay, ol = AF(y, )+ 0(1)  for oz 1/2.

In view of {7.2) we shall assume in the course of the proof that o > 2.
Next, consider the sum

15 ¥ ™logn= Y Y ogp= Y "WV, (x/p" y)logp.

ned(x, y} naSix,y) Mn pEy
P

By partial summation

(7.6) ¥ 2logn=Y,(x, y)logx— J' "( y)

neSix, g

Note that (7.5) and (7.6) combine o give

. (¢, ¥)

it Z z" W, (x/p™, y)log p.

psy
MmEx

(7.7 L(x, y)log X = j

In order to avoid values of ¢* at arguments very close to zero we observe
that the coniribution from p" 2 x/2 and t < 2 in (7.7) is

(7.8) <+ Y z’"]ogp«ﬁ

psy
xj2<pMEx

since m > 2. So, upon dividing both sides of (7.7) by A(2)x(log Yy x

x 0¥ (2) log x, we get
logt
e ol
oX(myxlogxz - \logy log y

1 zMlogp *(awmlogp)

*logx 52, p” log y
pMEx/2

mlogp
X{l-l-d,(ys a— logy )}

because of {7.1) and (7.8). Now we introduce a function B, (a} using the
decomposition

(79 144 (v, 0) =

+0(x" N2 * (@)~ 1)+

. x~- 12
® z -
-t e * (1) dt + o7 ()dt
(7.10) 1 Q*( m_[ o {t)d an(a)a—Jl;‘zQ (1) ap* (o _I

= B, (#)+(1— B, («), respectively.
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With this (7.9) can be rewritien as

1 log log:
o* (@) x log x ! ¢ (wg v> { (y ! "'“"")}

O P2 )

[w“ L z"log p ( mlog p)
0z (a)log x m P logy

P xi2
" "g”)} oty (1= f, (a))

foafr

In (7.11) we decompose the expression inside [ ] as

(711} 4,0y, o) =

1 ™log p ( mlog p
7. S {0 -
12 {@*( Jlog x {fg’y o e\ log y
pRpMSa2

]
x(1+/j () a_..??."bf’))}
logy

. -~ ZTlogp mlog p
+{@ ion F% P G potod

1 logp mlog p

A B -2 . (—h

+{Q:‘(O€)|Og~\‘ 3 2 P e\ Tog y —(1=f. =)

s z"logp L_mlogp A.(y,oc mlog p\
102 i Io;__, ¥
‘Let

+Q_ (a)iogx‘ e
1 logr
, S !
13 R, oF (2) xlog x 10 (log )”

Also, it is convenient to denote the expressions in (7.12) within | } by R,, R,
and R, respectively, where for R, the summation is laken without (14-4.)
factor. With regard to the last summation in (7.12) note that it is
4¥(y. a log p *( mlogp’
oo s e A--J..-N;';.-,_M. ); a-_ - ,.
0¥ (@) logr ey P log
ar(y, o~ 5
¥ () log x

(7.14)

=" log p
D (a

mlog p)
.3;<,,.,.ﬁy P log y

because of (7.3). At (his point it is useful to note the inequalities
(i} o aw)/@*(a) < e,
{1) 1/o¥ () < x!

O<u<a—1,

(7.15) < i

icm
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which follow from (5.11) and (6.19). Therefore by (7.3) and (7.11)47.15) we
arrive at

4
Ay, ) <{L+4¥*(y, a)) 3. R+ B.(0) 4% (3, )

i=1

(7.16) |

1B (@) 4¥ (y, 2=+ 0 (x4
provided o < y'®. We shall bound 4,(y, a) suitably using (7.16). This in-

~ volves bounds for the R; which we obtain next,

Put r=y* Then fmm (7.13) and (7.15) we get
1 . 1 Tofle —b}
7.17 R K fog vds = ——u :
(7.1 ) xlog_zwc(‘L (5) " log g,{oc)(f ¥
< _____L_________+__1 : '1 “s(logy—;’.!oga) ds < 1 L

o ( oc)\/‘c a g alogy logx’

for w < y'/®

With regard to R, note that

1 z"logp m log p
THEL ] E TR (.. (OC 1
ol (a}log x pey P ogy
y<pME a2
1
= s + :
o ) log x( péj‘ Péi’ )

yepMExfy xfy<pM€x/2

With u = 2logoaflogy we see from (7.15) that the above expression is

1 o m
<1 Z Em +(log x¥ x!* Z (")

X psy pEy P
ey Xfy <p™Sx/2
o long as o < y'8, Since m > 2 this implies that
1 1
s e fOT 0 < YUY,
(7.18) 24 alogy logx Y
Te bound R, consider
1 "log p ( mlogp)
7.19 Sg = - ¥ o —
19 P o¥@logx iz P logy
for 0 <0 <1, By the Prime Number Theorem
o 1
(7.20) M) €~ T z"logp =z+0(R))),

pmgyr
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where R is as in (1.10). On comparing (7.19) and {7.20) we get

i [
7.21 R T ——— LIPS N PPRA N E 1
T 5= G log Y E Y M)
MOt@-0 1 0 g
[ 0 vtes VO U, A Moyt B
Qz*{(x) lng Q;"(oc)logﬂc (_‘;M:(t) Y dt 04 Q: (@ f)} dt
= M* ...{..R*’

where M* is the main term and R* the remainder term obtained by inserting
(7.20) into the above expression for §,. That is

¥ (a—0) z Y

[lef(a—0)+oX e~ logy)dr,

¥ o e
o ()logx  of ()log x

. d
where * * * denotes T Clearly

, 0
7.22 Y T N Y T P :
(7.22) log x+0£9§“(06) (J;Q; (o — eyt log x+ﬁ“ (o, 6)
say.

As for R* it follows from (1.10) that
1 1

7.23 R¥ 2 — (1 log? 0 B
(7.23) <Iogx( +alog® (e + 1) R () Qﬂlogx

so long as (1.6) holds. Now take 6 = 1/2 and observe that in (7.22)
. = (2, 1/2) = B, ()

a]i in (7.10). Thus we deduce from (7.12) and (7.19)-(7.23) that if (1.6) holds
then

1
7.24 R, = A P -
( ) 3 Slfl ﬁz (%%'Qu log x '
© Lastly, with regard to R,, we look at the sum complementary to the one in
(7.19), namely ° < p" <y, (= 1/2, and obtain by similar reasoning

(7.25) R, <,
log x
for o as in (1.6).

To complete the proof it remains only to employ the bounds (7.17),
(7.18), (7.24) and (7.25) for the R; in (7.16). For a as in (1.6) each R,
<, (logx)"*' and so

(7.26)  [4.{y, %)

<40 D@+ A0 a- D (- @), (VHE D)
log x
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In view of (7.4) we may replace 4¥* by 4¥* in (7.26). In addition, since A* is
(for fixed y) an increasing function of x (see (7.3)), (7.26) will remain valid if
Ay, 2)| s replaced by AF(y, 2). With these changes (7.26) implies that

(7.27)  AF(y, o) 1= (o) + 0, (1/log x)]

< A¥(y, a~3) (1 —f (@) + 0. (1/log x).
From (6.19) and (7.10) it follows that i {x) — 0 as 2 — =. Hence from (7.27)
we obtain 1

1
(7.28)  AX(y.o) £ AF(y, ot*—i){lﬁ-On( o Lok O (vw 7Y
wlogy elogy

By iterating (7.28) we arrive at
(7.29) A¥ (v, w) <€, A% (y, vg)+(loga/log y),

for o z oy and o as in (1.6). For o <%y it was shown in Section 2 that
A_(y, 2) < (log x)" % So Theorem 1 [ollows from (7.29) and (1.6).

8. Quantitative Laplace inversion. Suppose F; is a sequence of probabil-
ity distributions whose Fourier transforms F, converge as j— oo to the
Fourier transform ¢ of a probability distribution . Then, as is well known,
the F; converge weukly to ¢ uas j— 7. If ¢ satisfies certain smoothness
conditions then it is possible (o obtain a quantitive version of this phenome-
non. An example of such a result (for a proof see Elliott [7], Vol. 1, p. 69) is

Lemma 2 (Quantitative Fourier inversion). Suppose F and ¢ are probabil-
ity distributions whose Fourier transforms F and ¢ are close, in the sense thar
there exists ¢ (small) and U (large) such that

UF ()=

N i
Suppose further that l¢' ()] € B for —ow <wv < ov. Then

suplFlv)—@(v) €c+B/U.

du < &.

in view of our interest in moments it is natural to consider an analogue
of the above lemma with the Fourier transform replaced by the bilateral
Laplace transform. We now state 4 result for the special case where ¢ is the

"Gaussian distribution & (v) in {1.8).

TueoreM 2. Let F be ¢ probability distribution. Suppose there exists
12> 10 such rhat

]
(8.1) [ el dF () e for  —r<u<r.
".‘1\
Assume further thar there is t*, positive and removed from zero, such that

(82 | MdF@— | "dGE) <& for  ~1*<u <0,

o]
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Then for k=0,1,2,3,..., we have

(#.3) | (‘[ v*dF () — [ o*dG ()] <€, u{d, 1)

-

where p{d, t) =0 as & — 0, uniformly in t. Furthermore

| log log 8|
— o s B fe T T T
(8.4) snip|F(v} Gv)| < \/f-fh llog
Remarks. (1) In practice 1 will be large and & small. If * cannot be
chosen to be away from zero, then, naturally, the implicit constants in (8.3)
and (8.4) will depend on r*

() In (8.1) it does not matter whether we use ¢“! or ¢ because for
real x

et <ol < iy,

(ili) In contrast to Lemma 2 note that in Theorem 2 we only assume that
the bilateral Laplace transforms are closc on one side of the origin and that
too only for values —u < * However, with t taken large in (8.1) dF (v) will
be small as |of — cc.

(iv) Motivated by applications to Probabilistic Number Theory a gen-
eral qualitative version of Theorem 2 was already established by us {[3),
Lemma 1) by not assuming the limiting distribution to be Gaussian. In view
of that earlier result and Lemma 2 it is of interest to extend Theorem 2, by
only imposing smoothness conditions on ¢. The proof of Theorem 2 which
follows can certainly be adapted to a more general situation and will be
considered elsewhere.

{v) Note that in (8.3) we do not require t — o¢ in order to make wld, 1
-~ 0. In fact it was already noticed in [3] that the moments can be made to
converge by just assuming the boundedness of 1/r*.

(vi) It is desirable to improve the quality of the error term in (8.4).
While the precision of Lemma 2 may not be attainable by the moment
method, we make note that (8.4) can be improved; we shall take this up on a
later occasion.

Proof of Theorem 2. We begin by observing that for |u] <1
J‘ JF(U) < g T ‘ (’“‘"U’F(U) & e‘mu’i"i"(uz.’z)
o] >7 - o
follows from (8.1). With u = min(s, T) the above inequality yiclds

(8.5 " dF (V) ¢~ Trunit.TY2,
[o) >
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By the Cauchy-Schwarz inequality, (8.1) and (8.5)

oo

(8.6) [ e dF @) <( | el ar@)?( [ dF )"

le]>T T [ol>T

2
«eu e Tminte, T4 for |u| < t/2.

Since
8'""'

[off <kt
a

holds for all a > 0, once again (8.1) shows that

= kl o2
8.7 [ lof*dF (v) < " for O<as<r.
Therefore by (8.7)
1o (k +1)! &2
(8.8) |.,|'f>rlu|de(v}‘<“7 u_fmlvl TR W) €

where a will be specified later.
Next, observe that

(e =~ 1 = (up)® {140 (k)]

holds if |kup| < 1. Therefore

T r
89 | *dF ()~ [ #dG(v)
r Sy

.
— k([ (= 1} dP ()~ [ ("~ 1}dG )
- =T

v . ‘
Ok | {1 dF @)+ [ [T dGW)])  for  JkuTI < 1.
W s
Because T will be large we have [ku| < r* in (8.9). So with u in (8.9) chosen
1o be negative and close to zero we obtain from (8.2), (8.6) and (8.8)

(8.10) | T v dF ()~ ? ¥ dG (v)

bl ¢}

2*5 .lf(.lc—|-l)!e“2’2 ‘ 1 ~ Twint, T4
N e T

so long as |kuT| < 1. Now, given § we let —u = 2exp |—(4/2)log|logd|}.
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where

) 3 = ilowBilogTiogs.

Also let T be chosen to satisfy Tlog? T = —u ! and assume that & < J.

With these choices we get from (8.10)

(8.12) ] | o dF (v) ~ 1 R dG )| € S84kl D! ] 2

1)

Next, let t_fm i where o is real. The inequality

(8.13)

N’
G 3 LY < AN 1!
fo s 0y

can be easily established by induction on N. 8o by (8.7), (X.12) and (8.13) we

have

B.14)  |Fw)—G ) = | | & dF (p)— g G (v)

2]

% i)+ 2/
‘O |k (ll ‘. . I(”’HH 1 (,u 12
ARG i G e

<Z

i e" 4z 12 w| et et
Q/{,,,GJ.JFH : rl%l,J_wa;l _

provided |o| < a/2.
We now choose

(8.15) a = min(t, \/4/2).
Then from (R.14) and (8.15) we deduce that
(8.16 lﬁ'(m)wé(m]l €e”  for | < \/b.

On the other hand when o is close to zero the trivial estimale
(8.17)" LE ()G ()] <& |eo!

holds, The idea is to use these upper bounds for F— ¢ along with Lemma 2
to gel (8.4). More precisely if U < \/a then by (8.16) and (8.17)

((u_)—-(:(w)

w

1
8.18)  § |-

e ff

doy = l ,+_ j' = O(ﬂ'""'““(]gf.'li e ol U) P E'FWM’IZ

by suitably choosing ¢'. Thus with ¢ = exp {—cdf2), U= V"iz in Lemma 2
we deduce (8.4) from (8.18), (8.11) and (8.15).
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Finally, with regard to (8.3), notice that it is a & consequence of (8.12) and
(8.15).

9. P'roof of Theorem A. We begin by estimating the difference &£,
For convenience let

9.1) Rty =(¢'=1)t  and  j(r) = h~'{).

By (5.7) and (9.1)

(9.2) h(&) = afz

and so

(9.3) W& = (2 (& — 11+ 1)/(zE,).

Similarly

(9.4) R =0() i [&—&<[E -4y

In addition

(95 FJ=UN{w)) and j@)=0"Y if [o'—o < |oz—ad.

=i (2) =it (5= freaso (g—a)z )

(9.1), (9.2), (9.3) and (9.5) combine to give

Since

(1 ) 2 I:*ll
©:5) oty =g o (1)

Next we compute oF (x)/of (@), as z — 1. Note that by (5.6} and (8.1)
Yuz(C) = —2h' (&)
whence by (9.3) and (9.6)
Vo s () = 1+0(z— 1),
With regard to f(z) it follows [rom (6.18) that
Hay/l () =14+ 0(z-1]).
Therefore by (5.10) and (6.20)

of (@)
9.7 =kl
6D of (@)

.rn

Sz
=exp{—a(l,—&}+z | h(t)dt+(z—1) [h[l )di} {140 (@™ )+ 0(z—1)}
51 0
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From (9.2), {9.3), (9.4} and (9.6) we get

(9.8) [h(r)dr -1’h( VHU=E) WG FO{r— &) o)} dt
3 41

= o (&, — &)+ za (.~ ¢ l)?_(;l: 1)

Oz =11 )+ Oz - 1))

254
e s e - )’( -1
=l ~E) He = Da(l ~ &)+ e "’.)'g o
N |
+0(z -1 a+{z—1?)
. (z- 1 ag,
gl — e e 19 o
(e =80 4 Ol = 1Pat |z 1),
On the other hand by change of variables
g1
(2.9 (z—=1) { () dt = (2~ Dlié )+ 0z~ 1] Tog &)).
0

So by combining (9.7), (9.8) and (9.9) we arrive at
(9.10)  oX (a)/ef (=)

(1) )
= e){p%"'“(“““”;"“)”""é‘!‘""}“(Z"—1)11(0“31) L0 )+ 0z~ 1]logé))!.
g -1
The idea is to apply (9.10) to the bilateral Laplace transform of Fopdo),
namely
(9.11) ‘f e AR, (V) = e @K = )] ¢ 6,y
M.“‘ ’ l[f(x, J") nm&‘};‘x ¥
g RN Ny P (’C y)
¥, (x, p)’
where
9.12) 2w gl B,

By Theorem 1 the expression in (9.11) ig

9.13) eI (190 - 1 4 ”{1+o (\/’”f"““) |-O(lz~1|)}
ot (x) log y .

when (1.6) holds. In (9.13) we utilised
AZ) = 1+0(z-1))

icm
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which readily follows from (2.2) and the differentiability of A(z). With z as in
(9.12)

2 3
(9.14) z-1= -u——“l‘ L ( 3/|2u| )
\/é(x, ¥) 20(x, y) 032 (x, y)

Hence from (9.10), {9.13), (9.14), (1.3) and (1.4) we deduce that the expression
in (9.11) is

un(x, y ("""1)20551}
v _1 AT T
(9.15) (.xp{ \/() o +Ez=Unlx, ) - 2E = 1)
x{1+ow1)+ouz—lllogé)m( /———lfgm)}
ogy
—ox {uzrz(x, )i
TP 20k ) 26 (x, -1

3 1
x{wow“wo(‘”'”“l?’g )+OE( Eﬁ)}
\,,@ (x, » log y

1 1
= "2 { 14+0@ )+0 ((]i/“@"""i“g“‘g"““—‘a)“m (F)}
JO(x, y) log

so long as (1.6) holds. This is to be compared with (8.2) of Theorem 2 when «
is ‘large’.

When a is ‘small’ and z close to | an estimate for ¢¥(x)/of(z) more
useful than (9.10) can be easily established by induction on [«¢]."To be more
precise, observe that (3.2) yields

Lot~ 1)—pF(t—1 @ z 1
(9.16)  o¥(wa' 7 —o¥(a) = jc }tL (= )dr—jgf(t—l](;;m?)dr.
i 1 ‘
In (9.16)
9.17) r-«i < '“'-'1" gl 4nd  atmi—1 < lz—1]loge,

provided |z —1}log« is bounded, which will be case with z as in (9.12). Now
(3.7), (9.16) and (9.17) imply that

(9.18) loX (@ —~o¥ @) < loga: sup |of (@)—¢t (@) +0(z—1]loga).

15’ <21
From (9.18) the inequality
(919) IQ* (a )! < I., - 1, C,O(uloga)
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follows by iteration. In view of (5.11) we obtain from (9.19)

(9.20) eFa)/ofio) = 1+0(z

Going back 10 (9.11) we sec from Theorem 1, (9.14), (9.20), (1.3) and (1.4} that
analogous Lo (9.15) we now have

logal).

(()_3“ ‘ o dF.);,_p(”)

S

30\ o (o) A
cxb% e ”--(zwl)loglugj’Hl+-O.(\/]UE"‘Q)}.& (@) A4(z)
JO(x, y) ‘ Vlegy /) o)

oz {uj exp (e loga] Iog 20
= ¢ %1+O(~-~~ /@(r = +0, iown I
VO x, ) g

This is to be compared with (8.2) of Theorem 2 when a is ‘small’,
The final step is to make the terms ‘small and ‘large’ precise for a.
When o« is less than

(9.22) o (x)
‘ 4 log, (x)

we use (9.21) whereas we utilise (9.15) when « is larger. Here by log (3] we
mean the iterated logarithm log (log,.., (x)), where log,, (%) = log x. We take

(9.23) Y )

Then from (9.15), (9.21), (9.22) and (9.23) it follows that (8.1) and (8.2) of
Theorem 2 hold with F, in the place of F and with

(9.24) 5, DB 09
IOg(ay (x)

Thus from (9.23), (9.24) and (84) of Theorem 2 we deduce that

(9.25) F oy (0) =G {1)] <, i/l"gf-ﬂ (%)
: log e (x)

uniformly for all v and x, y satisfying (1.6). Similarly il (1.6) holds then by
(8.3) of Theorem 2 (see also {8.12)

926) | | vhdF,, 1 v dG (o)) <, (k+2)texp {—c /10ga (%) Toggs, (X))

[>.4]

uniformly in y. With (9.25) and (9.26) Theorem A is proved.
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