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A note on Selberg sieve
by

SAVERIO SaLErNo (Salerno) .. .. o .o

Introduction. Eet .4 be a finite set of integers. f(n) a non-negalive
integer function and .« a sequence of integers. An important problem in

number theory is to estimate > fi(n) when . is, for example, the

nef” m(/
sequence of the primes or almost primes (we recall that a r-almost prime is

an integer with at most » prime factors, counting the multiplicity). For this

problem, the weighted sieve is often used. The idea works as follows: one

Introduces a weight b (n), positive only if ne.« and not too large for these n.

Then, if one is able to give a lower bound for Y f(mb(n), one gets a lower
Y S

net o

Hence, using Richert’s logarithmic weights, we consider

1 2
0 S—nEZIf(n){lmz 1 ‘; ; ( —l—‘gi—g)}(%xv),

vz

ne. b’

bound for

r<z <y,

where [,} is a real sequence, A, = 0 if ,u(v) O orif v> vy, and A, will be

suitably chosen in the applications.

The basic reference on the subject is [2], in particular Chapter X. We
point out that our choice of ,, as well as our error term, are different from
the usual ones. The possibility of working with different A, is due to the use
in the evaluation of (I) of a theorem of Bombieri [1]. quoted in the sequel.
The form of the error term is suggested by the bilinear form of the error
introduced by Iwaniec,

Here, the bilinear form of the error depends on the fact that the weight
of n is zero if n is not 1 or a prime. We hope to investigate the question of
the bilinear form of the error of Selberg sieve in a forthcoming paper.

We point out that our method does not need any knowledge of the so-
called “sieving limits”; this makes possible to avoid heavy computations. For
a discussion of this question, we refer to [47.

I thank with pleasure the referee of the present paper for hclpful
remarks.
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Definitions and statement of the reseits. We sel

Fony =4 (c
@ - ) — 2 S+ Ry
ne. !’ et
1= 0(modd '

with 0 < g(d) < d and g multiplicative, that is g (nm) = g (n)g(m) if (n, m) = 1;

we define

d
g {d) = Q(d);i ;(TI)

moreover, let

() o =

from which, by the Md&bius inversion formula,

iv)v > ﬂz(rv)yl(rv)g

) SETH) & ry

rv-

Finally, let {a,} be a real sequence, a, = 0 if d > dg, |2l <

Re 4’ dln vin ne. | A<y ezl
d<y ves
where
2
W (m)g, (m) ag{d) e \2
(6) G=3% X e e (2 i) L)
- mez d<y m ¢ v|ld
{m,d)=1
and
) o= Y A Ay,
¥1.¥p =x
[vq.¥gl=m

The asymptotic term in {5) is exactly that of Theorem 18 of [1], excepl
for the presence of f(n), but this introduces no real difference because it
suffices to consider the set .1~ formed by the same elements of .4/, but where
every n is repeated f(n) times. Following the proof of the theorem of

Bombieri quoted abave, the error term is

Z Z ay ]"'1 ]"vz R[d.vl,vz]

d<y vy,vg <z

and from this our expression of the error term (5), (7} is clear.

< 1. We shall use the
following theorem of Bombieri ([1], Theorem 18) in a slightly modified form:

(5) I a)(T Ay =G Y fm+0(y ¥ adme{d.m])

A nore on Selberg sieve

In this work, we shall choose A, =1 and

Cl if 21, M (V =1
(8) g\'z{él if Iy <V<Z, #2(\’):1,
0 otherwise

and we set

@ X=3 fn, y=X, =X, =z,=%9,

re. t’

r=(log X)°%,

102
nEI log V
We denote by C;, g, i=1, 2, ..., some constants,
Finally, we introduce the following conditions:

with f <=z and o, <1, d=m

(Ay) g(p)<p' ™" for some &, >0,
—k

(A2) > ——g(p;m- log p=0(1), with keN*,

pex

. X

(As) Y o [ €—+y, 2Z<z<y.

—Ep<y ne ' =

nEO(modsz

T = {3/{y

281

We express (A,) saying that the sieve is k-dimensional; we point out that .
the condition (A,) could be weakened without affecting our ‘results.

Then, we shall prove the following
Tusorem. Assume (A,), (Aq): then

(10) S=GX+0(3 Y enRpm)+0( Y caRy)
. <¥ mez? m<z2
| pey o
. where

(1) G ~Cllog X)"‘%(Q"—Hz—rz g*)[ |-k (log %)+

1 1 8

k
-+ Z —— 14— “‘J+ARF(k: 2, T)}

iy i k14
with

(12) ' el em
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ko 1
{119 F(k,g,r):.’lr(l—r)g" —I—J.'/ - -logk—g)-l—

rll

B
I, ((tw)ﬁ—log 1)——L£Qk(1~g>(1—r2),

-1 k
(117) C=([)"‘k]}_l(t+g"(’1-r))—l”(1mg%}l) (1_1),

P r
We also obtain the following

-CoroLLARY. Assume (A, (Aj), (As) and suppose that y and = are chosen
in such a way that the error terms of (10) are O(GX). Then

(13) 2 S >

n= Py

(log X)*
provided
5 |
NS = 1
(14) > |:oc+k(]0gﬁ+,-; ;

Jor some g > 0 (we denote by [x] the integer part of x).

With the usual choice of ¢,, that is'{, = {,, we should get for the order
of the almost-primes » the value given by {14) with F{k, ¢, ) = Q. Since we
can choose g, ¢, in order to have Fk, g, 1,)>0, we obtain an
improvement, which is appreciable when the dimension of the sieve k is
relatively large. _

Finally, we apply our results to the almost-primes represented by the
product of k linear polynomials. We obtain improvements for k > 4.

B 1 N kF(k 0, 1) b
a k+1) @f4ri-clgt

Proofs.
Proof of the theorem. Let us now denote by G, the G defined by (5)
with the following choise of the a,: )
it d=1,
“ Y w ds 1.

Similarly, G; and G, are the G’s corresponding to the choices

1}

2 _{1 if d=p<y, pprime, y>z,
0 otherwise;
logp . ) .
fod=p<y, ,
3) ;= {.log ¥ . p=7). ppHme
0  otherwise,
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respectively. We have by (A,), (A}

2
(15) ¥ w)n‘“(”) = C(log x| +0 ((log 1)
with
(16) Cz=(kr)‘lﬂ(1—g(—p’)“l(1—1)k>o.
p p

A proof of this can be found in [2], Chapter 5, no 3, formula (3.12).
We easily obtain

(17 G, ~C, 03 log* I+ ( _1ng:1}
""Czﬁi(iOgX)k A ot B~
Moreover

(18) (|Z 2V ol = Com—C)?

0 if ‘pm<:z, and
i zy<pm<zand 3, <m<z,
=2 (=0 if m<z and z; <pm<z,

2 if m<z and pm> z,
z f z;<m<zand pm> -,
Hence
3 ‘
B (mhg (m) .. .
(9 6= 5 BRIy el 3 i,
m<=y m zyfm<p<zfm P zfm<p<y P
pm pim
@i (myg; (m) 290
+ Y Y 3
sy <m<z m sim<p<y D
pim

The condition ptm can be eliminated without affecting the asymptotic
value of G; because we have, using (15),

y 4 (p)g: ()

p<:z P

Z 10 g, (1)

=ip? <t <z/p f

<llog 21 T gipyg (p lgp<(1% .

2
p<z I

Also, we obtain by partial summation, vsing (A,)

' g{p) 1
20 =k log(l +1 e ],
(20 Ex og(1+log JC)_i-C‘ﬁhO(l+log x)
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2 i .
1) Grm ootk 3 e L lostE) (24 Gy~ Cakiilog X)g 2 (1~ log

Then, we deduce So {21) becomes, recalling (9),

5, 1
+(1—1)—log~é+

ey { +log(z,/m) 1-¢
» 1
. pmg, (m) log y 2 k
e log + (1_ 2T Vog  Car(imn) | e
L, om -+log{z/m) iz Jloeg =x0-9 | =
s 0
w*(m) g, (m) log y
+k(E Y log - + & -
: s — 1) fk
Ty Smaz m 1+10g( /”1) _[(l_t)z—l—r_k] g‘ i ) (.)}‘
+O(Z 2 m)g, (m) 1 ) _ ¢ hi=1 i/
= m 1+log(z/m) : The calculation of G can be performed in a similar manner, and so we

give only a sketch of the computations. Using (A;), we have
For the error term of (21), we remark that, by (15), Y p g (Ay)

p2{m)g, (m) 1 (25)
L m 1+logiz/m)

log y :
ol (e~ P loglefen +log(a) 3,

k m<sy m

m<z 2 2
#(mg, (m) . ue(m g, (m
1 wrm)g, (m) 1 (mygy {m) +2 Y = log m+{34logly/z) Y, ———+
<€ Yy z B mezy m 2y <m<z m
log log Z m <zfiogs m zflogs <m <z m 2
) pe(mgy (m) !
(]og g)k ] k1 . + Z —— 0g M.
<% +(log log =) (log zy* ™ *. Dy <m<z m
log log = . :

" To estimate the main term of (21), we use {135) and partial summation. It follows from (15) and partial summation, recalling (9)

‘We have indeed, for y > x

k

(26 Gy~ Caki3 2 (log X)*{e"*(l—r)ﬁﬁ(l—en—’iwﬁgk“+

*(m)g, (m) k+1
@ ¥ -’i—(—# log (1 +log {y/m)) -y |
m<x k 22k . : 1 — KoL .
. | HO P ) =P (=0 )
dt
k
=C;(log x)*log(1 +log(y/x)+ C2 J(log ) log(y/) Now, the main term of (10) is obtained by (5) collecting together (17),
\ 1 (24) and (26) and observing that the contribution to the sum § of the term
_ 1 ; Srm(y iy Al\,)z is negligible. In fact, if we denote by G, the G
. et ln ¥|n
= 10£x"%10 1+log(y/x +J——~-—-—---~~—~— dt}—l—O {log x)* 1) p<t  vsz
2(log " {log (1 +1og (/) (log y/log x)—1 (g ) corresponding to the choice
0
_“{1 if d=p<tt<z,
and also , 4“7 10 otherwise
- we{m)y, (m) . elt : we obtain by computations similar to the previous ones
23 e 1+1 m)) = C, | (log Hf ——mmmrmoe :
@3y T FE tog(iloglaim) = s | tlox o og 1 L
1 ¢ | —— | (log X)~*
G4<(10g X) (log X)

. k i .
' (1) sk k1
= C;(log x)* {log log x"i"j; i (i>}+0((10g X, which is negligible in view of (9).
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For the error term, we have by (5)

Z Z ay bm R[dl.ll;l] = Z Z dp b-’" R[P.m]

42y pez? 2<Y mez?
=T ¥ abuRu+0( T (T an)lbulRy)
PP ez © o mez? fm

B
and in view of (7) it suffices {o show that |3] < 1. We have

qu)(ril v %Cl y KO0y #‘?(f');-fu(ff’}

raayfy Dpfv s ety
| g.(d) wrgr W2y ()]
a8y, 3 £OBO,, g rDa]
djv ¢ r<zyfy syfvr<zfv ¥
{ryvp=1 =1

We deduce, using {, <,

g () . g,
on A<y & % 6y ! _();QLQ,,"QE ¥ ‘(LEKL
d{v rzyly :1/v<r<:/\’! .
w 2 ! Eing (r
<& __U%_U g Mm“ =1,
re<Dy 2y <r<iz

Now, the theorem is completely proved. =

Proof of Corollary 1. Here, we use Richert’s logarithmic wughts
We define -

(28) h(n =1 Z 1— Z ( _lvog“p)

pln aln
Pt pey

First of all, we observe that the contribution to the sum § of the ne. #" such

that k() > 0 and there exists p*n with p <y is negligible. Indeed, hA(n) > 0

implies p >t and so, using (A,), this contribution is majorized by y+ X/L
Hence, we can assume that p?ln implies p > y. In this case

where the 'dash indicates that the sum is performed counting the multiplicity.
S0 h(n) > 0 implies

2. where Q(n) =31

rln

Moreover {4, < 1, lay €

(29) . Z, >Zf(nhn))_:/1)

e ¥|n

20m<d+(14) : y<z
N
.
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Collecting together (29) and (10), cur conclusion follows provided we choose
4 in such a manner that G given by (10) is positive. The greatest suitable
value of 4 15 given by (14). =

Applications. We are concerned with the almost-primes represented by
the polynomial p,(n) = (a, n+b,)...(a n+b.). In this case we define

o {d)
X
d

Ae=1lpm 1sngx), R= Y 1-
2 ne.i-‘k
n=0{modd)

0. (d) = # {p,(n) = O(mod d)| neZ,}.

We introduce the following natural assumptions

(PH pe(n) has no fixed divisor,
k

(P%) S HTa Il (ab—ash) 0.
i=1 1€1<s5k

Condition (P%) ensures that no linear factor of p, (i) is a multiple of another.
For further details, we refer to Theorem 10.5 of [2].
We use the following trivial estimate for the error term.

LeEMMA. Assume (PY), (P¥): then, for every £ >0 we have for some § > 0
(30) Y IR <rt70 =
dexl™
Qur result is the following:
ProrosiTion. Assume (PF), (P%); then we have

X
(1) #in < x| pe(n) = Pyl » {og oF'

for suitable r(k), whose value is given in the table below for 2< k<6

k|21 3| 4] 5/ 6
rk)| 6 1 10| 14| 18 | 23

Moreover, we have r(k) < ck log k, with ¢ < 1, for k large enough.

Proof We use the corollary, choosing +2f = 1—g 8 == k == dim . +7,.
In view of (30), the conclusion of the corollary holds. To obtain our thesis,
we make the following choice of the parameters:

x=t—g, P=it-g 1=% o=47% u
Qur proposition has to be compared with Theorem 10.5 and Corollary
10.11.2 of {2] where r{k ~ k log k for k large. We have improvements for
k= 4.
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On the difference between perfect powers
by

Jan Turk (Apeldoorn)

1. Introduction. The problem whether there exists a function ¢: N — N
with lim @{i) = ¢ such that

[ fad =]

{0) |x"—y™ = @(x" for all perfect powers x"s£ ™

is still unsolved (see [5], p. 66). Actually, nothing beyond |x"—3y™| = 2 for
sufficiently large perfect powers x" = p™ ([14]) is known when there are no
restrictions on the wvariables x, ¥, »n, m other than the obvious ones
(x,y.n,meN, nz2, mz2). :

When two of the four variables are restricted the following results have
been established (see Section 4.1 for more details).

Two restricted bases: for every x, ve N there exists a (large) number
¢ = c(x, ¥} such that (0} holds with (1) =1(2log 1)™"

One restricted base and one restricted exponent: for every x, me N with
m = 2 there exist (small) positive numbers ¢ = & (x, m), i = 1, 2, such that (0)
holds with @{1} =&, 1'%

Two restricted exponents: for every n, me N with n =2, m> 2 there
exist (small) positive numbers & = & (n, m), { = 3, 4, such that (0} helds with
(1) = e3(log )™ -

It is the purpose of this paper to obtain functions ¢ for which (0) holds
when only one of the variables is restricted. Our results are as follows (see

. Section 4.2 for more details).

One restricted base: for every xe N there exist (small) positive numbers
8, = 8,(x), i =1, 2 such that (0) holds with o(1} =3, ("2,

One restricted exponent; for every ne N with n 2> 2 there exist (small)
positive numbers & = &;(n), i=3,4, such that () holds with @t}
= 8, exp(3, (log log log(r+16))'").

The result for the case of one restricied base can actually be inferred
from the detailed results on the case of one restricted base and one restricted
exponent. The proof for the case of one restricted exponent depends on
explicit bounds for the solutions nz, x, y of the Diophantine equation F(x)
=ay™ (where ae Z and FeZ[X] are given) that we derive in Sections 2
and 3, thereby obtaining more explicit results than in [9] and [13].

The author thanks the referee for his thorcugh comments.



