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A mote on recurrent mod p sequences
by

TU. ZAawNiER (Pisa)

Important arithmetical funetions, ramely the integral valued linear
combinations of polynomials multiplied by exponentials functions, have
the striking property of being periodic mod p for all sufficiently large
primes p.

In this paper we are concerned with the following problem: which
other sequences, apart from the above mentioned ones, satisfy dome period-
icity condition mod p for almost all primes p?

Our resulb is that no other sueh sequence exists, provided & certain
kind of growth condition ig satisfied.

We consider sequences satisfying a more general property, i.e. those
which are solutions of recurrence equations mod p for large p. (Periodicity
is actually a special kind of recurrence.)

In the sequel €y, O, ... will denofie numbers which depend only on
the sequence. '

We have the following

THEOREM. Let f: N—Z. Suppose that

(1) for every prime p > p, f-salisfies a non trivial recurrence equation
in Z|pZ, of length v, <€ p*, for some fized k.

(i} |fin} € n® for some constant B. :

Then f satisfies a non trivial recurrence equation over Z.

Proof. We recall the following Biegel’s classical lemma (see for
example [17): “Let M, N denote integers, N > M >0, and lef u; (1
SIS M, 1K< N), denote integers satisfying |u,l<{ U. Then there
exigts a mon trivial integral solution #,, @,, ..., Zy, of the linear system

tuyx; =0 for ¢=1,2,..., M
=1

such that
Jang] < (H YA 5

Let now ¥ be a large integer, and consider the anxiliary function

F(l) = o, f(t+1) +-.. +ayf (I +N).

5 — Acta Arithmetica XLI.3
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Setting A7 == [¥/2], using Sjegel’s Lemnia, we ean choose integers
Ty, ..oy 2y, Dot all zero, such that:

(1) Py =0 for O<h<< ¥
and subject to the estimate
g <N max |f( r+hy < O, NEF,

obtaining thus the follmﬂn,r., bmmd
(=) | ()] < Co VBN (N )™,

We want to show that, when N has been chosen large enough, we
Itave F(#) = 0 for all re N,
Let us argue by induction, and suppose that:

F1) =F@®) =... = Flr—1) = 0.

By (1) » may be chosen 2= .
Let p be a prime number such that P> Py and 7, < r. From our
hypothes f satisties a difference equation of the type:

I‘P—l

flmt+rp) = E a;, ,f(m - b} (med p},
h=-0
and so the same holds for F. But then the induction hypothesis clearly
implies F(r) = 0 (mod p).
Suppose F(#) # 0. Then the above congruences imply:

(3) iz [[p= [] 2 Cexn@o®
Tp<n Do=<p
Ppr parli®

for ¥ large enough, where €, €, > 0. {We have nsed the prime number
theorem.)

Now (2) and (3) are contradictory for & large and for » > A, and
the contradiction proves the theorem.

Remarks. 1. Tor simplicity we have given only a particalar form
of & mere general theorem of the same kind: in fact one may relax the
bhound. for f, at the cost of reducing the order of growth admitted for r,.

We may prove for example that the conclugion remaing frue, assuming
r,<p+B and if(n)] < Ca®, provided a < exp(3—2V2).

The only modification réquired consists in a different use of Siegel’s
Lemma: we cehoose M = [N, 0 < y < 1, and then optimize the choice
of y. (In fact the best one iy ¥ = 1/5—1.)

We poini out that, though exp(3 —2V2) ecould be probably replaced.
by a larger mumber, therve are exponentially growing sequences, periodic
mod p, with r, < p, that de not satisfy the econclusion.
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The following construction provides sueh an example: let g, = [J »

™m pn
and flm) = > a, (’:) . Tt is easy to verify the congruence f(n-+p) = f(n)
r=4

{mod p), for every prime p, and the hound {f(n)! < 4" for some 4. Our
sequence does not satisfy recurrence relations in Z, otherwise it would
be of the form stated in the lemma below, and, sinece its period mod p
divides p, it would be & polynomial. But this wonld imply a, = 0 for
large #», thus obtaining a contradiction.

2.. A better result may be obtained assuming the recurrenee to be

fn+p) = f(n) (mod p)

In this ease the bound }f(n)] < Cle—1y", 0 <l<1, is sufficient to
imply that f is a polynomial (see {3]).

We now sketch the proof that, nnder the condifions of our theorem
f is of the following type:

fln) = D) Py(n)ry
J=1

where the P; are polynomials and the 7; are roots of unity.

We tacifly assnme some known lemmas from the theory of finite
difference equations {see for example [27]).

We require the following

Lemwa, If f: N—Z is a solution of a finite dszermce eguatwfn with
integral coefficients, then f is of the form:

&
(4) fin) = D Pyin)7
Y
with P; e Q(ry, ..., r,)[#] and where the r; are algebraic integers.

Proof. It is well known that f bhas an expression of the form (4)
where the P; are polynomials and the »;, are algebraic numbers. Using
a determinant argument one can easily show that in fact P, e Q(ry,...

vy 7o) [3], and that +% = H, /D,, where H, iz an algebraic integer and
D, a polynomial with algebraic imteger coefficlents, which is nonzero,

If p is a prime ideal which divides the denominator of 7y, p" would

divide D, and we should obtain:

N (D) = [N p)I*

where N ig the norm from Q(ry,...,7;) over Q.

But, since (¥ (p)| > 1, we have a eontradiction.

Let now W be a normal extension of @, containing @y, ..., 1),
and let o e Gal{W/G).
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Bince f(n) €Z for every w, we have:

E 3 3

M o{Pyim) alr® = Y Py(w)rs.
=1 =1

But it is wel! known that the expression of f in the form (4) is unique,
and it follows that the o(r;) are a permutation of the r;, and this happens
for every o.

Thug, if in the formula for f some r; has a polynomial coefficient
which is nonzero, then all of its conjugates have the same property.

But

If(n} > max|r® for an infiniky of =
£y .

and, since f is asgnmed to have polynomial growth, we conclude that

max|r;] < 1, and, by ths preceding observation, we have also:
Pjaﬂl
maxmaxe{r)] < 1.
G Pj%ﬂ
Since the 7; are algebraic integers, a well known theorem of Kronecker
implies that they are roofs of unity.
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Selberg’s sieve estimate with a one sided hypothesis
by
DAnNmL A. RAwsTHORNE (Wheaton, Md.)*

1. Introduction. It hkas been found in many interesting number
theory problems that the most successful techmniques Involve a small
sieve. One of the best small sieve technigues known is that of Selberg [81.
This sieve has been investigated by Ankeny—Onighi [1] and Halberstam-
Richert [2], among others, The results they obfain using the Selberg
gieve rely on assumptions made about the function w(d) (defined in Sec-
tion 2), and the aim of this paper is to obfain similar resnlts with less
stringent assompbions.

2. The basis of the sieve and Selberg’s Z-method. We follow the
notation of Halberstam~Richert ([2] and [4]}).

Let A be a finite sequence of integers, and let A, denote the sub-
sequence of 9 all of whoge elements are divisible by &. We use %} and
|%; to denote the number of elements of A and Uy, respectively.

Let # be a set of primes and define (the empty product being 1)

w P =[]».
peP
p<z
Define the sifting funchion 57 (UA; 2, 2) for any 2 to be
(2) L S 2, 2) = |{aeU: (a, Pl7)) =1]];

in other words, &°(U; #£,#) is the number of elements of A remaining
after we have removed all those with prime factors less than & that belong
to 2.

In order to study the funetion & (U; £, z) we need some nofation.
We choose a convenient approximation to |%], call it X, and define

R, = | —-X.
* This work is a portion of the author’s PhD thesis. Thanks go to Harold
Dismond and %o the University of Illinois at Trbana, Ill. This work was pariially
supported by a University of Illinois Fellowship.



