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Bounds for exponential sums*
by
WorLrcanc M. Scumipt (Boulder, Colo.)

1. Introduction. Let F, be the finite field of ¢ = p' clements where p is a
prime. Suppose PB(X) = P(X,, ..., X,) is a polynomial with coefficients in
F,. Consider the sum

S

i

ge(p” T(PE),

where e(2) = e*™*, where I denotes the trace from- F, to the prime field F,,
and where the sum is over the points x of Fj.
Suppose that d = 2 and that

(1.1) e U
where 30 is a form of degree j. We write
h=h() = h(3)
for the smallest number # such that 3¢ may be written as
(1.2) T = OB, + ..+ U, B,

with forms 2, B;, each of positive degree and with coeefficients in F,. The
quantity h is invariant under linear substitutions of the variables with
coeflicients in F,.

TrHEOREM 1. For p>d we have

(1.3) IS| < ¢**
with _
(1.4 =20 e |,

where | o | denotes the smallest integer 2 o, and where @(d) depends only on d.
We may - take eg. @2 =00)=1, P@) =3, D(S)=13, and P(d)
< (log2)™*d! in general. The constant in < depends only on s and d.

* Written with partial support from NSF-MCS-8211461,
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The commeon zeros of ;, By, ..., W, B, in (1.2) are singular points of
3, and hence s—2h < dim V*, where V* is the locus of singular points of
3 (in some “universal domain™). So our bound is useful in particular when
dim V'* is rather smaller than s. In the case when 3 is nonsingular, h > /2,
but in this case Deligne [6] has given the much sharper estimate |S] < ¢*/2. It
is reasonable to expect that eventvally Theorem 1 (in a sharper form) will be
a consequence of Deligne's work and of algebraic geometry. But at present,
our conclusion has not been derived in this way. This is because our present
knowledge of Betti numbers is poor.

Conversely, our theorem yields information about Betti numbers. Let 7
= () be the least number h such that I* may be written in the form (1.2),
with forms 9, B; of positive degree having coeflicients in the algebraic
closure £, of F,. According to our theorem, the sums

S =3 ﬁ’( T (W),

.1

X Fq
where I; is the trace from Fq, to F,, have
S < g,

where % is delined just like x by (1.4), but with /7 in place of h. 1t foliows ([7],
Chapler 2) that the Betti numbers B, with > 2s—2% vanish.

The case d = 3 of Theorem 1 is due to Davenport and Lewis [5], who
point out that the case d =2 is fairly obvious. Their work is based on a
method developed by Davenport [4] in his investigation of ¢hbic cquations.
The present work is based on the author's extension [13] of Davenport's
“approach to forms of degree higher than 3. Qur method is “elementary”, but
perhaps not simple.

The sums of Theorem 1 are “complete” surns. Wc next will consider

“incomplete” sums, of the type

Se =Y e(p™ T(R)),

xc

where B is a “box” contained in F;. That is,

(1.5) B=1, %, x3,

with J, a set of elements a,-+c“o:[-1+. ooy in F,, where o is a (ixed
clement of F,, where oy, ..., ay is a fixed basis of F, over F,, and where the
c; (1<i <,s 1<ji<) run through the integers in 1 < ¢;; € Py, where the
P; are fixed integers in 1< Py<p. In the case when P,=p
(1<i<s, 1<, the box B= F;, and §; is the complete sum S. In
general, when 1 < Py < P<p (1< <s I <j<)), we will say that B is of
size. K P. On the other hand we will say that B is of size = P when
1P Py<p.
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Tueorem 2. Let P =p® where d™* <8 <1, and put

(1.6) = u(8) = (d—&"Yd—1)"' 21~ b (d) |
Then if B is a box of size € P, we have for every 2 >0
(1.7 [Syl <€ psimi*e,

with the constant in <€ depending only on s, d, I, §, &.

Except for the « in the exponent, and the dependency of the constant on
¢ and [ (which renders the assertion useless for small p), Thecrem 2 contains
Theorem 1 as the special case 6 =1,

Serre ([15], théoréme A.5) has pointed out how a method of Hua leads
from information on complete sums to information on incomplete sums. But
this approach leads to nontrivial bounds only when & > 1/2. Hence it
appears that the present methods of algebraic geometry are by and large
unsuitable for incomplete sums. It should be noted that our restriction
> d~'is a natural one: when & < d~' and when the coefficients of [} are
small, then clearly one cannot expect much more than the trivial bound.

Now let P =40, ..., L) be an rtuple of polynomials. We are not so
much interested in these r polynomials themselves, as we are in the pencil
generated by them, ie. the set of polynomials

1‘ = ai; =a‘1 s’Bl."‘ “i"armr

with a = (g, a,) € Fy, but a # 0. We will suppose that each polynomial of
the pencil is of degree = 2. Then we define

(1.8) h(*B) : = min h{*P),
with the minimum to be taken over polynomials 8 of the pencil. In the

"special case when each polynomial of the pencil is of degree 4, and using the

notation (1.1) for each P, we have h{P) = ~(I*) with I = (3P, ..., IN).
More generally, when each polynomial is of degree <d, one has s—
~ 21 < dim V*, where V* is the manifold of singular points of 3“, Le. points
where the matrix (83"/dx) (1 <i<r, 1 <j<s) has rank <r. Thus h > s/2
when 3% is nonsingular.

Given a box B < F, denote its cardinality by |8, and write Ng
= Ny () for the number of common zeros of P in B

TrhrorEM 3. Let B be an r-tuple of polynomials such that every poly-
nomial in its pencil has a degree between dy and d, where 2 < do < d are given.
Suppose that p>d, that P=p* with dy' <& < 1. Write h=h(P), and let
% = % (8) he defined by (1 6). Then yiven & > 0 and given a box B of Fy of size
< P, we have

(1.9} Ny =g "B +0(P"9,

with a constant in O depending only on s, d, I, d, &
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In particular, Ng > 0 when B is a box of size = P°, provided thut
(L.10) h>r(d—1)(dés—1)"12¢" 1@ (d),

and that p> p(s,d, r, 1, 8).

Estimates for N, had been given by several authors, e.g. Chalk and
Williams [3], and Smith {16]. It follows immediately (at least in the case
when ¢ = p, i.e. | = 1) from work of Deligne and the Appendix of Serre [15]
that

(1.11) Ny = g7 |8+ 0 (g"* (log p)*)

when the form of highest degree of each polynomial of the pencil is
nonsingular, so in particular when the r-tuple 3“ is nonsingular. The
constant in @ here depends on s, d, I Hence Ny > 0 when

(1.12) 1B] > cy (s, d, Dg " (log p)*. -

Myerson [97 in the case g = p used Deligne’s results more carefully to sce
that (vnder some extra conditions on PB) Ny > 0 when p > p,(s, d, &) and

(1.13) 1B > (1+2) (2d — 2 p2+r.
In particular, Ny >0 when B is a box of size

> (1+g)(2d —2) ptra+ s,

In these results which follow from Deligne’s work, it was assumed that
the form of highest degree of each polynomial of the pencil was nonsingular.
We do not have this requirement in Theorem 3. But the biggest difference is
that (1.11), (1.12), (1.13) give significant results only for boxes of size = p?
with 6 > 1/2, whereas we allow & to lie in dg' <d < 1. _

THEOREM 4. Given d, v, and § > 1/2, there is an §, = s,(d, r, 8) as follows.
Let 3 be a system of r forms of degree < d with integer coefficients in s > s,
variables. Then for every prime p, the system of congruences

(1.14) J(x) = 0(mod p)
has a solution x £ 0 whose size |x| = max(|x,|, ..., |x) has
(1.15) |x} < p°,

with a constant in < which depends only on d, r, 9.

The theorem probably remains true with the prime p replaced by an
arbitrary modulus m. 1 hope to come back to this question in subsequent
work.

When k is even and J=(Xi+ ... +X?)¥% then every solution x # 0
of (1.14) has |x{ > p"% which shows that the theorem would become false for
& < 1/2. The case 6 = 1/2 is open. But in the case when all the forms of 2 are
of odd degree, the theorem is true for any & > 0. In this case the author [11]
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has shown that the system of diophantine equations J(x) = 0 has a soluticn
with 0 < x| <€ p? if the coefficients of 3 have modulus < p. The interesting
case of Theorem 4 is thus when the forms of J are even degree. The following
cases had been obtained with an arbitrary modulus m. Schinzel, Schlickewei
and Schmidt [10] dealt with a single quadratic form, and R. C. Baker [1]
with a system of quadratic forms. He also dealt with a single quartic form,
but only with & > 3/4.

2. Composite moduli. Given a form J of degree d = 2 with coefficients in
a commutative ring 4, we can again define h = h(J): 1t is the smallest integer
such that J may be written as (1.2), with 2, B, being forms of positive
degree with coefficients in A. In particular, when A = 4,, = Z/mZ and when
Jis a form in A,[X], the invariant A(J) is well defined. More generally, let
a be a divisor of m. There is a natural map 4,, -» 4,, and a natural map of
polynomial rings A, [X]— A,[X], mapping J(X)— 3,(X), say. We write
h,(3) = h(3,), and we define k, () for polynomials B in A, [X] of degree
< d by using their homogeneous part I,

Again when Pe A, [X], we consider sums

Sy = Z e(m-l \B(x));

1B

where B is a box in A4j, ie. it is a product set (1.3} where 3, is a set of
elements o; --¢; f; in A,,, where «; is a fixed element of 4, f; is a fixed unit of
Ay, and ¢ (i=1, ..., 5) runs through 1, 2, ..., P,, with the P, being fixed
integers in 1 < P, << m. The box is said to be of size < P 1l < P, <P <m.

THEOREM 5. Let ‘B be a polynomial of degree < d with coefficients in A,
where m is square free. Let B be a box of size K P=m’ withd ' <§ L1,
Suppose that

Syl = P7X

where K 2 1. When I' > 1 is an integer and when m = m (s, d, 8, I'), there is
a factorization m == ab such that b < PYT and

(2.1) _ B (3 < (d—6" 1" 1 d* 2 P @(d)KT .

3. A basic inequality. Let G, H be additive groups, and % a map G — H.
As in [11], define _ -
1 1 '

g1t tEe .
Belgys g = 3 o 2 (=DPTTTFG ey gy L e,
£y =0 =0 ’ .
so that ®, is a symmetric function from G x ... x G into H. Given a subset
A < G, we write 2P for the difference set, i.e. the set of differences a—a’ with

a, ¢’ N, Let M~y be the translated set of elements a—g with ae 2, and let
1 1

gy, gd= 1 o ) A—sygi— ... =g

£, =0 5=0
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When 2 is finite, its cardinality is denqtgd by‘1“)[|. ‘ ]

The exponential function e(z) = e s defined for ze R/Z.

Lemma 3.1. Let © be a map G — H where H is a subgroup of R/Z. Let N
he a finite subset of G, and put
(3.1) S=28y= 3 e(®(y).

gell
Then for each d = 2,

[S|zd—1 < I‘,l[:)lzd—laa T oL Z | Z e(By(gy. -, gl,))l,
ape? g qeud BB ety = 1)

Proof. This is a version of Weyl's inequality. 1t was shown in the case

G = Z° in [13], Lemma 11.1, and in the case U =G in [12], Lemma 3. The

general case is an obvious generalization.

4. A subset 9i of G*~!, and complete sums. Again let $: G —H be a
map of additive groups. In [12], Lemma 1, we showed that ®(gy, ..., ¢,)
where d = 1 is “muliilinear”, ie. it is a homomorphism in each argument g,
if and only if ®,4,(g1,..., ga+q) s identically zero. Such a map will be
called a polynomial of degree < d.

So now let ®: G — H be a polynomial of degree < d where d > 2. With
& we associate the subset M of G"'=Gx...x(, consisting of
@1s -, gay) for which O (g, ..., gy~1. 9y =0, identically in g. If, say,
€4, ..., ep is a set of generators of G, then (g1, ..., gy-) lies in WM precisely
when ®,(g;, ..., ga-1- @) =0 (1 <i<T).

Lemma 4.1, Suppose G is finite, & is @ polynomial from G into H = R/Z
of degree < d where d = 2, and S is given by (3.1) with W =G, so that § is a
complete sum, Then

S| < 1GPR T aay,

Proof. This follows from [12], Lemma 6, and is an easy consequence of
Lemma 3.1: consider the inner sum in the conclusion of that lemma. We
have (g, ... ga-1) =G, and e(®y{gy, ...\ gu-rs 9)) = 2, say, is a
character on G. Thus the inner sum is a chavacter sum. and it is equal to |G|
when (gq, ..., gy-y) €W, and equal to 0 otherwise,

- Lemma 4.2, Make the assumptions of Lemma 4.1, in the special case when
G = F;. Then for each K we have either

1S < ¢t K,
or
|9 = qs(d-—n-zdmlk‘

Proof. This is an immediate consequence of the preceding lemma,
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Lemma 4.3. Ler G = F) and H = (p~ ' Z/Z), ie. the rationals p~'a with
aeZ, taken modulo 1. Let B(X)= B(X,, ..., X,) be a polynomial in the
traditional sense of the type (1.1) and with coefficients in F,. Then '

®(x) = p~ ! T(P(x)

is a polynomiul of degree <d from G ro H in the sense of this section.
Moreover, IM(G) = M(T®), Le. M= IN(G) consists of (xy, ..., X4.,) with
x € F having 30 (x,, ..., x;y, X) =0, identically in X.

Proof. First of all, the map x~»(x) is a polynomial of degree < d in
the sense of this section ffom G into H; = F,. We have P,(x, ..., x,)

= 3" (x(, ..., x,). Next, the map x—=p~ 1 T(x) is a homomorphism from H,
into If. Thus

Gglxy, o x) = p TP (xy, .00y X)),

and this is multilinear. So ® is a polynomial of degree <d.
Now if x e F, is such that p~* T (ax) = 0 (the zero element of H) for each

-omel,, then necessarily x=0. Further {x;,..., x,_;) lies in M = N(H)

precisely when p™7 T{T"(x, ..., x,-(, ) = 0 for each xeF5. Replacing x
by ax and noting that 3% is linear in each argument, we may conclude that
J0 gy oeos X4o g, X) =0 for every xe F3, and hence 3 (xy, ..., xy_3, X) =0,
identically in X,

5. X and incomplete sums. Our goal here is to carry over Lemma 4.2 to
incomplete sums as far as possible.

Penote by !z]] the distance from an element ze R/Z Lo the zero element.
Then |zl = min|x|, over xeR whose image in R/Z is z.

A finite subset B of G will be called a box of dimension B if it consists
of elements ey +¢y ; -+ ... +cpey Where ey, ey, ..., ¢ are fixed elements of G,
where each ¢; runs through some sequence 1, 2,...,Q;, and where the
0,0, ... O elements so obtained are distinct. We will call e, ..., ez a basis
of the box (although the box depends on e, as well), and we will say that it
is of size £ P if each Q, < P. Note that the “dimension” B and ¢,, ¢, ..., ep
are not necegsarily determined by . '

Lemma 5.1. Let 5 be a polynomial of degree < d (where d = 2) from G
into H < R/Z. Let B =G be a box of size < P with basis ey, ..., eg. Define
the sum Sq as in (3.1). Then

B - '
150127 2 P08 (T min (P, [{Gg(dys -0 ga-15 @7 Y),
=1

where the sum is over (d—l)-tuples of -elements g, ..., gg-1 of B°. The
constant in <€ depends only on B, d. .

7 = Acta Arithmetica XLIV.3
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Proof This is essentially Lemma 13.1 of [13]. When &: G~ H is
“linear”, i.e. when it is a homomorphism, then

B Qi B )
Zetwor=I1 .>; vt < [ i gy

gl

n(P, 18~ Y).

l{'""“’m |

We simply have to apply this remark to the inner sum of Lemma 3.1, and we
have to observe that |B”| < P®, and that each set By, ..., ¢a-1) is the
union of a bounded number of boxes with basis ¢, .... ¢y and of size € P.

Lomma 5.2, Make the same assumptions as in the preceding lemma.
Suppose further that

Syl = P27F

where K > 0. Then the number N of {d —1)-tuples of elements gy, ..
B with

vy Ha—1 In

1Galgss oo gu-vo @l <P (i=1,..,B)

satisfies
N3 pBd=1- 297 1K ~s
)
where & > 0 is arbitrary and where the constant in > depends only on B, d, ¢,

Proof Just as for Lemma 13.2 of [13].
Let P be natural and let ¢, ..., ¢z be elements of G. We now make the
assumption that

(5.1) the P? elements ¢ e, + ...+ cyey with

: 1 <¢y, ..., cp € P are distinet,
Given a box B with basis e, ..., ey and of size < P, the difference set B®
is contained in the set E(P) of elements ¢, e+ ... +cyey with | € P
(i=1,..., B). More generally, when | < R € P, write E(R) for the set of
elements ¢, &, - ... +cgeg With o] € R {1 =1, ..., B), These elements are not
necessarily distinct, but by (5.1) at most 3# of them can be egual.

‘Lemma 5.3, Maoke the same assumptions as in the preceding lemma,
and further suppose thar (5.1} holds. Let 0 < n £ 1. Then the number N(n). of
(d—D-tuples gy, ..., gq—y in E(P) with

(5.2 g1 s gy e < PN i L B)
satisfies
N » P g 24 "11{--13‘

The constant in > depends only on B, d, v, &

icm
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Proof. This is essentially the case d = k of Lemma 14. 2 of [13]. By our
condition (5.1) we lose at most a factor 3% at each step of the proof.

Given a box B and a polynomial & as above, write YR{R) for the subset
of M consisting of (g,. ..., gs-1) in D with each g;e E(R).

LEMMA 3.4, Suppose d = 2 and O is a polynonmial of degree < d from G
into H=(m "' Z/Z), ie. the rationals wirh denominator m, taken modulo 1.
Suppose that d”' <d <1, e>0,

(5.3) 0 <y <{d—=56"Nd~1).

Suppose B < G is a box of size < P =", and with a basis e, ..., eg which
generates G. Suppose that {5.1) holds. Then given K > 0, we have either

(54) 1Sg < PEX,
or R=P" has
(5.5) MR (R)| 3 RB- 1247 Hkm—e

The constant in > here depends only on B, d, n, =

Proof. By (5.3), and since P = m’, the right hand side of (5.2) is less than
m™ 1. (At least when m > 1; but the case m = 1 is trivial} Since the values of
®, lie in (m™' Z/Z), the relation {5.2) then leads to ®&,(gy, ..., g4-1.€) =0
(i=1,..., B).

6. Invariants k, h, 7. Now let F be an arbitrary field, and Ja form in s
variables of degree d = 2 with coefficients in F. One may again define
h=h(3) as the least number & such that I may be written as

61 F= W By W By,

with forms 2, B, of positive degree and with coefficients in F. We further
define h = h(3) as the least integer k such that 3 may be as (6.1), with forms
A, B, having coefficients in any extension field of F. Then clearly h is the
least number & such that J is writeable as (6.1) with coefficients in the
algebraic closure F of F. We have h< . '

We define 9 as the subset of F“~!' consisting of (d—1)-tuples
Xiyooes Xy with Ju(xy. ..., %20, X) =0, identically in X. Now let @ be
some “universal domain® over F, ie. a field conlaining F which is
algebraijcally closed and of infinite transcendence degree over F. We define m
as the set of {d—1)-tuples x,, ..., x;., with components in Q for which
Jy(xps oees Xgoqs X) = 0. Then *Dt is an algebrajc manifold in QY5 we
denote its codimension by = F(J). Onec proves as in [13], Lemma 16.1,
that :

(6.2) g<27th

ProrosiTioN T, When F is of characteristic > d, then
h<adg.
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The case F = C is Proposition 11l of [13]. Practically no changes are
necessary in the general case. (One can avoid formula (20.1) of [117, with !
in the denominator.) Writing % (X) = J,(X, ..., X), one finds (corresponding
to [13], § 23) that h(®) < @(d) F(T). When the characteristic exceeds d, then
the relation ®G{X) =(—1}%d! 3(X) shows that also h(3J) < @ () F(J).

Now let ©(Z) be a subset of F* such that the projection on any
coordinate axis contains at most £ elements. Thus T(Z) = Dy x ... x D,
where T, € F has cardinality |2/ < Z. Let 9R(D(Z)) consist of (d ——1) -tuples
(xy, .., X;- )M with each ;e D(Z) (f=1,...,d=-1).

Prorosition 1. Suppose that 3 s a form of degree d > 1 with coefficients
in a perfect field F of characteristic > d. Suppose that for some set D(Z),
where Z > 1, we have

(63) |‘JR(®(Z))| = C’Z’S(d-- 1y~p~ ln

where C = C\{s, d} is a constant independent of F, 3, and where y is an
integer. Then
(6.4) h3) < @(d)y.

This corresponds to Proposition 11T of [13], which contains essentially
the case F= Q. We are really interested in Proposition 1 rather than
Proposition I, which was stated for background, and since it is a little easier,

The definition of 7 implies (see the Appendix) that

(WD @) < Bz

with B = B(s, d). Hence when C is sufficiently large, (6.3) implies that y > 7,
and Proposition T gives A(3J) < @(d)y. But this is weaker than (6.4).

The proof of Proposition III in [13] carries over to the present
situation. We just have to replace @ by F, and C by a universal domain Q
over F, The following exira remarks might be helpful.

When Vis an algebraic subset of £, one could define “V is defined over
F’ by either

(i) the ideal J(V) of polynomials fe@[X] which vanish on ¥ has a
basis in F[X], or by

(i) ¥ is the sel of zeros of an ideal X which has a basis in F.

Both of these concepts occur in the proof. E.g. (i) is the required

definition for Lemma 19.1 of [13], more precisely for the last assertion of
that lemma. On the other hand it is seen that e.g. in Lemma 24.2 of [13]
“defined over F” refers to property (ii).

However, for a perfect field F, every algebraic extension is separable, amd
hence (i), (i) are the same by the equivalence of C6é, C7 in Lang [8], § LS.

The second remark is that when ©(Z)< Q% then an algebraic set
V<= QF (such as the set V' in [13], § 24) of dimension ¢ has

(6.5) IV D2 < efS, h 2,

icm
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provided V lies in a certain class €(}), This will be proved in the Appendiﬁc.
As a consequence, [13], (24.3), can again be established, and Proposition I
follows as in [13].

7. Proof of Theorems 1 and 2. Let » be given by (1.4), and set
y = (YD (d) I~1 = 2" Lpe—1,
Put
K =x~—(log C/2*" 'log g},

where C = C(s, ) is the constant in Proposition I. New if § is a complete
sum of the type considered in Theorem 1, then by Lemma 4.2 we have either

(7.1) S| < g% =g,
or
(7.2) MY 3= god= 1= 2d-1g _ = Cg~ - 24 1y o S

When p > d, we may apply Proposition I with Z =¢ and D= F;. We see
that (7.2), which now is the same as (63), leads to A(J) < P(d)y,
contradicting our choice of y. Thus (7.1) must hold,

We now turn to Theorem 2. Again set y = rh(ﬁ/cb (d)—l—— 1, but this time

let » be given by (1.6), so that '
2ty (d=1)d =51 =p+1.
Let ¢ > 0 be given. Pick n with (5.3), i.e, with 0 <7 < (d—8"YAd—1), and so
close to the right end point of this interval that
(1.3) 24 H{(e/m) — (6/ D)+ (efh) < y+ 1.
We can choose 5 = n(s, d, [, 8, #). Finally set
K =unl—e¢.

" The map x> Gi(x)=p* I(ﬂ}(:é) ooccurring in the sum Sy I8 &
polynomial of degree < d from G =F into H=(p"'Z)/Z. We now apply
Lemma 54 wnh m=p, P=p’ B=sl The sum Sy of Theorem 2 then either

has (5.4), 1,
(7 4) ISM' < PB-K — Pst—xH-u

or R = P7 satisfies (5.5). The constant in » in (S 5) depends on B = s, d, n, &,

hence only on s, 4, I, 8, &
The pro;entmn of IM(R} on each of the 5 coordmates axes contains at

most Z = (2R+1)' elements. Hence M(R) = M(D(Z)), and (5.5) becomes
| M(D(2)) >z 0T 247 Ge/m) = (&/0) = /D),
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Thus in view of (7.3) we have
’gm(g(zm > CZM- V-1

provided p, and hence P, R and £ is large. Here C = C/(s, d) is the constant
of Proposition I. When p > d, this proposition yields h(3) € &(d)7y, which
contradicts our choice of y. Thus (7.4} must hold, and Thecrem 2 is correct.

8. Proof of Theorem 3. The relation
1o =Jq’ when y =0,
Z e(p \-(a,”) 1 0 when ¥ ef' \0

acF"
oF!
is well known. Thus
(8.1) Ny=gq "|B+¢™" > ¥ e(p™ TaP(v))).
ael? xXe®
.t
Each polynomial a¥ occurring here is of degree = i,. Since d7' - 5 <1,

given a box B of size < P =p’ we may apply Theorem 2, to see that the

inner sum on the right hand side of (8.1) is < P*"**¢ Thus {1.9) follows.
‘ Since k is an integer, (1.10) implies that / divided by the right hand side
of (110 is 2 1+ 28 with £ =£(d, r, 8). As a consequence b 2z r(1428). We
choose & —~s(d r, 8) > 0 with

FIL+28(1—p)—a =z r+é.

Now suppose that B is a box with P; = P = [p®], ie. the integer part of

if
PP (1<i<s, 1<j<D. Then B =P and (1.9) yields
Ny/|B| =

wr__l__o(waHa);
When p > p*(d, r, 8), then P = p¥' =8 = 4019 angd since

(el—e}(8/h(1—e) > du(l—g)—e = r(1 +28)(1—&)—e = r+ &,
we have

Ny/|Bl = ¢ (L+0(g™%).

The constant in O here depends on's, d, r, I, §, and hence we certainly have
Ny >0 when p>p,(s,d, r, I, 8).

9. Proof of Theorem 4. Let I = (I .
with the subsystem 39 consisting of r, 2 O forms of degree d. Such a system
will be called of type ¥ = (ry, ..., r;, 7). We have to prove that given r and
& > 1/2, there is an s, = 5, (r, 6) such that for a system of forms of type » in
f1>1 53)2 variables, the congruences (1.14) have a nontrivial solution x with

Given r=(r,...,r) and ¢ =(r, ..., ry) with nonnegalwe integer
components and w1th ri # 0, we write r > ¢ if either k> 1 or if k =/ and

» J2 ) be a system of forms,
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there is a fin 1<<t<k having ¥, >r, and r,=r for t <ig k. Then >
establishes a well ordering among tuples r, and we may prove Theorem 4 by

induction.
Qur first observation is that the theorem is true for r = {r,), and that the

truth of the theorem for'r = (r,, ..., r3, O) implies its truth for (ry, ..., ra, 1y):
for when we are given linear forms & (i = 1, #() in s variables and with
coefficients of absolute value < p, they have a common mteger zero y with
0 <y < (sp)™"" (Cassels [2], § VL3, Lemma 3; this is sometimes called
“Siegel's Lemma”). Thus when ¢ > ¢"'{l+¢)r,, there is a nontrivial zero
with ¥ < (spf. and when s> (e”'(1+c)r +1), there are ! linearly
independent such zeros y(, ..., ¥,. We now set x=2z,y,+ ... +z, 5. With
each form J; of J we associate a new form JFf(Z)= J(Z,;y;.+ ... +Z,¥3).
Since the r, linear forms ¥(Z) vanish identically, it remains to solve J¥(z)
=0 (mod p) for a system JI* of type r. When I > s, (r, (§/2) +(1/4)}, there is
such a z with |z| < p®¥* 1 Thus with & = (5/2) —(1/4), the vector x =z, y, +
+ ... +zp will have both (1.14) and (1.15).

It will thus suffice to prove the theorem for » = (ry, ..., r;, 0), assuming
its truth for each # < r. Write r =7, + ... +7, and let N be the number of
solutions of (1.14) with {1.15). Thus N = N, where B is the box |x < p°
According to (8.1),

P8+ Y Y e(pTt a3(x)).

a(mod p) xeB

Suppese for the moment that for each a # @, the inner sum over xe'B
has absolute value < |9B| p~*~ 1. Then since the number of possibilities for a is
less than p", we obtain :

Nzp|8(l-p™h.

In particular, when s is large, we may infer that N > 1, and there is a
nontrivial solution in the box B.

We may therefore suppose that at least ome of the inner sums is
> B p~r~ ! in absolute value. The box B is of size < P with P = 2[p°1+1,
and there is an « with a som

.1y Syl > 1B p~ "t PRI,

Here

SQ\ = Z E(P_lm(x))

xs

with

B3 = T 3 I,

d=2i=1
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- in an obvious notation. There is a unique 4 in 2 < d <k such that some
coefficient a,, # 0, while all the coefficients a; with d <t < k vanish. Thus
the polynomial PeF,[X] is of degree d. By Theorem 2, the inequality (9.1)
with p large is possible only when h(*B) is small, say when h () < ¢, (d. r, 8).
In other words, #(3) < ¢,(d, r, &), where

=g X )
I=ay I+ . 4a,, I

Say a,, €F, is not zero. Then in our given system J, we may replace I by
the form 3. This does not change the type r of the system. Moreover, we
may replace J by a system of at most ¢, (d, r, §) forms of degree less than
Le. less than the degree of J. Hence we may replace J by a system & of type
¥ <r. Since each component of # is bounded in terms of r and &, this
completes our inductive proof of Theorem 4,

10. The invariants h,. Let 3 be a form of degree d > 1 with coefficients
in A, =Z/mZ where m is square free. The map x—m 'J(x) is a
polynomial map of degree <d from G = 45, into H =(m~' Z)/Z. Thus M
and J(R) may be defined as in Section 5.

ProrosiTioN II. Suppose that I' > 1 is an integer, and that
(10.1} [MM(R) = R~ D~y
where Rz Ry(s, d, I’} and where
Ja rorization m = ab with
{10.2) h, (%
and b RV,
. Proof For each divisor n of m, we write 9, for the set of (d — 1)-tuples

Xi,. Xy With  xeA4; such  that (3),0x, ..., %.,. X) =0, ie.

w0 s an dmeger. Then there is o

<ded)yyr

Ji(xq, ..., X4- 1, X) = 0(mod n), Since m is square free, and by the Chinese
Remainder Theorem,
(10.3) |9, = |00, |0

when nl divides m,

We may suppose that R 2 3C(sd), with the constant € of
Proposition 1. We now divide the prime divisors p of m into four classes, The
first class consists of primes > 3R. The second class contains primes p in
C(s,d) = p < 3R with

[0,] 3 prt v,
The third class consists of prime divisors in C(s, d)
(10.4) |901,| < pitd= D=2,

and the fourth class of primes < C(s, Id).

£ p < 3R with
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We write m = ab, where a is the product of primes of the first and
second class, and b is the product of primes of the third and fourth class.

The set M(R) is a set M{D(Z)) as an Proposition I with Z = 2R+
+1 < 3R. For primes of the first class, p > Z and p > 3R > 3% C(s, d), so
that (10.1) implies

W, (R) = C(s, dyZs=D-r-1,

Proposition 1 yields h,(3)< @(d)y. For primes of the second class,
Proposition 1 yields h,(3) < 2yl @(d). Thus when p is a prime factor of a, we
may write

Rs(d—1}~y = (2/3)S€(1""J)")J =

[d72]
= Z (NP BE 4 40P VO (mod p),
where k = 2p/"®(d) and where deg Y = i, deg BY? = d—i. An application of
the Chinese Remainder Theorem yields

(B < (df20k < d@ )yl
Suppose now that [ is a diviser of m in 1 <! < 3R with
(10.5) Y < -2

Then

Ry < 3Rt g [ < (6R}“" b -2,

which in conjunction with (10.1) gives
(106) IQ 6.5-(a‘~1)R1,‘21‘ < R2/3‘{' < Rl,’z

when R = R, (s, d, I'). Hence in particular the primes of the third class are
< R¥*_ We claim that the product of primes of the third class is < R*?T,
Far suppose we know that a product of some of these primes is < R*?/, say
that p; ... p, < R¥*', and let p,., be a further prime of the third class. Then
D1 PePier =1, say, has < RY2.RY2 < 3R, Moreover, repeated
application of (10.3), (10.4) yields (10.5), Thus indeed (10.6) holds. Finally the
primes of the fourth class hwe a product <es(s, d) < RV}, 50 that
altogether b < R'Y,

11. Proof of Theorem 5. Set n == (4/5)(d— &~ "){(d—1}. We are going to
apply Lemma 54 with G = A%, and with B =s. Then either |Sg| < P*™F, or
R = P" has '

[M(R)] > R~ D= 247 YK -e

Thus if we set y = [2¢7!(K/n)-+(3/2)], then
MI(R)| = Re-17,

provided only that R is large, ie. provided only -that m 3> my{s, d, 8)..
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Now again, if R is large, ie. if m = m;(s,d, 6, I'), Proposition II gives

us a factorization m = ab with b < RY < ™" < m*", and with

h (SN < d@(d)yT.

In view of
Yy 2 d~ 1) (d -8 )T K +(3/2) € 2M(d — 1}~ )T K,

this gives (2.1), as desired.

Appendix

Given a universal domain 2 and a number S, let €() be the class of
algebraic manifolds in % which can be defined by a set of equations f; = ...
...=f =0, where each f; is a polynomial of total degree </

Lemua. Let TZ) be a subser of ©2° whose projection T, on the i-th
coordinate axis contains at most Z elements (i=1,...,5). Now if Vis a
manifold of dimension e belonging to €(), then (6.5) holds.

Proof. Vis a union ¥, u...u ¥, where m < [* and where each ¥, is an
irreducible algebraic variety in C(M*), with /* = [*(S, /) (Seidenberg [i4],
§ 65). We may therefore suppose that ¥ is itrecducible.

Let F be a field of definition of ¥, and without loss of generality let
Em=00, sl Ma-.umy) with t =S5—e be a generic point of V¥ over
F, such that £ has transcendence degree e over F. Each n; is algebraic over
F{§, and since V lies in €()), there are nonzero polynomials g,(X, Y)
(=1,....1n with coefficients in F, with 4;(&, »,) =0 and of degree </,,
where /; = 1, (S, ). The number of x =(x, ..., x,)e Dy X ... x D, is £2°,
and given such x with g;(x, ¥)# 0 (f=1,..., ), the number of y with
(x.y)e ¥ is <If. So there are at most [ Z* such points.

When e =0, then /{ Z° = is a bound for the number of points of V.
When e >0, then we also have to consider points (x, y) on F with
gufx, Y1} ... gi{x, ¥) = 0. These form a submanifold W of V. and since V was
irreducible. dim W< dim V= e. Moreover, W' lies in €(l) with [, = [,(S, }).
So if we assume inductively that the lemma is true for dimension less than e,
we may infer that |Wn D(Z) < ¢(S, 1) 271, and therefore |

VDN < 28+ e(8, L) 20 € o(S, h 24,

Added in proof. Theorem 4 is generalized to genergl moduli in Small solutlons of con-
gruences in a large mumber of variubles, Canad, Math, Bull, (to appear). See ulso R, C. Baker,
Small solutions of congruences, Mathematika 30 (1983}, pp. 164-188 and forthcoming work
of D, R, Heath-Brown on quadratic forms, '
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