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is asjrmptetic to
2R L(1— 08 +1L(1— 6%~ L(1—0) — 11— 65)},

with 6 = 2c084=/9. However, the theorem cannot he applied to (P13)
beeanse the terms of the series there do not have positive coefficients,
This makes it possible for cancellation to oeeur between the terms, and
the identity shows that this does in fact ocour to a rather yurprising extent.
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A generalization of Hasse’s generalization of
the Syracuse algorithm

by
K. R. Marrarws and A. M. Warrs (Brisbane, Aunstralia)

1. Intcoduction. In 1978, H. MoHer [6] discussed an algorithm due to
Hasse: Let m and d be relatively prime positive integers, d = 2; B, is
2 complete set of residues mod &, not including a representative of the
multiples of d; Ny = {# e Z| dfn}. Then H: N;—»N;is defined by
(14) Hp) =

d
where mx —r = &°M, a> 1, dt M, r e Ry. (It is assumed that r e By=mir,
to ensure H is well- deﬁned.)

Méller conjectured that the sequence of iterates (H*(n))ys, is periodie
for all o e N if and only if m < @ and that the set of pure periods
is finite for each choice of m, d and E;. (See Terras [7], [8], Everett {31
Crandall [2] for the speeial case d = 2, By = {1}, m = 3 known ag the
Syracuse algorithm, and Heppner [4] for the general case.)

Closely related to H is the mapping T': Z—Z defined by

(mm-—r)jd if dfe, where me = ¢ (mod 4}, r & Ry,

2 T =14 i dla.

In tact H*(n) = T™(n), where (using Méller’s notation)

mHE () — E
PE BTt and g = Y
a

{==0
In the present paper a more symmetric mapping which generalizes r
is studied. Let d, my, ..., my be positive integers, d> 2, ged(my, d) =1
for ¢ =1,...,d; Rd 2 {ml, ., &z} is a complete set of residues mod d;
r; e Ry, is defmed for i =1,...,d by my»; =7; (mod d). Then T: Z—-%Z
is given by

HE(n) =

ﬂ?)im -7

{1.3) T(@) =——

i @ =2 (mod d).
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(This definition can be restated in terms of the integer part symbol:

T )

(1.4) T(w}::[ ;l ]—{—,82- it 2= (modd),
where §; = (F,—#,;)/d and ¥; i3 the leagt non-negative residue of »; (mod 4).)

Thus . if my =...=my;., =m, my =1, 3; =0, (1.3) reduces to
(1.2).

We are inferested in the behaviour of the gequence of iterates
( (%))K>n, n e Z. We remark that non-periodicity, unboundedness a,nd
lim |T5{n)| = oo are all equivalent here.

Ksoa

Numerical evidence supports the following conjectures, the firgt

three corresponding to Méller's conjectures:
- CoxTEeTURES. (i) If m, ... mg < % the sequence (T (n))y, is periodic

for a,ll neZ. '

(if) I my...m, > d% the sequence (T%(n)}x», is unbounded for
almogt all =, ‘ '

(iii) For each choice of d, my, ..., my, By, the number of pure periods
is finite.

(iv) If the sequence {T%( n)) R0 18 unbounded it is uniformly distri-
buted mod 4° for each « > 1, i.e.

tim L cards o . 1

(1.5) m N card{K < V| T*(n) = § (mod d%)} = - for

N0
F=0,..,d-1.

Conjecture (iv) has the following easily-proved consequences for
Méller’s algorithm: If the sequence (H"’(n))k;ﬂ is unhounded then

. O} d

1- e, IR Tee——

R =
Rt - 1
1.7 b) lim = card{kg ¥ H*n) = L) ) R,
00 UL S NI = 0 (mod 870 = s
az0, dfs,

1
- {1.8) (e) -gl_xgj—lv*ca.rd{]v<l¢ a;ﬂ"*j}ziéj—]fj>l
Our main result (Theorem 1) iy that conjecture (iv) {with « = 1}
impliex conjecture (i). :
In Section 3 we elaborate on the remark that definition (1.3) extends
to that of a mapping T Z,~Z, of the d-adic completion of Z. (Here
# =@; (mod d) meany (zr—uwu,)/d €Z;.) We prove that T is measure e-pre-
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serving and strongly-mixing with respect to Haar measure on Z;. (See
Billingsley [1] and Kuipers—Niederreiter [5] for background to these
terms.) The ergodic theorem, applied to the congruence class {w e Zgy
# =, (mod d°)}, then shows that conjecture (iv) holds for almest all
d-adic integers % (Theorvem 3).

L

2. Asymptotic resalis. Wcr each n e, n == x; {mod 4), we let m(n}
=y, t{w) =r;, »(n)=wz, where wzr, =r, (modd), r,eR;. Then
definition (1.3) beeomes
m )z -—r{z)

d
We also let myg(n) = m{T(n)), rx(n) = r{TE (), wgn) =a(T5(n)},
K >z 0. Then the following results are essy exercises in induction:
Lexma 1. If K =1, we have

(R} «un Mgy () S r {n)df
o) @ o = Dl 3T

=0

{2.1) Tlax) == it wxelZ.

(b) #f Ti(n) =0 for all i3 0, then

K-1

Mgln) oo Mg (1) 74(n)
Ca)  w = e [T )

i=0 v

Remark. With Moller, we point out that T7%(n) € Z implies the
following interesting d-adically convergent expansion of n:

3 (fn
(24) e _2 mg(n) ... my(n)

Levva 2. Suppose the sequence (:T (MW))rso 48 unbounded. Then
(a) T (n) has the same sign for all large K, .

H-1
@5 (b Lﬂm %glogmi(n)gmgd,
{2.6) (€)  |TFmIE ~(mg(n) ... mp_ (0))F}d a5 E->oo.

Proof. Agsume that (T%(n))gs, is unbounded. Then lim |TE(n)} = oo

Koo
and hence T%(n) 5= 0 if K > K,. Replacing n by T™(%) we can assume
7:(m) -0
my(n) T (n)

if i 4, it follows that T‘(%) and T7(n) ha.ve the same mgn it 1> 44,
giving {a).

that T7%(n) s 0 for all K = 0; then (2.3} applies. As 1~
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Next, without loss of generality, we can assume that T%(n) has
constant sign for K > 0. Then, hecanse the integers T (n) are distinet,
from (2.3) we have

. g (1) .. me_l ) frs(m)]
1< 7% ()] < '”’H(HW)

4e=0

< Mg {M) .. 'mK— n) I ln (1Jﬁ ——)

where || < R i a-'eRd.
Henece, taking logarithms,

R-1 E-1
glogWi {(m)— Klogd—l—log|n|—‘—2
and
E—1
1 log
2."’ — ]
(2.7 logd < K;logm(n)—l-O( e ) a8  H-—soeo.
Then (b} follows.
The proof alse shows that
E-1
28)  log|T%(n)| = 2{ logm, (ﬂ)—Klogd—i—O(IogIC) a5 E-sco,
=0 {

and thig givés {e).
Ag a corollary to Lemma 2 we have

THEOREM 1. Suppose that the sequence (T (n)) s, is wnbounded and is
uniformly distributed mod d. Then

{a) my...omy > dl

(b) lm [T=(m) % = (o mg™?
F-roo a

Proof, With > denotmg summation restricted by the condition

T{n) = #; (mod d), we have

clKl

{2.9) El{ 3:; logmy{n = 2 logm;(n) = Zlogw i KZ—l’l
=

;f 1 =0 im0

,a

~+—2710gm ag K-»o0,

g=1

if the sequence (T%(n))g, is uniformly distributed mod d.
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Then by Lemma 1, if the sequence (T%(n)jz., is also unbounded,

we have
1 d
EZ‘Iogm.j = logd,

j=1
and henes m, ... my 3= d° and consequently My e g > d?, thus proving
(a).

{b) follows from (2.9) and (2.8) {c).

¥ {n)
Mg (n) oo B {0)

Vti (1)@ conwverges in the usual sense to a real number 8, we have
i=0

THEOREM 2. Let t{n) = Then of the series

Hm|T%(m)| = co  4f 8 % n.
K-sca

Proof. From (2.2) we have

&-1
Ty = Mg (1) ..é;nﬂﬂl {m) (ﬂm 2 £, () d{)'

Now if Zt (mydat converges to s, we have limi;(n)d’ = 0. Hence

=0 Te00
di
ow Mg(n) oo my(n) -

©if v {n) =0 for inﬁ_n:'ﬂgely many 1, as 1;{(n}eZ, However r;(n) = 0 for
ig—

i1, implies # = 2 ti(*n)d': by (2.4) and hence o = s

Rem&rks 1. E >0 and reBy;=>7< 0, the eondltmn § F=n is
satisfied trivially.

2. Tt is tempting to conjecture that the converse of Theorem 2 holds,
ie.

(a) I£ Z‘t-(n)d‘ is divergent, then (I™(n))zs, i periodic.

(b) If 2 L;(n)@ =n then (T%(n))gs, is periodie.

(I£ mequahty (2.5) of Lemma 2 could be strengthened to “>”, then (a}
would follow by the ith root test for convergence.)

3. The converse of Theorem 2 holds if the sequence {T%(n))gs, is
niformly distributed mod d. For, as observed in the preof ot Theorem 1,

we have
P 1 y 1
};]f:e fz; logm;(n) = = j‘Z;logfm-j- > logd..
: yom =
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Hence the series > f(n)d’ is absolutely convergent to s, say. To prove
i= D
that » s s, we first note that it suffices to assume that I (n) %0 for

all K > 0. Equations (2.2) and (2.3} then give

K-1

(2.10) %—-SFf’”d “‘”lil( _fgggﬁai}

7 (n) :
However the infinit y 11— ——————] i3 absolutely con-
owever the infinite product !Ju( ) T (9?1)) i ¥y
vergent, as by Theorem 1(b), the series ' 1/T%(n) Is absolutely convergent.
=0 .
Hence n—s 5= 0.

3. Measure-theoretic results. From now on we regard T as a mapping
T: Z;~Z; of the ring of d-adie integers. With the Haar measure on Z;
normalised so that p(Z;) =1, the congruence class B(y, d*) = {z e 7y
& =4 (mod d°)} has meagure 1/d°. ' .

Lexnga 3. T s measure-proserving. (fe. T7HA) is measurable for
each measurable subset A of Z; and p (T‘“I(A)) = p(d).)

Proof. It suffices to wverify the result for a congruence class. Then
it is easily verified that

g’
(B, ) = J 5", ),

I

& {isjoint union of d congruence classes, each of measure 1/d*t%

Levwma 4. With o;{n) defined as in Section 2, and Bigy vrey Bope_, € By,
we define
{3.1) ﬁriﬂ""’miK—l neZ,| wyin) = Dyyyeeen By () = 3}
Then
: o o N &
(3.2) Ay ey = ( 2t +JE1mw,dE)-
. ¢ K-t Mg, My ig—1

Proof. From (2.2), as T*(n) e Z;, we have for n € Z,,

K-1

(3.3) =) f(n)di{med @), where t#(n) =

i=

7 ()
Mg () uo my(n)

=

T -
hen if n e A%, wotgg_y7 WO have

mu(""') = ngs L) m)i‘.'vl(n)_ =W,
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and hence

Hp (1) = Mgy aony Mgy (W) = My and ro(n) = ;5 ey Frog (B) =Tep_ .«

K1
Hence from (3.3)

7. dK_l

tE—1 o
m m & )
dg v es Mg

T'a
a
neB

#

g h

The converse iz also straightforward.

LEmMA b, Let A and B be congruence classes in Z;, 4 = B(a, d%),
B = B(b, d%). Then, if K = § we have

{3‘4) (1) T"—K(A) NB = U A:co(b) ..... £3-1(0)50g100sCF 12 %gl0)s w0 2 22p—1 () 2
Where Cgy . v., Cx_y & By, a disjoint union of d5~7 congruence classes (mod d=7°),
{3.5) ' (il w({T"F(A)NB) = u(4)p(B).

Proof From (2.2), with % replaced by T%{n), we have

a—1

{3.6) TE(n) = my(n) ... Mg_y(0) _Z‘ te, i (n)@ (mod 4.
Also
g1
(8.7) o=} t(a)# (mod d*),
) : 1=0
-1
(3.8) b= 4,(b)d (mod @),
B3
{3.9) n = 2 {n) &' (moad &°).
=0

Then # e " E(A)NB=T5x)e 4 and ne B
= rh.8. of (3.6} and (3.7) are congruent (_mod a3

and r.h.s. of (3.8) and {3.9) are congruent (mod @),

=>og(n) = 2p(@)y v oey Prpay {n) = %,_1{a);
Lo(n) = B(D)y ooy By 4(n} = Bp.1 (b).

6 — Acta Arithmetica XLII, 2
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Hence if K> f we have ne d, gy, Jgy(a)y WHETE

-T,B-—l(b)scﬂs---:"K—p"-‘o(ﬂ‘)al--
0y = @(n), ..uy 0p; = T (n). The converse implication is also straight-
forward.

(i) follows as

1 1
Bl = A)nB) =gFFf v = gerr = BAK(B).

COROLLARY 1. If A and B are measurable subsets of Z; then

(3.10) Yimp (T-F (4)nB) = p(4)p(B).

Koo

Proof. The result holdg trivielly from (i) Temma b it A and B
are congruence classes. Then standard arguments about approximating
measurable sets give the general result. (See Billingsley [17, p. 12.)

TeEEOREM 3. For j = 0,...,d°=1, we have

A—m

(3.11) lim %caﬂfd{l’{ < Ni TE(n) =j (mod &)} = %

for almost all m €Z,.

Proof. By Gorbllaa:y 1, T is strongly-mixing and hence ergodic {i.e.
T~ 4) = A=pu(4) = 0 or 1). Hence the ergodic theorem applied to
%4, the characteristic funetion of 4 = B(j, d%), gives

bﬂ 2

1 .
lim S b 2 (T5) = p(d)

b
I
=

for almost all » € Z,, and this iz just (3.11) restated.
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