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Improvement on Davenport’s iterative method
and new results in additive number theory IIE

by

K. TuanigasaLam {(Monaca, Penn.)

1. Introduction. In this paper, the results in [9] and [10] (Parts T and I
in this series of papers) are improved to the following:

Tueorem 1. Every sufficiently large integer that is # 0, 14 or 15 (mod 16)
is the sum of at most 13 fourth powers.

This improves the corresponding result G*(4) < 14 of Davenport [11.

TaeoreM 2. G(5)< 21, G(8) <32, G(N <45 G@B)<62, G(9 <82
G(10) < 102, G(11} < 118.

Also (in Waring-Goldbach problem), we have (cf. § 2 in Ch. 12 of [6])

Treorem 3. H(6) €33, H(7) < 47, H(8) < 63, H(9) < 83, H(10) £ 107;
and h(6) < 17, R(7) <24, h(8) < 32, h(9) <42, h(10) € 54,

The author understands that R. . Vaughan has obtained similar
bounds together with his result in [13].(") However, differences in the proofs
are expected. While the starting point is the same as in [9], further
improvement arises from the direct use of Hardy-Littlewood method at the
iterative steps. It is acknowledged that for this purpose, Vaughan's result in
[12] (see (1.2) below) fits in well for the major arcs, When 3 < k<11, dgd
a,_, is close to 1, this is more economical in estimating %, In

, UM (N) > N™ “* (In essence, we use Weyl's inequality for the (k—1)-st power
1 mstead of the kth power.) With g denoting the approximating function for f
(on major arcs), Hua’s result in [5] (which utilises Weil's result in Algebraic
Geometry) with a partial summation leads to

(L1) f—g <q"PTE(L+PHIAD.

The factor (/3 in (L.1) can be replaced by g**** using the results in [4].
Theorem 2 in [12] is the more precise result

(1.2) f—g € gt (14 PP

.. {Y Copies of [12] and [13] were made available to the author during early January 1985,
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In the author’s proof, the integration of F(«) over the major arcs is
considered rather than that of f,(x) (see {2.1), (2.3} and (2.4)). Nevertheless, for
k =4, the proof given here requires (1.2) also. Some arguments in [10]
(regarding the admissibility of exponents) also play a key role for &k =4.
While (1.1) may be required for k = 5, for k > 6, it is sufficient to use it with
g3+ in place of ¢'V2 7", Also, for k = 5, one can use Vaughan’s result (1.2)
replacing g‘? ¢ with ¢@/**% and estimate the integrals of the error terms
over the major arcs separately by using (with the standard notations)
Y Yy TP 75(a, g)* < 1. Thus, overall, the proof given here does not

L &
rlcquire Weil's result for k > 5 (sec § 15A). For uniformity of proofs, we do
use (1.2) here for k = 5. For k=4, (1.2) is used on the major arcs for f, and
[5 respectively in estimating as and a,.

Some results in [6] for exponential sums with integ-ral—valued
polynomials are modified for our use in this paper.

With Davenport s bounds for «, (for suitable r), generally, we can take

= 1272 for i = r in estimating o, with s 2 r+1 (till o, gets very close to 1,
the impossibility of this choice for &; then being seen from the estimates over
the major arcs).

2. Some preliminary results. Let (as in [9]) & denote an arbitrarily small
positive number, and §, a small positive constant. All constants implied in
the * <’ notation will depend at most on k and e. Inequalities depending on
other parameters (like in Lemmas 2.3 and 24) will be so indicated. We

recall (from [9]) that with A4, = (k—1+3)/k, P; = PY,

(2.1) f= 3 e fi= 3 eaxh).

P<x<2P P; <x<2P;
Let
(2.2) ' 0<dé< 127
and (uniformly)

Fly= 3} Y e(d,(x")a),
(2.3) : 0<t<p¥ P<x<2p

=Y 0L Deldiy, ., 09).
o1 ip X

With [1,, ..., A forming admissible exponents, we use Hardy-Littlewood

method (with &, = 8) directly to estimate

1
(24) 8= [P So- 1 SilPde.
0

When Davenport’s estimate for «, is used, we replace (fi...f,) by Ula),
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where U{y) = Ze (o1;), the u’s being distinct integers of the form (x| -+

+x¥). The proofs then will have the obvious modifications as in § 9 in [9].
As explained in [9] (in the proof of the Fundamental Lemma), we have

(2.3) S & PP, P+,
where (cf. (2.3)
1
(2.6) I={F@)f.. fil*da.
(1]

Lemma 2.1, If la—a/gl < g7 3, then
(27) F(CC) €P1+6+e‘fpal+q—l

Proof The proof is the same as that of Weyl's inequality (for (A— 1)-st
power). We start with (using Cauchy's inequality)

— 2 k—2
+P k+1 !5q]1j2 .

F@) <PV [T T Teld,(H 4,09

(wpd x ¥

(P2 [PT N4 |F ()2,

where F,(x) is defined by (23) with 0 <t; < P.
Generally, we have

Fo@) < (P2 Py F @) (ISr<k-3).
(Indeed, these inequalities are implied in the proof of the Fundamental
Lemma in [9])
At the final step (as in the proof of Weyl's inequality, where the only

difference is that we take § = 1), by actually carrying out the summation
over x, and using fty ...t < P*"27% we have

Fkaz (x) € P Z
osm<(kypk- 214
The sum on the right-side is d1v1ded into <€ {(P*~ 2*‘5/q + 11 blocks, and we
get (in the standard way) _
Fyoa(w) < PP g)+ 1} {P+qlog g}

Putting these estimates together, we get (2.7).

min(P, |joam] ™).

We have '
28) A0 = Ay Xk Ay X2+ Ay xot A,
where
(29} A, =k, Ak_2=(';)r2, A =k A=Y,
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so that, A,(x") is (for given 1) a polynomial of degree (k— 1) in
ntegral coefficients 4,_,, ..., 4p.
For every given ¢ with 0 <1 < P’ Jet -

210 W= Y

'x with positive

e(A,(xk)a)
Pax<2P
(so that, from (23), F(a) = . h{e);
o< <pd

(2.11) S, () = Z e(f(d,(x"))) 1<v<y),

x=1 q ‘
and ¥ ‘
(2.12) S{a, ¢, 1) = §,{1).

Since (Apgs oees Az, q) g_ki and (a, g) = 1, the next lemma follows from
Theorem 2 in [6] (Ch. 1, § &) (using ¢t < PY).

LEmma 22, _ _
(2.13) 2. € (E(A:(xk)))”*(P/fI)S(a, g, t) < gt " HETNTe =D
1€x<p N\
g gt T Wkm Dt k=D piformly in t);
and, for 1 <v<q, ' '

(2.14) S,(1) < ¢
. <<:_q1—1/(k—1)+‘chS/(k—U

- 1/(k—1]+cr1f(k— 1

(uniformly in t).

{Note that the lemma in this form is ineffective if ¢ < ¢. The result then,
can -be modified. The effect of the factor V-1 on the estimates over the
major arcs can be reduced or dispensed with by some additional arguments.
But, these will not be required for our purposes.)

. ,
LemMa 23, Let 1 <1< k-1, and with A, = (k I)t"“ (cf. (2.9)),

W{x) = yi{x, 1) = e(BA,(gx)).

Then, if g < P'7% |Bl < g™t PrU-R-k—bd=e 50 0 g

< (2P/yg), we have

W ()| < Cy(k, r, &) P~ (where C; is a suitable constant).
Proof. Let y= (2184, (gx), so that ¥ (x) = ", Hence, by Lemma 7.6
in [6], ‘ :
(2.15) W ()| = [ (x) G, () {(2mBA) g},

where G,{¥) is a polynomial :of degree (I—1)r in y.
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Now {from the hypotheses of the lemma),
(5 Ag)”lq < ql—_(m)P~:(1—u+(k-z>§+zulr(k—nﬂ

«P(I —e)(l-=1/)-1+(1—¢g)l Pl ¢ and t<Pé)

(usmg q =
< P7¢;

and

2P =1 R u'
(1B 491 g}t <|ﬁ|Aqu(?) <qlf <t P

<€ P™* (using t < P? and the bound for ¢f}).
Thus, from (2.15) (with C, denoting a suitable constant),
[ () < Cak, ry ) [ {18 A (g} T 1B A) gl <

Lemma 24, Let wi{x) = A;x'+ ...+ A4, (151
= Ar (Xk))v and P (x) = O (x: t) - E([J'Wl (qx)) .
Then, if L

(2.16) g< P'*

C,lk, r,e) P77
< k—1) (50 that, wy..,(x)

|Bl € g tpTUmhmEli=e o gnd O x < (2P/g),
we have (with a suitable constant C,)
|l () < Cy(k, v, &) P
Proof. This is proved by induétiOH on [. When | =1, we have
@1(x) = e(Bl4, gx+ Ap)),
50 that
1) e = (2 ) e (3.

Since 4; <71 <€ P*" 1% and q|f{ < P~% V97 we see from (2.17) that the
result is true for /= 1.
With y(x) as in Lemma 2.3, we have (for [ = 2)

(2.18) @1(x) = (x) 1 (x).
By inductive assumption for I—1, we have
o1 () < Cslk,r, ) P
if
(2.19) g€ P17t Bl «q VPO RTRoIr e apnd ' x < (2P/g).
Since § < 1, '

P—([— - (k—Hé < P—(J— 2)—(k-l+1)6;
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so that, if B is subject to (2.16), it also satisfies (2.19). Result now follows from
Lemma 2.3 since (from (2.18)},

o1 () =Y () 9y )+ D (01 (I Y (D ().

CorouLary 2.4. Ler (with ¢(x, t) as in Lemma 2.4)
(2.20) P(x) = @y (x, 1) = e{B4, ((ax))).
Then, if
(221) g< Pt |Bi<ggT PTRTAT and 0K x < (2P/g),
we Itaice

(2.22) 1 (x) < Cy (k, 7, 6) P

Proof. In Lemma 24, we take [ = k—1, so that w,.{gx) = 4, ((gx)*).
LEmMa 2.5, Let a = (a/q)+§ and

(2.23) @) =g¢""'S(a, q, )T (B) (e (212)
where
2P
(2.24) J(B) = [ E(A;(xk) ﬁ) dx.
P
Then. if ¢ < P* 7 and |f| € g7 P~%"2727% we have (cf. (2,10)) .
(225) bl —hF(x) € gtk Dregke

g gt T e e P uniformly in 1),

Proof. Starting with Euler’s summation formula, this is proved in the

same way as Lemma 7.11 in [6] with some modifications. We start with the
identity ‘

B =Y e(gd,(u"))xl.,,

p=1

where {cf. (2.20))
A, = ¥ o (j+v/q)).

Pia) <+ i <Pl
In using Lemma 7.2 in [6], the limits 4, b are taken to be (P/g) and (2P/g) (in
place of 0 and P/g). As in [6], we take {=[1/s]+1, so that,

2Pg

g | o"(x)dx <1.
Plg

Furthermore, we use the inequality (2.14) (in p]aée of the inequality

o (x) <« P~  and

icm
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S, €' "M ysed in [6]). With these changes, and Corollary 24, the
arguments are precisely the same as in [6].

Lemma 2.6. With J(B) defined as in {2.24),
(2.26) J(B) <min(P, P275 1B,

Proof. (For every given t),

d
E(A:(xk))%(k—ijflk_lx“‘2+ A,

which is positive, monotonic increasing (for P < x < 2P}, and » tPE 2 (of.
(2.9)). Hence, the result follows in a standard way by the second Mean-value
Theorem. {See for example Lemma 4.2 in [117.)

Lemma 2.7. For every given t (with hf(«) defined by (2.23) and « = (a/q)
+B). we have ' o

(2.27) k¥ (2) € g~ M- DFe 1k D mip (P, pa-ke-11g-1),
Proof. From (2.14),
Sla, q, 1) €'~ ke Lk n
Hence, result follows from Lemma 2.6.

3. Estimation of [. We estimate I (cf. (2:6)) as follows:
With § satisfying (2.2), let
k—2+8+dg

ERY Q=P .
and, divide the unit interval

(3.2) Q7 l<ca<140Q7!
into basic intervals

(3.3) M, la~afgl <(qQ)"" for

with W1 denoting their union. Also, let m denote the supplementary intervals
in (3.2}, '
Lemma 3.1. Let k = 4. Then, subject to (2.2), on'm

(3.4} Fla) 4P {cf. (2.3)).

l<q< proT o0

1+4p

Proof. On m with ¢ = P "50, result follows from Lemma 2.1. Let xem
with o _
(3.5) pré—do <q< P1—a0_
From Lemmas 2.5 and 2.7 (ef. (2.25) and (2.27)), it follows from (3.5) that (for
0<t < P%

I (o0) < Pi~r§+ép+P1—(1/fk—1))(1~5)+60 < P““'so(usjng 5<1/2%and k > 4).
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Hence,

=5 hiw) <P,

t<pé
proving the lemma.

Lemma 32, With Ay, ..., A, and o, defined as before, let

1
B {Ifs- - fil* do <(P,...P) P,
0
Then
J‘F(a) Iﬁ'fi'ld& <% P1+350 Pklsés.

(Constants multiplying d, are not indicated in all the inequalities.)

Proof. The proof follows directly from (3.6) and Lemma 3.1 on noting
that '
+dg

P,...P, < P

For k = 5, we estimate the integral over M as in the next lemma. For k = 4,
some adjustments will be used.

Lemma 3.3, With the fs as occurring in 1, suppose that on N (Jor some r
with 1 <7< k)

(3.7) fi<g P, for s—r+1<i<s
Then

jF(Ov:) l.fs---f1|2dfx <& Pt~ 1) PZ—hH(PZ“’a"‘-MO)maX(I, P”},
9 .

where
(3.8) w=k 2—(2r/k)— 1k~ 1)} .
Proof. From Lemmas 2.5 and 2.7, on M (using t < P?)

(3-9] hr( )<qw1/(k 1)+5P(5Hk 1) 'mm(P pA- krml‘ﬁl +Qi
Also, from (3.7),

(3.10) s ol €(Py... Py q =3 g pPAsTO0 -
Hence, from (3.9),
1) [F@lf. filda= T [h@lf. £l de

n 0<p<pd M
«(szlsas""é()) Ppolte=1)
x 2 {"Z L T 1, )
o<r<pd o pi=dp a
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(cf. (3.3)), where

(3.12) (a, g) = j' {min(P, P25t 1181~ Y44} df

<P2 k+£f_1+q(C]Q}_]
€ PAktepm1 pPTETETO0 (o (3qy).

Furthermore,
(3.13) Z (PZ%k+f:r—-l+P2_k"5“7D) < prrit
0<r<pd : :
and
1 2r
(3.14) Vo YT < max(l, Y (of. (3.8)).
q<Pk5 50 “

-The lemima now fo]lows from {3.11), (3.12), (3.13) and (3.14).

. LemMMaA 3.4, Let r be chosen w1rh the fs satisfying (3. 7) Suppose that
(w:th o, and & defined as before) either ‘
{a) with 0<r<k—1, : '

(3.15) k=1 > (k— 1 +8) o, +(2k— 2 —1)5:

or
(b) (with r > k)

(3.16) k—1 > (k—1+8) o, + S )tk ~1).
Then (with S defined by (2.4))

(3.17) S< PP, Py,

and UYL (N) > Na“'1 '50, where

(3.18) Yy = (YK + (k= 1+ S)a k.

Proof. (A) In case (a), from Lemma 3.3 (with P* > i),
[ F@)Ifs...ful? da & P (pa=icra) pEAss 0] pny
W

1+d kA k-1 +(1—k+te)tkia +8q+pu
. @(P ()P sﬂs)Pll'( )+ ( &) 5Ty Q -”:.

The second factor (with ki, =k—1+46) is
< ’[P“lk_1)+ 2501 P(k— 1+ dag+tu+djlk—1)

L]

and, this is easily verlﬁed to be <1 by usmg (3.8) ‘and (3. 15) Hence the
integral over M is « P' o0,
(B) In case (b), the integral aver M is
<( l+60)(P _,n‘, —(k'—-1)+2¢50{P(k—l-é-z)‘)ms-i-&f(k—l)] :

i
< p TP (from (3.16)).
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Thus, from Lemma 3.2 (and (24), (2.5), (2.6}, S < P'"°9 P Result now
follows in a standard way (with P** < P,...P)).

4. The case k = 4.
Lemma 4.1, Let

4.1 Gy =1,
Then, with

5y =3/7. 85 = 27/103.

AP =(+683)4, AP =i =(3+35,)45/4,
(A9, 42, A9, 1) form admissible exponents, and USH(N) > N™*77, where
(4.2) oy = (AP + 2§+ A8+ 1)/4 = 331/412.

Proof. These are precisely the same bounds obtained .by Davenport (for
the &'s and as, o) in [17], with the difference that the arguments used there
do not establish the admissibility of exponents, For this, we use precisely the
same arguments as in the proof of Lemmas 4.2 and 5.1 in [10]. The
differences in the details are only computational. (Note that the result S; ¢
< PyPY*** in Lemma 3.3 of [10] holds for k = 4 also with 8, as in (4.1))

I Estimation of a;. Let
(4.3) d, = 0.234,
and (with & (1 <i<3) as in (4.1)),

(44) Ay =2 =(3+8,)/4, A =M =(3+6)4Y,/4
and define f, f; (1 €i<4) as before.

With 6 = 8, let the Wi, s be defined as in (3.3) with
4.5) 1

Lemwva 4.2. On I,

(1<i<3),

PRI
Sq< PN

@fi<qg PP (=12 (ffi=1) (B)figq PPy (0)fs €4 “Pe
where .
(4.6) v, =0103805, v, =0.204442, v, =1/4.
Proof. From (1.2) (with g; denoting the approximating function (o f),
(4.7) i €gikgtPre(L+ PHBNY2.

With the estimate g; € g M* P,, it is easily. verified  that

(4.8) figqT PP (1gigd).
Now, by computing 4;(1 < 4), and using (4 Sh, (a (b and (c} are verlfed
from (4.8,
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Lemma 43 (With § as in (24)) S< plhio pltreratiol g
UP(N) > N7 where
49) o5 = (1/4)+ AP a, > 0.8995472.

Proof. We estimate S (cf. (2.4)) as in the general case. Since &, < 1/4,
the integral over m (arguing as in the general case) is

(4.10) « ptT0 pithatatiol(op 1 emmas 3.1 and 3.2).

For the estimate of the integral over I, we use Lemma 3.3 replacmg 7 by Hy
where

4.11) W=42-2v-1/3)4,
with
(4.12) v = 2v, +vy-+v, = 0.662052,

It is now verified from (4.2), (4.3), (4.4), (4.6), (4.11) and (4.12) (and Lemma 3.3)
that the integral over M is also bounded by the estimate in (4.10). Result
now follows with «; as in (4.9). ,

II. Estimation of ag. Let
4.13) : ds = 0.1985,
and (with §; (1 €< 4) as above),
As = AP = (3+85)4, A=A =(3+8)A4T /4
Let the M, s be defined with

(1<i<4).

@14 , 1<q <P
LemMma 44. On M
(@ fi<q PP (i=1,2, (b)fs <q Py,
(© fo <g *Ps. (d)fs <q P,
where
(4.15) vy = 0.069167, vi = 0164025, v, = v} = 1/4,

Proof. This is verified from (4.8), (4.14) and (4.15) by computing  4;
(1<i<?). B
Lemma 4.5,

13
(4.16) S = Hﬂzlfﬁ fi 2da < P1+60 P(415a5+50) .
L

and

U (Ny > N6~ %,
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where X
(4.17) g = (1) + A9 as > 1 —(1/32)+(5/10%).

Proof. Same as Lemma 4.3 where in place of {(4.11) and (4 12), we use
Wo=4(2~2—1/3)55 w1th v = 2v2+v3-|—v4+v5 =0. 802359

Proof of Theorem 1. We follow the same proof as in § 11 of [10] by
considering W, s with la—a/gl < g~ P 7 for 1<q< PY2% For the
treatment of the minor arcs m, we use (4.17) and Weyl's inequality for an
additional 4-th power. Note that with admissibility of exponents, the
treatment of the singular series is simplified considerably (as there is no need
to impose congruence conditions on the summands in defining the
exponential sums). It now follows in a standard way that

(4.18) G*(4) < 2(6)+1 = 13.

. 5. The case k = 5. We start with Lemma 7.1 in [10] taking §; {1 <i < 5)
as-in {3.3) (in [10]). Then {29, ..., 1Y, 1} form admissible exponents, and
(cf. (73) in [10]) S

(5.1) 0.823065 < ag < 0.823069.

In the estimates of «,, ¢z and ay (corresponding to (4.8)), we now use
(52 fi €q7H5 Pitgiizee,

We can successively take §; = 1/8 for 6 <i 8.

~ In estimating oy, g and ag, we use f; <¢” ' P, (as easily verified from
(5.2)) respectively with 3 <i<6, 4<€i<7; and 3 <i< 8 (3.15) is satisfied
with k=5, d = 1/8 and r = 4 in each of these cases. (Actually, it 15 sufficient

to take r =3 in estimating a,.) {a;, may also be estimated with 8, slightly
less than 1/8))

Thus, starting with (5.1), and using

fipy = 1/S+o {4+(1/8)}/5 = 1/5+(33/40)0; (6 <i < 8),
we have
Lemma 5.1,
53 S=fumﬁiﬁVM<P”%wp;mﬁ
and )
(54) ag = 0.963288 = 1—(3/80)4(7/10%).

Proof that G{5 < 21. We follow precisely the same proof in § 11 of
[10] introducing three more 5-th powers to deal with m. With Weyl’s

inequality, the saving contributed on m by these three 5-th powers is
N (3/80)+60
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Hence, from (54), it follows that
(5.5) G(5) < 2(9)+3 = 21.

6. The case k = 6. The next two lemmas will be used for k= 6.
LemMma 6.1, Let

(6.1) | b= (k= 1)+ (172 B}k
Then, for k 2 6, _ o
(62) B sk (34 (1K) /242,

Proof For k = 6, this can be verified numerically. Also, A* > (1 — 1/k)¥,
and (1—1/k)* is an increasing function of k, while the right-side of (6.2) is a
decreasing function. Hence, result follows with verification for the case k = 7.

LEMMA 6.2. Ler 1 P”"2 ). Then, with 4 as in (6. 1) we have

(6.3) P""’ > qaf“““"”z Jor 1gr<k.

-Proof. The proof fo]lcws directly from (6.3).

Norte. If (1.2) is used, we can replace 1/2 by 3/4 in (6.3). Cdrresponding
to (5.2), we use f; <€ g~ % P, +4*** which, with (6.2) gives (on major arcs)

(6.4) fi<g P,

for all the f’s considered in the préofs. ‘
Let U =Y e(ow;), where the u-’s are distinct integers of' the form
7 up .
(E xf) occurring in the estlmate of o7 | in [6]. The next lemma follows {rom

[6] (Ch. 9, Lemma 99)

Lemma 6.3,
1
(6.5} {112 |U () do < PP U(0),
2 .
and
UP (N) > N8,
where
(6.6) ng = 0.8283548 .

LemMma 6.4, With f ffs and Ul(a) defined (iteratively) as before,

-fg!le(Oi)lzda < P1+60(P14‘..

1
67  S=[ifFFlfiafis-- Pg) U{0),
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and
(6)(N) > N“lﬁ
where
(68) o5 > 09941155 > 1 — (2/192) +(4/10%).

Proof. We take 8, = 1/16 for 8 <i < 14 (and use (6.4) with k = 0). At
the first step (of estimating eg), we take d=1/16 and r=1 in (3.15).
(Actually, it 1s sufficient to take r = 0, and use trivial estimate for f; over the
major arcs.) Then r is taken one larger at each of the successive steps (of
estimating o, o4, ...)- When r = 6, we use (3.16). The rest of the proofs are
simple computatlonal verifications (with (3.15) and (3.16)}. Usmg

(69) e, = 16+ 5+(1/16Y/6 = 6+(27/30, (8 < i< 14},

@;s is computed to satisfy (6.8).

Proof that G(6) < 32. We introduce two additional 6-th powers (for
dealing with the minor arcs m) and use (6.8). We follow the proof of Lemma
4.8 in [9] defining M, s with 1 < ¢ < P¥'® The saving contributed by the

two additional 6-th powers over m (using Weyl's mequahty) is NN

The result
(6.10) G{6) < 2(15)+2 =32
now follows in a standard way from (6.8).

7. The case k = 7. For k = 7, conditions (3.15) and (3.16) are verified as
in the case k = 6 (with enough lo spare in the estimates) with § = 1/2%"2. So,
we indicate only the main results in these cases,

With U{z) =Ze(o¢u,-j, where the u;’s are distinct integers of the form

10 “
(Y, x/) occurring in the estimate of oy, (cf. Lemma 9.10 in [6]), and
st—arting with _
(7.1) ay, = 085627,
we compute the o's with
(1) aer = U7+ {6+ (1/32)/7 = 1/T+(19324) e, (11 < i < 21).

We have
Lemma 7.1.
1
(7.3) S = [1F1fas - S PV @) de € P T0(Py, .. Py) U(O),
[ .

and
USHN) > N3,
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where
(74) gy > 0.998068 > 1—{1/448)+(2/10%).

We now introduce an additional 7-th power, and. follow the proof .of
Lemma 4.8 in [9]. Tt is verified from (7.4) that there is sufficient saving over
m (with Weyl's inequality for the additional 7-th power); so that

(7.5) G(7) € 2(22)+ 1 =45,
8. The case k= 8. Let U(x)

13
integers of the form (), x}) occurring in the estimate of «;5 (cf. Lemma 9.11
i=1

in [6]). Starting with
(8.1) oy = 08714775,

=Y e{zw;), where the u’s are distinct

L

we compute the o’s with
(82) a1 = 1/8+a; {7T-+(1/64))/8 = 1/8+(449/512)e, (14K i< 29)
to get the following: '

Lemma 8.1.
1
(8.3) S = [I/12 1 fao - Jral* (U @) >da € P*770(Pg.. . PLYU(0),
Q
and
UGN > N3, -
where
(8.4) o530 > 0.998205 > 1—(2/1024) +(1/10%.

Now, with (Weyl's inequality for) two additional 8-th powers, we get
from (8.4} .

8.5 G(8)Y < 2(30)+2 = 62.

i6
9. The case k =9. Let s denote distinct integers of the form (3 x7)

occurring in the estimate of o, . With the estimates as in § 7 of [7], we can
take ‘

(9.1) “ay; = 0.882015.
Now, the «’s are computed with

9.2)

2+ 1 = (1/9)+ 0 [8+(1/128)}/9 = (1/9)+(1025/1152); - (17 < i < 39).
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We have
Lemma 9.1.

1
©3) S=(IPfss.- SualP U@ da < P77 (Pss... Pry) U (0),

and
U (N) > N4,
where _
9.4) | tap > 0.9993 > 1 —(2/2304)+(1/10.

Now, with (Weyl’s inequality for) two additional 9-th powers, we get
(from (94))

(9.5) G < 2{40)+2 = §2.
19. The cases k = 10 and 11.
(A) k =10. With the estimates as in (b) of § 7 in [7], we have
USSP (N) > N9,
where
(10.1) 20 = 0.89095.

Now, we compute the o’s with

(10.2) &y g = (1/10)+a; {9+(1/256)}}/10 = (1/10) +(461/512) «;,
to get

{10.3) ®3p > 0.9643594,

(104). 234 > 0.9828417,

and {as required in the estimate of H(10))

(10.5) o5y > 0.899553 > 1 —(3/5120)+(1/10%).

Condition (14) in [8] is satisfied with s, =30, 5, = 36, y, = ttz0, and 7,
= i35, 80 that '

(10.6) G(10) € 2(36)+30 = 102.
(BY k= 11. As in {c) of § 7 in [7], we have UL (N) > N*?* where
(10.7) 430 = 0.90774.

The «’s are now computed with

(108) &y = (/11404 {10+(1/512)}/11 = 1/11+(5121/5632) 2,

icm
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giving

(10.9) _ gy > 096556 and  a,, > 0.98495.

Condition (14) in [8] is satisfied with s; = 34, 5, =42, v, = aa, and v, = a,.
Hence,

(10.10) G(11) < 2(42)+ 34 = 118.

11. Proof of Theoremr 3. For 6 < k=<9, Theorem 3 follows from
Theorem 2 as indicated in § 17 of [9]. For k = 10, using (10.5) and Weyl's
inequality for 3 additional 10-th powers (in place of the méthod in [8]), we
get G(10) € 2(51)+3 = 105, and this implies that H(10) < 107.

12. A theorem on admissible exponents. The next theorem is a slight
improvement for 4 < k <8 on the corresponding result of Davenport and
Erd6s in [3]: x5 is computed with @ =a, = 2/k, and | =2 in Theorem 2 of
[2]. But, the additional arguments as in Lemma 2.5 of [10] are required to
establish the admussibility of exponents.

TueoreM 4. Let 4 < k<8 and A=3k/(3k+2). Then {1,A, 1} form
admissible exponents.

13. Precise bounds for U (N) and U® (N). The bounds for U (V) and
U (N) so far wsed in the proofs work in the estimates of both G{k) and
H{k). However, the bounds can be made more precise by starting with
Davenport’s estimates for the «;'s {with small i’s). This is made possible only
because the major arcs are considered with small values of g, namely
g < P%*72 With the os defined as before, we have the following: _
TueoreM 5. (a) For k =3,

as = (7 + 330, )/S (7 +04) = 6173/8105,

(13.1) o, = 569/845,

(13.2) o, =(8+330,_,)/40 (6<s<9).
In particular,
153 481782661 20048587813
(13.3) %8 = 518720000 % = 50748800000
(b) For k=6, -
(13.4) g = 575117/787182, g = {15+ 81lo—1)/6(15+ 0. 1) |
: ' o : (7<s<8),
(13.5) oy = (16+81a,_,)/96 (9 <5< 15).
Here, o - ‘
oy - . 649358333
(13.6) %8 = 781808958 °

3 — Acta Arithmetics XLVIIL2
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Proof Of these, {13.1) and (13.4) are Davenport’s and are given in [2].
With the arguments already given in the paper, for k = 5, we take 6, = 1/8
for 5<i<8, and use o, = 1/5+(33/40)2,., leading to (13.2); for k = 6, we
take ;= 1/16 for 8<i=<14, and use o, = 1/6-+(27/32)a,_,, which
gstablishes (13.5).

It should be noted here that in Davenport’s results, xs; can be kept
explicit for k=5, and x4 for & = 6 (in estimating the number of integers of
the forms x34 ... +x3, and x{+-... +x§). For k = 3, it is also necessary to
modify the arguments (for the major arcs) as indicated in the introduction. In
this connection, Vaughan's result (1.2) may have to be used (where, it would
be sufficient to work with ¢** ™ in place of g''/#*%). Also, the integrals
(over the major arcs) of the error terms are to be estimated separately.

14. Addendum. For & = 6, Davenport’s estimale of a4 allows only x; to
be explicit in xf+ ... +x§. The methods in [9] and [10] (as in the case k
= 5) allow the .choice of the parameters ¢, {1 <i<7) close to that of
Davenport’s, at the same time retaining the use of admissible exponents (so
that, xy, ..., x5y are all explicit). These were used in the author’s earlier
estimate G{6) < 34. :

15. Additional remarks.

{A) In the proof of Gk} <k {3 log k+1log 108} (in [7]), the atllthor' used
(1.1) for the treatment of major arcs, and the same proofs were utilised in [;8]
also. However; it is now seen that it would be sufficient to use (1.1} with
g7 replacing ¢'Y? " For this (with the notations as in‘ [7], with the
major arcs defined as in [8], and with A = [(k+1)/2]). the integrals of E;
(0<i<k) where E,=(/*—g¢g*(/;.. )% and for 1<igk, E;
=g%gy .. gi- 2 =g)fi+1-- S are estimated separately over the major
arcs using

quv€2i+1)+(2i—3)/k|S(a, q”21<1 for 2$1£h1
q a
and also -
T g 0 S (a, g 1
q a
Here, the results of Davenport and Heilbronn in [4] provide sufficiently
good estimates over the major arcs for (fi—¢;) with 1<i<h For
h+1<i<k a non-trivial estimate for (fi—g;) would suffice, This may be
obtained by using Weyl's inequality for f; over the major arcs with large g
{and standard estimate for g;).

(B} For k =5, the recurrence relation (13.2) may be established with s
=9 also either by (i) removing the effect of the factor 1“*~ 1 (arising from
(2.14) by using a suitable summation technique over the major arcs; or (ii) by

“_‘considcring the integral of fo(x) rather than that of F(x) over the major arcs,
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(C) For k =4, more precise bounds for 25 and og can be obtained as
follows: As mentioned in (B), remove the effect of the factor 1 and
Integrate the error terms over the major arcs separately using the inequality

Y TS, g <1
q a

In addition to these, in estimating ag, the major arcs may be split into two
sets M, and W, (those with small and large g's respectively). I, is treated
as in the paper. In treating 9M,, f, is better estimated by using Weyl's
inequality, rather than using the estimates for major arcs.

(D) The reference no [17] given in [9] to the author’s paper is changed
to Portugaliac Math. 42 (4) (1985), pp. 447-465.

Added in proefs: (1) The case k = 6. The author has withheld a {previously planned)
separate publication for the case k =6 as further improvements have been obtained since the
announcereént of the method, the latest being G(6) < 31. The bound for 5 given by (13.5) falls
only slightly short for proving G(6) < 2(15)+1 = 31. This gap can he filled. One way of filling
this gup is to iterate with Hardy-Littlewood method at the last step also in dealing with
the minor arcs (without separately using Weyl's inequality for a 6-th power} to get G(6)
% 15416 = 31, Here, we do not estimate =, as we already know that «,, =1 (and that it
cannot exceed 1), but obtain a better saving than what is provided by Weyl's inequality. With u
corresponding t0 o given by [135), und f§ = (2,5 +)/2, the saving on the minor arcs {by a
combination with Schwarz's inequality) wauld be N™7 < N~ %, I fact it would be sufficient
to work with a number slightly less than g, 5o that the major arcs need be considered with even
smaller values of g (than the ones already considered with g < P¥%). This would further simpilify
the treatment of major arcs. While putling these together requires an additional argument, a
closer reflection will reveal that the cructal idea is the iterative use of Hardy-Littlewood method
with F(a) (cf. {2.3)). This is explicitly and clearly stated in Part I {[9]). What makes the iteration
successful is the fact that r is taken in a small interval {as compared to x). (2). In the footnote
of page | of Part II ([10]), the equality & =(1/8) has appeared incorrectly with 118 in place
of (1/8).
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Bounds for solutions of additive equationé
in an algebraic number field I

by

WanG Yuan* (Beijing, China)

1. Introduction. Let k be a rational integer > 1. Similar to Waring’s
problem, one can show by the Hardy-Littlewood's method that an equation

agxt+ ... +axt =0,

where a;, ..., a, are given rational integers but not all of the same sign, has a
nontrivial solution in nonnegative rational integers x,, ..., x,, provided only
that s ¢; (k). {See, eg, H. Davenport. [3]). Here we use c(f, .. to.
denote a positive constant depending on f, ..., g. As for a bound of these
solutions, it was shown by J. Pitman [10] that ifs=e, (k), then there exists a
nontrivial solution in nonnegative integers such that

(1) max x; < ¢s (k) max (1, lay, ..., a)**

where ¢, and ¢4 are explicit. Under suitable conditions and if 5 is very large,
the estimation can be considerably improved. (See, B. J. Birch [2] and W. M.

Schmidt [11], [12]) In particular, Schmidt proved that if s > ¢, (k ), the,
equation

R R N
with positive rational integer coefficients has a nontrivial solution 1in
nonnegative rational integers X, ..., X, ¥, ..., ¥ such that

2 max(x,,yJ) max (4, b)”"”.

hi inJ .

We use hereafter ¢, &, .. to denote arbitrary preasmgned posmve numbers
< 1. The number 1/k in (2) is best possible. Although the circle method is
still used in the proof of (2), the treatment of the minor arcs is complete]y
distinct from that in Waring’s problem.

* Supported by the Institute for Advanced Study, Princeton, N. J. 083540.



