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Traces of monomials in algebraic numbers
by

A, Bazviewicz (Warszawa)

A. Sechinzel ([2]) put forward the following eonjecture: For every
numbper field K that is neither a fotally real nor a totally complex guadratic
extension of a totally real field and for every nonconstauni ‘polynomial
f € EK[x], there exists a § in K such that Tz (f(8B)) > 0 (the bar denctes
the complex conjugation and Tr stands for the trace from KE to .

In the same paper he has proved the above conjecture for K being
a real field.

In Theorem 1 we consider the monomial cx™, where ¢ ¢ K and m
is @ positive rational integer. We obtain that if ¢4 = 0 then Tr{ef™ ™)
= 0 for every #in K and that besides this trivial case Schinzel’s conjecture
fails i and only if K and K are linearly disjoint over K n K and the latter
field is & quadratic extension of a totally real field sabistying some technical
conditions.

On the other hand there are primitive fields K and numbers 4 of
KK such that d+d 5% 0 and Tr dﬁmﬁm) = 0 for every feX and every
positive integer m,

The relevant example is shown at the end of the paper.

The remaining results presented here are consequences of Theorem 1,
in p&lticulm , Theorem 2 is. just Schinzel’s conjecture properly modified.

. Shimura and Y. Taniyama [3] have proved the equivalence of the
fo]lowmg two sbatements: _

(i) K is a totally complex quadratic extension of a totally real field
or o totally real field,

(i) & = K and Tr(a&) > 0 for every nonzero « of K. .

K. Gybry [1] has shown that in (ii) Tr(ea) can be replaced by B, (ad)
(the elementary symmetric function of degree r of the conjugates of oa)
for each r < [K :Q].

Theorem 3 agserts that the assumption K = K in (ii) can be omitted.
Now we introduce some definitions and fix the terminology used in the
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sequel. @, B, € denote the field of rationsl, real and complex numbers
regpectively, A field K = O will be called complex if K ¢ R. Let K De
a finite extension of ¢ and let ¢ be any embedding of K into €. The image
of K under g will be dencted by gi. If & is & real field we say that a finite
extension L/H is tolally real {complex) over K if for every embedding A
of L into € trivial on XK, the field kL is real {(complex).

An extengion L /K Iy imprimitive if there is a field M suech that

KcMclL

For a complex number z, # denotes its complex conjugate. We set
2Rexr = w4+

The main result of this paper is

TEEOREM 1. Let K be a finite complex extension of the field of ralionals,
XK, be the mazimal totally real subfield of K, K, = Kn K.

A. If ¢ is an element of H with Ree = 0 and m is a posilive integer,
ther for all § in K we have

Tr(ef™ g™ = 0.
B. Lei ¢ be an element of K with Rec = 0, Then
() Tr(ep™fF™ = 0 for all § e K and for all positive integers m

if amd only if the following conditions are satisfied:
(i) [Ky: Ko] = 2,

(i) [EK: K] = [K: K],

(1Y if m is odd then K, /K, is tolally complex; if m 48 even then for
every embedding g of K inte O either gK, is real and gK [gK, is tolally real
over gK, or gK, is complex and gK [gK, is totally complew over gK,.

(iv) ¢ e K, and Rec is totally positive.
€ K[»]. Then we have *=° =0

TaEORENM 2. Let K be a complex Field not comtaining any tolally real
subfield K, with [K:K,] = 2[KK: K). Then for every f e K[x] with
Re f = const there is a § in K satisfying Tr(f(88)) > 0.

The following theorem: is a new version of the result of Shimura
and Taniyama.

Let us define Re f = 3 (Ree,)s’ for any polynomial f(z) = 3 ¢’

THEOREM 3. If K is neither a totally real nor a totally complex quadratic
exiension of a totally real field then there is a nonzero f € K with Tr(ff) < 0.

We note that if X is & totally real field or a totally complex quadratic
extension of a totally real field then Tr(8f) > 0 for every nonzero f & K.
Hence we obtain the following
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COROLLARY. H is a totally real field or a iotelly complexr quadratic
emtension of & totally real field if and only if Te(B8) > 0 for every nonsero f
in H.

We proceed to the proof of Theorem: 1. Let @, @ay oy @y Pour = Py - -
...y @sy = P, bethe complexembeddings of K and lebgy,.,, ..., ¢, bethe real
ones. For any # in K we shall denote ¢;(x) by #;. In particlar, if & = @{a),
then a, = @, @, ..., a, ave all conjugates of a. In the sequel ¢ will denote
a fixed generator of K. ‘

Let us denote by N (K) the least normal field confaining K and by &
its Gialois group. The action of G on KX is determined by its action on
the pair (e, a).

We define 8 as the set of all distinet pairs (ga, gra), where g lies in
G and 7 denotes a complex conjugation.

This set has the following properties:

{1a) (o5, o) €8 for all 7,1<i<n,

{Ib} If (e, o;) € § then (¢, o) € §,

{le) If (a;, o;) € 8 then (&, a) e,

(1d) For every ¢,1<i<{n,

#{js (@ o) €8} = [KK : K],

where kA denotes the cardinality of 4.
The proof of (Lla), (1b), (le) is trivial and in order to obtadn (1d) it is
sufficient to observe that

H{j: (@, o) € 8} = d{gra: g €@, ga = goa}
= ¥ {gra: ge &, go = o}
— [EK: K] = [KE: K].

Here g, denotes & fixed element of & such that g, = a;.
Proof of Theorem 1A. Let ¢, f & K. By the definition of § we have

(2) Te(op™F™) = ' o fPpp-
{:z,(::’z_';-r{eS
Bince ¢f™ ™ and TA™A™ are conjugate we have
Tr(ef™f™) = Tr(cf™ ™),
whieh implies

@ 2Tr(efm ) = Tr((e-+0) 5",
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Henece if 2Ree == ¢+ & = 0 then
Trof™pf™ =0 dfor all § in K.

Thus we have just proved Theorem 1A.
We now proceed to the proof of Theorem 1B. In the sequel we shall
assume that Ree 3 0. Comparing (2) and (3) we obtain

(3) 2Tr(af™™ — D) (o-Fo)BPEY.
(u-;(z;;))ES
We set
T (X)) = ey a0y
1%%'@
where

o;-+e if a;, a;) €8
X = (#,...,2,)c0" and ;= 1 (o, a5 € 8,

0 otherwise,

We note that e; = e; and e; 3= 0 if and only if (a;, o) € 8, since in thig
case ey and ¢+ ¢ 7 0 are conjugate.
Forie{l,2,...,n} we set

(4)

1-+-8 i @; s complex and 1< s,

i it @; is veal,
i =
i—s it @; is complex and ¢ > s.

Then for every = in K we have oy = X,.
One can easily check the following properties of the coefficients e;:

(Ba) ey ey -6 7= 0 imples
1% — g e == 10;— G[2;
{BD} ey 6y 7 O impliss
[65r5]% By 85 = 0, — 04]7;
(8e) leglP—eep 20 i ey # 0
(bd) el — ez 20 i ey 5 0.
We set
W ={X =(m,...,0,): n,e( and By, = Hfor 1<<i<y,
o e B for 25 < i< n}.

By the definition of W and (lc} 7, (X) takes real values for X € W. Let
us denote by T, the restriction of 7, to W. For # in K we put

icm
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Uy B (fay ..., fp) € W and denote by O the image of the ring of
integers Oy of A under U,
The transformation

T.: BT L m—E @+
gt Yy = 3 s Y1 = :---5?/25—1—”_,)*“
a2y —1 2
&, — T, \
Yog = —=—y Yogui = Bugy; TOT 4 =T,...,n—2¢
2y -1

ig 8 linear isomorphism of W and R™. It is well known that 0%, the image
of Op under U,, is a complete n-dimensional lattice. We can represent
T,.(X)as a form &, (v, ..., y,} With real coefficients and of real variables.

The following lemmata will be useful in the proof of the theorem,

LeMyA 1. Let @ be a form with real coefficients and of w real variables
X =5, ..,0), V" ={XeR" S(X)<0}, V" ={XecR" OIX) >0}
and let A be a somplete n-dimensional lattice. Then

(a) if V™ is not emply then there exists o nonzero ne V- n A,

(b) if VT is not emply then there exmisls a nonzero 6 € V+ n A.

Proof. As @ iz continuous and for positive ¢ the signs of &(X) and
@ (tX) coincide, V' and ¥~ are either emapty or contain a cone in R™.
But such a cone meets every complete lattice.

LemmA 2, The following two statemenis are equivalent:

(2) There ewists @ 0 2 e K (0 % y € KE) such that

Tr(cp™F™) >0 (Tr{ey™5™) < 0).

(b) There emists @ B e W (e W) with T, (8) >0 (T,(n) < 0).
Proof. (2) = (b}. This implication follows from the fact that for
feX and 8 = U,(#)

Tr(ef™B™) = T, (0).

(b) = (). Suppose that we have 0 in W with 7,(0) > 0. Using the
isomorphism U, of W and R", we obtain a real vector 6’ with @,(6') > 0.

In virtue of Temma 1 there is a nonzero 8 € Ox with @, (8) = 0,
which is equivalent to the existence of § € 0% (O = Ox—{0}) satisfying
Tr(ef™ ™) > 0.

Similarly, if we can choose n e W with T, (5) < 0 then there ia a
y € 0% with Tr{ey™5™) < 0. '

Cororiary 2.1, Under the condition (%) of Theorem 1B we have
€ > 0.

Prooi. By the assumpiion ¢, = 2Ree £ 0. Hep <0 weset §, =1
for =1 or 1, 8, = 0 otherwise. Then 6 = (§,,..., 8, e W, T,(0)
= &, < 0 and Lemms 2 gives a comtradiction with the condition ().
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COROLLARY 2.2 If for a certain j we have
e >0, &y =0 =0 and ey et F0

then there i¢ a e K such that Tr(ef"f™) < 0.
Proof. We choose a complex number 6, satisfying e, 6" +eyy == 0
and put

g, if k=1,

o =) it =1
1 g k=71,
0 otherwise.

2
11655 — |61

0 = (6,....,8,)eW and T,(8) = .
1%’

Bince by (5d) ey-¢;; — l6y;-1* < 0 we have either ey, 65 = ;512 or by Corol-
lary 2.1 7', (6) < 0.
In the latter case Lemma 2 applies.
LEwia 3. Let J, = {§: (@;, o) € 8}, J; = {§"+ § € J;}. Under eondition
() of Theorem 1B we have
Jind; =0 Twhenover ¢ # 4.

Proof. Suppose that j € J; nJ;. We assume first that j = j'. Then

by (1a) ey = 0 moreover ¢;; = 2;. For X in W we have
Tl X) = e} - ey Tyl -+ e ™™ + X)),
where every term of TU (X) contains a factor , with & # i, ', §. Weé choose
a complex number #; such that 6 = —&; and a real number 6; with
26" > ¢;,. Then we put 6, = 6; and 0, = 0 for all remaining subscripts
k. We have
B =(0y...,0,) e W, T, (0) = —267"|ey\*+ey ley* <0

and Lemma 2 applies giving a contradietion.
Now let j = j'. By (8e¢) and (5d) there exists & positive real number
e satisfying the inequalities
ez ey, and  {lgg] e ) > 6y

We have for X e W

n
2
el (X) = 193-“‘?4" Z Oy — 6537 + e B [+

Y$=1

+ (e — %) L™ + ey oo™ + T (X),
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where every term of T{)(X) contains a factor m, with & # i, ¢, i, i
We note that since j & J; noJ; we have ¢;; 3= 0 s ¢, hence we can choose
§; snch that

6" = g™ 85 [l850 ]+ €50
Then
1854 67 -+ €0 7] = |€g5| +- l€g0]

Further we take 6, = 6;, choose 6; satisfying el ¢, 9}"4—3_,;.1‘,5’,?‘ =0
(this is possible since e 7 0), 6, = 0, and put 6, = 0 forall k¥ = 4,4, 4,7.
f = (B, ..., 8,) obtained in this way belongs to W and by the choice of
¢ satisfies:

el (0) = —(legs] + lepel )2 +eley —e) |6, + ooy < 0.
Hence 7', (f) < 0 and Lemma 2 applies giving a contradiction.

Cororrary 3.1. Let J = J,. Under the cssumptions of Lemma 3
we have J,nJ, =@ for all i eJ.

Proof. Sinee 1 7%= 1" we have by Lemma 3 Jn J' = @& hence i # ¢
for all ¢ e J. To obtain the corollary it suffices to apply Lemma 3 again.

LevwA 4. Let J = dJ,. Ucmdw:the assumplions of Lemma 3 we have

Jye Jud  forall ied. .

Proof. Let us suppese that for some i,j we have J; ¢ JuJ' and
Jedi—(JUJ’). We have 6y # 0,6, # 0,60 # 0,65 %0 but 6=
ey = 6y = 85 = 0. From Corollary 3.1 we get also ey = ey = &y
= g;; = 0. Let us choose & positive real number ¢ > Loy 6.

For all X in W we have

e Tl X) = I .Z erp Ty I2 ey — 81417 337i|zm+ng) (X,
k=1

where »,, %, do not appear in TU(X) and every term of T4 (X) contains
a factor w, with k& = 1,1',4,4".

Moreover
n
1 2 2 2
eT 3N X) =lem§“—}—2 by | + (68 — 6%} |y —
Jo==2

= ,
—&vlepsltla™ + IS X),

where every term of 7% (X) contains a factor m, with b ¢ 1,1',%,4', 7,7 .

m

By Corollary 2.2 we have e,,.6; — 6> = 0. Hence

e

n ki3
2
eoy I (X) = elZ el.kmkmi + 1 6%y -+ Z €116, 07
: k=1 k=2
BES
+(eery €5 — 6%) oy — ey o2 o, P +TR(X).
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We take 6, = 0, = 1. Next we choose 6; such that e-+ee,00 =0

and pub 0, = 6,. Sinee ¢ > 0 we have 6; 0. Then we take 6, satisfying

e ™t e 6% =0, 0, =0, and put &, =0 for all remaining k<.

We have e W and T,(0) = (6, ¢;—26}/e;, << 0. An application of

Lemma 2 gives a contradiction with condition {(+) of Theorem 1B.
Lemma 5. Under condition (=) of Theorem 1B we have

(6) g =¢ for ied

and for Xe'W

(M 3 egaral = (o+0)] 3 [+
i,je‘_'.];lj.f‘ ied

+ D [2(cafal +TEME) — (048) (2B + E )]
<o

Proof, By the definition of J ¢,;. # 0 for all § € J and by Corollary 3.1
&; = € = 0. Thus by Corvollary 2.2 ej.ey = ley)* %0 for all jeJ
and since 6y-ey.60 7= O (Bh) gives (6).

Now we calculate the left-hand side L of (7). We have

D= 3 eyl + oy al & + 0, T0a + 6y BPEP) + D) el
'L;f;f ieJ

= 2 2 (ox &} +oud ) 4 2 (e 0)a? %

| dged et
<, ep 0 €4’ =0
Hence
L = (¢+3) ] V B —to+a) 3 argprt2 Y (ealaf - sTE).
i Jed 1,det
eijr=sd i<i ey

By Lemmata 3 and 4 for ¢,j € J the conditions 6y = 0 and ey # 0 are
equivalent, thus we get (7).

LeMMA 6. Under condition (%) of Theorem 1B we have J, = J for
1ed.

Proof. By Lemma 4 we have ¢; = 0 if i e JUJ’, j ¢ JUJ', hence

: Hjedug’ ,j;éJUJ‘
i i<i

Now by Lemms 5

(9} 2 eudTag = (G+G)J ml +
1JEJUJ
+ 2 [2 (oafl -+ 6&L &} — (¢ + ©) (o &) +5?"m,'“)]
_l{f eljhﬂ

= 21+22.
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Let ¢, edJ and j¢J,. Since jedJuUJd’ we have j ed;. This means
that there is a g € @ such that go = a;, g7 = o;. For this g we have gc = ¢,
gt = ¢;. Since ¢; = ¢; by (6) it follows that ¢ = & Hence by (6} and
Corollary 2.1
{10} d<e=¢ (ked)
and for the second sum X, on the right-hand side of (9) we get

(11) Iy=20 D (@ —F)l—7).
7<3‘],;‘$TJ¢

If J; % J the above sum is non empty; lot for instance j, ¢ J,, . 1, We take
B;,5 b, With b, = 65 = ¥ —1 -1, 6,,0 = Een, Bjﬂ = Bj Next we choose &
such ‘ﬁha.t ﬂm—|—2l/—~1 =0, 61 = @, and put 8, =0 for ali % =1,1",
Gy gy Jos Jo- Then 6 = (6, ..., 0,)e W and by (8); (9), (10) and (11)
T,.(6) = 26/ ~1)° = —2¢ < O. Now uging Lemma 2 we get a contradie-
tion with condition (%) of Theorem 1B.

CoROLLARY 6.1. Under the assumplions of Lemma 6

2 ey = c—l—c)lZ

i,feduJ’ ied
i<y

Proof. The above formula follews from (7), sinee by Lemma 6 the
second sum on the right-hand side of (7) is empfy.

LEmyia 7. Let A = {a;: i ed}, 4" = {g;: 1 €J'}. Under the condition
(%) of Theorem 1B the sets A amd AUA' are blocks of imprimitivity of the
group & represented as a permutation group on {ay, ..., a,}.

Proof. By Lemma 6 we have

(12) for every fe.A and y€{a,...,a,} the relations {B,7) ef§ and
y €.4 are equivalent,

On the other hand to prove that a finite set B is a block of inprimi-
tivity of the group & we need only to show that gB nB # @ implies
¢B < B for all g e @. Then gB = B since B is finite. We suppose that for
age@ we have gAd N4 = @. Let § be an element of 4 such that gp e A.
Sinee (4, f) e § we get (g8, gB) € 8. Using (12) we obtain gﬁ cd,gfed.
Let y be an arbitrary element of 4. Then (y, f) e 8 implies (gy, g8) 8.
By (12) with § replaced by g8 we get gy € 4. We have proved that gAnA
= @ implies g4 « A. _ s

Now we assume that for a g € @ we have g(dud)n(dud’) # 6.
Then there is a fe AUA’ with g8 e AUA’. Without loss of generality
we can assume g € A. For every y ¢ A we have gy € A because 4 is 4 block
of imprimitivity of & and e fortiori gy e AvA’. Assume that de A’
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If gf € A then from (£, ) e § it follows that (gf, g6) e § and by (12) we

obtain gé EA’ If g8 € A’ then gince (gﬁ, gd) e & using (12) we get g8 c A.
Thus

glAvAIn(Auvd)y #@ implies g(AuAd)c Aud’.
1 n

Cororrawy 7.1. Let A and A’ be defined as in Lemma 7, q == ETH:_I
and let b be an unit element of G. Under ithe condition (=) of Theorem 1R

{a) there arc clements hy = h, hoy ..., b, of G such that {h (AU
< g} is a decomposition of {al, . an} into disjoint subsets.
b) If for some p,r:1l<p<g, 1<r<yq,

R (AUAY AR (AUAY) = G
then either h,4 = b, A and hyA’ = b, A’ or hy A — b, A’ and hod' =54
(ky 15 defined by the equality h,f = h,f for § e K).

Proof. (2) This is a direct consequence of Lemma 7 since by Corollary
3.1

HAVA) = 3 (JUd’) =2 4:J =2 H 4.
{b) By Lemma 7 and the assumption we have
{13) hpAUb, A" = b AUR A",

Hence h Anh A +#@ or h Anhk A" = @. By Lemma 7 it follows that
i, 4 = h A or hy4 =h, A’ respeemvely
Substl’uutmg this into (13) and using

hpd by A' = hy(ANAd') =B = k(A nA") = hAnh A
we obtain also h,4’ = k4’ or h, A’ = kA respectively.

LEMMA 8. Let by, (p < q) have the meaning of Corollary 7.1 and for
< n let b, (3) denote the wnique index h such that o, = hya;. Under the con-
dition (%) of Theorem 1B we have

GTG)Z wia (1) 2 mhp(i’))m

Moreover ¢+ is totally positive.

Proof. (14) follows from Corollary 6.1 and Corollary 7.1(a).
If for some p < g we had hp(e-+2) < 0 then taking

(14) T, (X) = 2

1 dfor & = h,{1), hy(17), by (1), By (1),

b = .
0 otherwise

we should obtain 6 = (4, .

,Bn)eW Ln(8) = hy{c-+8) < 0 and using

icm
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Lemma 2 we should get a confradiction with the condition (+) of Theorem
1B. Hence
(15) hy(et+e) >0 i hy(e+8) is real, 1<p<yq

From Ree¢ 54 0, (6) and (15} it follows that ¢4 € is totally positive.
LumMa 9. Let in the nolation of Covollary 7.1

T={1,..,q, I ={pel:hA =hA},

I,={pel—-1I: hp =nh,ffor all fe(AdUld)}.
Then under the condition (k) of Theorem 1B
(16a) = ILul,
and if m is odd, '
(16D) I=1I,.

Proof. By Corollary 7.1 for every p < ¢ there exists o unique p.< g
gach that h,(AUA) = h, (AUA’) and for all r<g,r # ps we have
B (AUAT) Ahy, (AU = @.

Tf p = p« then using Corollary 7.1(b} we have

hy A’ = by A and by, A’ = h,d  or hyA = hy A and Ty Al =R, A’

In the first case p e I, in the second case by Lemma 3 we infer that
all elements of k,(AUA’) are real, thus p e I,. Hence if p e I — (1,0 1,)
we have p 7 Px zmd

by (AVAT) Ol (AUAT) =

Since ¢ e K = Q(a) we can write ¢ = w(a), where w(z) e @[x]. By (6)
¢ =w(g) and ¢ = w(ai) i ed. Then

hy(6+3B) = w(hpa)+w(kp&) = w(&hpm)—l—w(ﬁhpm)
= hp‘c—l—hpté = hj,‘(a—i—ﬁ),

because by Corollary 7.1(b) either a, g € iy, 4 and &,y € hp, A" 0T @30
&h, A" and a, mh A. Now by (14)

=
. . M (XY
By )m (ﬂ}h (l'))m”{‘T‘m ( H
+ T, (0—1-6)% By ) ZJ‘ p

16,

where every ferm of TU(X) contains a factor , with k ";:’: i’i”ﬁiil(é-)’
By (i) ho(d), B (i) (3 eJ) Since the sums Z (i)™ ,E(m],p(,-,)) are equal in

gome 01(16]3 to
Sl 3 G
ieJ o ded
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we geb

T (X) = (c+78)| 3 o
ied

2+2(Rehp(ﬂ+5)2 (mhpﬁ_))mz (mkp(i'))m) +-T1(?11) (X).
ied (=5

We note that h,(dUA4’) Nh,(AVA") =@ implies that @) is not real.

We choose & complex nwwber 6%(1) such that G;;; ay = —hy(e--E and

set Gh;m = thm. Then 1fve t&l};e Bnpn') = 9,11'){1,) =1 and put 4, =0

for all & # &, (1), k, (1), hy (1), I (17). We get

0= (0,....,0,)eW and T8 = —21h,(c+E}2 < 0.

Lemma 2 gives a contradiction with the assumption () of Theorem 1B.
Therefore there is no p € I —(I,UI,), which shows (16a).

In order to show (16b) assume that m is odd and that pel,. The
pth term of the sum on the right-hand side of (14) is

o+ 3 et S et
&S

e
For X e W all variables oceurring above are real. Taking

-1 HE=r,1),
B =11 itk =h,(1),
0 . otherwige

we get 6 = {0, ..., 6,) e Wand T,,(0) = —hy(¢+€) < 0, which by Lem-
mata 2 and 8 gives a contradiction with the condition () of Theorem 1B,

Lemwa 10. If B is a block of imprimitivity of & represented as a permu-

tation group on {a,, ..., a,} then there ewists o subfield M of K such ihat

" Bis the set of conjugales of o over M. Moreover M is the subfield of K fized
by all elements of @ that transform B into iiself.

Proof. Bee [4], p.[183 and 233.

We prove

LEmma 11. Undér the conditions (i)-{iii) of Theorem 1B for all e K
and all ¢ e K, we have the equality

Trezig(688) = Trgo((e+ &) | Tz, 512

Proof. Lt yeX, be a generator of the extension &,/K, and let
{1 = ¥s ¥ar -y 7} e the set of allk = [K: K] conjugates of y over I, .
Then ¥, Fay ..., 7 is the set of all conjugates of 7 over K, — K,. Let us
denote by @, the set of all embeddings of K K into € trivial on, K. The action
of an element of @, on KK i3 determined by its action on the pair (v, 7).
Moreover for every he@, we have he — e, by €{y, ¥2, ..., ) and hy
€ {73 72: ey 7—’19}
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We define §; as the set of all pairs (hy, #%), where % e @,, This set
has the following properties:

(@) 8y = {(y ) 1<k, LK< B, :

(b) I (y;, ¥;) € 8; then there exists exactly one » in @, such that
by = ys, By = ;. : )

In order to prove (a) let us denote by D, the set {j: (y,, ¥;) € 8ih
By (ii) we have D, = {1,2,..,,k}. Sinee D; = », D, for some h;cGy
we get $:.D; = k. On the other hand D; < {1,2,...,k} thus D, = D,
and (a) follows.

As to (b) it trivially follows from the identity

{geby: gy =y, 97 = 7} = {Idgx}.
Each clement § of K can be uniguely represented as w(p) with

e K,[w], degw < k. Then @W(y) = w(y) and @ e K, [9]. Hence forallh e &,
we have

hao(y) = w(hy) and RE(P) = B(hF).

By the definition of §, we have for ce K,
Treri, (0 BF) = D) aw(y)B(F).

(7)58,

By the properties (a), (b) of §; we have further

13

k
D ow(p) @) = ¢ 3wl D BF)

- =1 =k
{rgavy)e8y -

2
= ¢|Tregx, AI*

= 0;2 w{y;)

Since by (i) and (iii) KI is a complex gquadrafic extension of K, we have

ITrgiz, B1* € K.

Hence :
Tt i, (058) = (0-+3) Trgy, BI°
and the lemama follows on applying the tower formmla for trace. -

Proof of Theorem 1B. We shall prove firgt the implication
(1N (%) = ([{}(iv). _ | _

By Lemma T the sets 4 and AU A’ defined fhere are blocks{of menm;
tivity of the growp @ represented as o permutation group on {01y - ees Bofe
By Eemma; Sgwe have 4 nA' = @. By Lemma 10 there exuﬂf subiields
of K, say L and M such. that A is the seb of conjugates of a with respect
to L, AU A’ is the set of conjugates of a with respect to M. Hence

[E:L] =44 =$J=[KK: K]
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beeguse of formula (1d). Moreover L and M are the fields fixed by 2l
the elements of G that transform A into itself or AU A" into itself re-
spectively. Henee

FAudh
#+4

Now M is a totally real field. Indeed for every g e we have g'{dud’)
= g{4vA4’) by (162}, henee the complex conjugation fixes the field gif
conjugate to M. It follows that M < K,.

Since L is a quadratic extension of M we have L = L, thus L « K,.
The sequence of inmequalities

[K:E,]>[FK:E]=[K:1]1=[K: K]

implies that K, = L and [K:K,] = [KK: K], i.e. the condition (ii).
Furthermore by (6) ¢ € K, and by Lemma 8 ¢+ ¢ is totally positive,
henee (iv).
In order te prove (i) let us observe that since

(18) McRycE =L and [L:M]=2

we have either M = K, or K, = K,. The latter equality is impossible
ginee it would imply K, real and A = 4’ contrary to A n4d’ = @. Thus
M = K, and (i) follows from (18).

It remains to show (iii). By Corollary 7.1 for every g € ¢ we have
g = I;h, where R{AUA) = AUuA’ and hA =4 or A’ T jeI, then
gk, is complex. Indeed, if gK, were real then g4 — ¢'A, hence hhd
= k4 and h(AUA) nB{AUVAT) 5= @. From Corollary 71(b) and the
condition by 4= hiA it follows that A4 = h;A’. This together with
A =4 or A’ a.nd. hihd = hihA gives AnA’ # @, a contradiction.
Hence g&, is complex and by Lemma 9 the condition (iii) holds for m
odd. For m even we have to consider embeddings ¢ = hyh where j € I,,
hAVA) = Aud’ For such an embedding the extension gK [gK, is
totally real over gK, simce all elements of g{duAd’) = h{AUA") are
real by the definition of I,. Thus the proof of the implication (17) is eom-
plete and we proceed to the proof of the implication

Mcl and [L:MH]= = 2.

(1}=(iv) = ().
By Lemma 11 we have
(19) Trezig(ef™f™) = TI'KOIQ((G‘I"E) 9]2)

where 5 = Trge (f™).

We ghall show that |»[* is either 0 or a totally positive element of
K,. I m is odd K, ig by (iii) a totally complex quadratic extension of K,
hence the latter assertion is true for every |y[2 with y e X,. If m is even

icm
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we have to use the definition of . Let 8; (j = 1, 2, ..., k) be the conjugates
of g with respect to K, and let g be an embedding of K inte €. By (iii)
either gX, is real and gK gk, is totally real over gK, or gk, is complex
and gHi [gK, is totally complex over gK,.

In the first case g,& and g¢B; are real for ¢ =1,2,.

f‘ g™ =0, g7 = _2 g{Bym = gn-¢7= 0.

Tu the second case gK1 lgK, is & complex guadratic extension. Since
n € K, the degree of 5 over K, is < 2 and {», 7} is the set of conjugates
of  over K,. Hence {gy, g%} is the set of conjugates of gy over gK,.
Bince g, is complex and gK, is real, gn and g_ay are all the econjugates of
gn over gH,.

Thug we have g7 — gn and g{y7) = |gni2
totally positive we get from (19)

Triczielef™ ™) > 0

XNow the proof of Theorem 1 iz complete.
Proof of Theorem 2. We assume that [ ==

..y k& hence gxn
=0 and g2

i=

== 0. Since by (iv) ¢+ is

cja;’ e K[x] has

Ref +# const. Let » be the greatest index ¢ such that Rec, #= 0. We have
r =1 by our assumption Re f £ const.

Using Theorem 1 we can find f, € X with Tr(e,f.8%) > 0. We shall
choose § = MB,, where M will be a large positive integer. If 4 > r then
Tr(e;| MBI} = 0 by Theorem 1A. If 0 < i < r then

T (e; | MPs*) = M Tr(e; [B4*) < M 2D,
where the constant D depends only on f, and e, ¢, ...

rD ye
- (T.r (criﬁ*l”)) '

Tr f((BB)) = M Tr{e, |B]*") ~# DA™ > (.

Proof of Theorem 3. By Theorem 1 either there is a f e K with
Tr(A8) < 0 or the two distinguished subtields K, and I, satisty the condi-
tions stated in the part B of Thecrem 1.

For such K,, K,, X the assumptions of Lerhma 11 are satisfied, so
for every fe K

5 Co1. We take

Then

TrezgfE) = Fre o2 |Trex, B1*)-
We tuke any f, ¢ K, but 3, ¢ K; and pub

Treg, o

5=ﬁo—m’
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By definition Trgg, (1#1%) = 0. Thus we have Trggze(i8*) = 0, which
compleses the proof of Theorem 3.

Now we give an example showing thaf results like Theorem 1 and
2 are no longer true for polynomials f(z) ¢ KK [%].

Examere. K is a tofally complex field of fourth degree, the normal
closure of whieh has & symmetric Galois group G.

By the Dirichlet Unit Theorem we have 2 unit a, J¢| > 1 with conju-
gates a, &, g, ;. Then joa,] = |ad,] = 1. Replacing if necessary a by o™,
where m i a large positive integer, we can assume that

(1+]aff) (1 + laaf?) > 17.
We put & = 14 |¢|*. We shall use the following notations:
thy = L+ |aef?,
tyy = Lt da,,

dll' = 1"{“1&'2, dlz = 1"""&&2, dl'2' = 1“}"6&2,

. dli’ = 1"["aﬁ2-

Bince G is symmefric all dy are conjugate. _
Let ¥y be a nonzero element of K, m be a posifive integer and leb
{¥, 7, ¥, 7o} be the set of all conjugates of y. Then we can write:

dy Tr{d {y[*™) = |y p" +dpo p] + Ao P32+
+ (g byg — 1| * — | B201?) o™ — Ay dyayy" — by dl‘z")_’-gm
= |y Y™ Gy Y Gy a2 (G Bggr — |dprp |2 —
( — |@12]?) [y ™ 4 2R (G 10957
= Gy by — (1ya] 4 1@1221)%) 172"
But |dpy| = [1-Feasg <2, d,) = [L+ao<2 and d,.d, >17. Heénce
{yal™

T d int o
r@ ) >

>0
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On the density of some sets of primes connected with
cyclotomic polynomials

by

J. Wégctr {Warszawa)

Iproved in {6] a certain result (Theorem 3 of [6]) about the so-called
Lehmer numbers:

(" —F{e—8) if
(a" — ") a*—p%) i

where a, § are roots of the trinomial 22 —VIz+M and L, M are rational
integers.
The result in question is the following:

TaeorEM. If a, f are different from zere and aff is not a root of unity,
then there ewists a positive integer by such that for every positive inleger &
divisible by %, and for all positive integers D and r where (D, 7y = 1 and
r=1mod (D, k) there ewist infinitely many primes q satisfying the conditions :
g=rmod D, ¢ =1modk, ¢[Py y,la,p)

P =P (a, ) % is odd,
n T Tl R = n is even,

wT

The Dlrmhlef, density of this set of primes is equal to o (L, D])’
where w, T are given in (24) of [6].

[k, D] denotes the least common multiple of % and D.

The main aim of this paper is to generalize and fo refine the above
theorem. We shall also prove Theorem 2, connected with Schinzel’s Conjec-
ture H.

The afore said conjecture H reads as follows:

H. If fi,fas .oy f are drreducible polynomials with integral coef-
Ticients and the leading coefficients positive such that fi(w) ... f, (@) has no
constant factor > 1 then there ewist infinitely many positive inlegers & such
that fo (@}, ..., f{x) are primes.

Definitions . and notation. The terminology and notation are taken
from [6]. F,(») denotes the =nth cyclotomic polynomial, F,(2,¥)
= y" T, (z]y).
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