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By definition Trgg, (1#1%) = 0. Thus we have Trggze(i8*) = 0, which
compleses the proof of Theorem 3.

Now we give an example showing thaf results like Theorem 1 and
2 are no longer true for polynomials f(z) ¢ KK [%].

Examere. K is a tofally complex field of fourth degree, the normal
closure of whieh has & symmetric Galois group G.

By the Dirichlet Unit Theorem we have 2 unit a, J¢| > 1 with conju-
gates a, &, g, ;. Then joa,] = |ad,] = 1. Replacing if necessary a by o™,
where m i a large positive integer, we can assume that

(1+]aff) (1 + laaf?) > 17.
We put & = 14 |¢|*. We shall use the following notations:
thy = L+ |aef?,
tyy = Lt da,,

dll' = 1"{“1&'2, dlz = 1"""&&2, dl'2' = 1“}"6&2,

. dli’ = 1"["aﬁ2-

Bince G is symmefric all dy are conjugate. _
Let ¥y be a nonzero element of K, m be a posifive integer and leb
{¥, 7, ¥, 7o} be the set of all conjugates of y. Then we can write:

dy Tr{d {y[*™) = |y p" +dpo p] + Ao P32+
+ (g byg — 1| * — | B201?) o™ — Ay dyayy" — by dl‘z")_’-gm
= |y Y™ Gy Y Gy a2 (G Bggr — |dprp |2 —
( — |@12]?) [y ™ 4 2R (G 10957
= Gy by — (1ya] 4 1@1221)%) 172"
But |dpy| = [1-Feasg <2, d,) = [L+ao<2 and d,.d, >17. Heénce
{yal™

T d int o
r@ ) >

>0
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On the density of some sets of primes connected with
cyclotomic polynomials

by

J. Wégctr {Warszawa)

Iproved in {6] a certain result (Theorem 3 of [6]) about the so-called
Lehmer numbers:

(" —F{e—8) if
(a" — ") a*—p%) i

where a, § are roots of the trinomial 22 —VIz+M and L, M are rational
integers.
The result in question is the following:

TaeorEM. If a, f are different from zere and aff is not a root of unity,
then there ewists a positive integer by such that for every positive inleger &
divisible by %, and for all positive integers D and r where (D, 7y = 1 and
r=1mod (D, k) there ewist infinitely many primes q satisfying the conditions :
g=rmod D, ¢ =1modk, ¢[Py y,la,p)

P =P (a, ) % is odd,
n T Tl R = n is even,

wT

The Dlrmhlef, density of this set of primes is equal to o (L, D])’
where w, T are given in (24) of [6].

[k, D] denotes the least common multiple of % and D.

The main aim of this paper is to generalize and fo refine the above
theorem. We shall also prove Theorem 2, connected with Schinzel’s Conjec-
ture H.

The afore said conjecture H reads as follows:

H. If fi,fas .oy f are drreducible polynomials with integral coef-
Ticients and the leading coefficients positive such that fi(w) ... f, (@) has no
constant factor > 1 then there ewist infinitely many positive inlegers & such
that fo (@}, ..., f{x) are primes.

Definitions . and notation. The terminology and notation are taken
from [6]. F,(») denotes the =nth cyclotomic polynomial, F,(2,¥)
= y" T, (z]y).

2 — Acta Arithmeiica XL.I, 2
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Let us put
if aw=1o0r2,
Qn = Qula, ) = iFﬂ(a 5 & wss.

IH is known that

P;L =n Q; - and @, =”~Pf’lﬁ(ﬂld)'
din

dln
We bhave
(1) Q, =P, if pis a prime.
@, are rational integers.
Lef us put
P, if »=1,
Onim = Qumlay f) = 1Fy (™, B7) i n>2and (n,m)>1,

F (o™, [ F (e, f) i n>=2and (n,m)=1.
We have @,, =1, Qz,m = & . where

m?
{(a™ =™ f{e+p) H  m Is odd,
o™+ ™ if  m iz even.

m = Spla, f) =
We have
 {2) Qnp =g, i iz a positive integer, p a prime.

Indeed, Ql,z: =P, = @, by (1). If =2 then by the property of the
cyclotomie polynomial @, , = F,,(a, f) = @,, since np = 3.
We shall prove the following formmlas:

@) Qum=[[Quma for (m,m)>1, m=mymg, (my,m) =1,
dlmy
where m,; contains only prime factors dividing #;

(4) Qﬂ,m = H Q. for

dim
d>1

Since @, are rational integers, it follows from these formulas that Q.
are also rational integers. .

(n,m) =1.

We have
(5) F, (™) = H Fa@ for (m,n) =1.
Hence
(8) Foe™) = By (") = [ [ Frpalo),

dimsy
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where # = MMy, (Mg, n) = 1, m, containg only prime factors dividing
n. Hence (nm,,m,) =1 and if, additionally, (n»,m)>1 then m;>1,
n =2, am.d 2 3 and by (6)

H Qn‘mld'

Qum = Fo(a®, f") = [] Foala, 8) =
dinta dimg

Thus {3).
Iftn=2, (n,m) =1and d > 1 then nd > 3 and by (5)

Qun = Fulo™, B™)[Folo, f) = Hﬁ’m(a, B =[] Qua-
d>1

dlm
d>1

Thus (4) for %3 2. We have @, = P, = [] @, = [] §;. Thus (4} for
aim dlm

o= 1. a>1

An algebraic integer is called primitive if it is not divisible by any
positive integer > 1. We say that algebraic integers ay, ..., @, are Z-coprime
if there exists no positive integer d > 1 such that @ley, ..., & oy,

Let us put &, = OQ(VKL), where K = L—4M.
0<d= (L, 3 dfor <L, M) #<0,0).

o _fo it I=M=0, [0 i L=M-=0,
YT i (L, My £ 0,0y T \Md i (L, M <0, 00

Lo i L=m=o, 5"{0 it L=M=0,
VU le¥d B (L, M) £ 0,00 TUUAse i (L, MD 0,03
K, = L,—4M,.

We have k, = Q(VE,L). o, f; ave roots of the trinomial 2*— (L, —
—2M,)2+M? with discriminant K,IL,. Hence a,, f; are integers of ki,
B, 18 the conjugate of oy if k, is quadratic.

Asgume that a, # are different from zero and aff is not a root of
unity. We have a/f = a,/M; € k;. Since ¢, (a/f) iz a positive integer (Lem-
ma 1 of [67), there exists a maximal positive integer T such that

(7 alf = &L=,

where & = y/8, y, & are integers of k,, y, 6 are Z-coprime, & is the conju-
gate of y if k, is quadratic and w denotes the number of roots of unity in %, .
We shall show that there exists a positive integer ¢ such. that

(8) M, = +éf.

TFirst we notice that (L,; M;) =1 and a,+py = L, —2M,, o,y = M
Hence (o,, §,) = 1.
1. k, = Q. Wehave & = y/8, y,0€Z; (y, 6) =1L aff = (— 1)"’3/1'/51'
ot = ayff, = y 11875 uy, fr € Z, (oq, fr) = 1. Hence a; = ¥, f; =
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or a; = — 3T, f; = — 6T, Put e = |yd|, where ¢ is a positive integer.
Yo have M? = af;, — (yofT = &*T. Hence M, = +¢%. Thus (8).

2. %, is quadratic. Below a dash denotes a conjugate number or a
conjugate ideal. We have 5 = y/y'. By (7) v is a primitive integer of %,.

We have

(i) ¥ a., a, are primitive integers of k and ay/e; == afu; then a,
= 40,.

Indeed, {oa./e;)" = asfo, € Q. Thus sa, =re,, r, s€Z, (r,8) =1,
s > 0. Hence 7|as, 8|a;. Sinee ay, o, are primitive, it follows that s = 1,
v = £1. Thus (i).

(ii) If a, i3 a primitive integer of &, and p|a,, p|a;, where p is a prime
ideal of %,, then p is ramified and p| a,.

This is clear.

Let us put
{9) 9?® = sy;, where s is a positive integer and v, & primitive
integer of k,.
We have
(10) ' (v, 1) = 1.

Indeed, if p{y,, p|y;, where p is a prime ideal then by (9) piy, ply’
and by (ii) p = p?, where pisa prime, p % ply., P18, p*|¥% and we obtain
a contfradiction.

By (7) and (%)

@t = ay[pr.= (59T [y = T ILGtvE.
8ince f;, = aj, it follows from (i} and (10) that

By o= fo?’f': B = C:;“P;T or a = — fn}’lTT b= ‘“C;“J’ir-

Hence by (9) M5 = a8, = N(y)¥ = ¢*Z, where ¢ — [N(y)/s] is a positive
integer. Hence M, = 4 ¢%. Thus (8).

I » is a rational integer, then a* denotes the produect of different
prime numbers dividing #, k,,(e) denotes the wth power-free kernel of e, k(e)
denotes the square-free kernel of e.

We shall prove the following

THEOREM 1. Let % be any positive integer. Assume that o, § are differ-
ent from zero and aff is not a root of unity. Let k > 0 be an arbitrary common
multiple of the numbers nw*T ond 8k(KIL)E, (e). For any posilive integers
D and r, where (D,7) =1 and r = Lmod (D, k), there ewist infinitely
many primes § satisfying the conditions

g =rmod D,

g =1modk, ¢lQuq

icm
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g(n)wl

(i, D)

The Divichlet density of this sel of primes is equal o

e, w, T are given by (7) and (8).

TAROREM 2. Let n be any positive integer. Assume that a, § are dif-
Serent from zevo and af is not a root of unity. Then conjeciure H implies
the exisience of infinilely many primes p such that @, 18 composite.

Taking in Theorem 1 » = 1, we obtain

THEOREM 1°. Assume that o, B are different from zero and ajf is not
a root of unity. Let k> 0 be an arbilrary common multiple of the numbers
wT and 8k(K L)k, (e). For any positive infegers D and r, where (D, r) == 1
and r = Lmod (D, k), there ewist infinitely many primes q satisfying the
conditions

ng

g=rmod D, ¢=1modk, qiP{ ;.

wl

The Dirichlet density of this set of primes is equal t6 ——————-
HER Tk, D1

where ¢, w, T are givem by (7) and (B).
Taking k, = [wT, SL{KL)k, (e)], we obtain Theorem 3 of [6].
Taking in Theorem 2 # = 1, we obtain by (1) Theorem 2 of [5].
LeMma 1. Let »n, k be positive integers such that n|k, and aff c P,.
Let ¢ = 1 mod k, g|q, where q is a prime and q a prime ideal of P,. Assume
that q is prime to KLMPF, (a, f). Then (fgi) = (% for o certain aeZ,

& .

(z,n) =1 if and only if q|Q, g1
Proof. Necessity. qis a prime ideal of degree one in P,,. Let (_ai_ﬂ)
k

= (% for a certain o satisfying {x, n) = 1. Hence

(12) F, (&) = 0.
‘We have
{13) Qum = Fo (o™, A, wm being a positive integer,
where
at—p* if »n=1, mis even,
A=1F(a,8) i «n=2, (n,m)=1o0rn=1, mis odd,
1 it (n,m)>1.

By Euler’s eriterion {a/f)¢ Y% = Zmod q ((g, a/f) =1, (¢, k) = 1).

Hence by (12)
Fn(a(q_””‘, ﬁ(q—l)fk) = ﬁ«r(n}iq—l).’k Fn((a.] ﬂ)(q—l)fk) = ﬁw(n)tq—l)ik F, (&%) = 0mod q-
Henee and by (18) ¢1Q, g 1y since {g, 4) = 1.
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Sufficiency. Assume that quﬂ,(q_}m. Hence by (13)
ql ﬁm(n)(q—l)m F, (( af ﬁ)(q—l)lk) .
Since (g, B} = 1, it follows that

7, {(afY7~""%) = 0 mod q.
Thus ’ -
[] Ueipe%—5] = 0 mod g.
(zn)=1
Since C &Py, as n|k, the factors of the produet belong to Pk Hence
(aff) ¥ = 7% mod q for a certain: & prime to n. By Huler’s eriterion

(GTHS) = {%, The lemma i3 proved.

Proof of Theorem 1. Let &, y, 8, w, , T have the meaning as in
(7). We have d =y it %, is quadratic. According to the definition of e we
have yd = L-se, where s = 1if k, = Q and s is & positive infeger satisfying
(9) if %, is quadratic. Now we shall study s and e in the case of & quadratio
k,.Since y is primitive, s is square-free by (9). IL 2|5, p |, where pisa prime
ideal of &, and p is a prime, then by (9) ply, p|y’ and by (i) p = p* Hence
s divides -the discriminant of %, and s|2k(EKL). Further we have ¢* =
l\T('y ,/s2 = Ny =y by the definition of e. If ple, p|p, then p FED
and p = pp’, and thug (ic(KL)ip) = 1. Otherwise we wonld hzwe p = p,
Plyws plyy; contrary to (10) We have proved:

(fil) p8 = S3e, where § i$ a square- -free positive integer, s divides
the diseriminant of %, sizk(KL), e is a posrtwe mteger if 'p|e then
(b(ED)7) =1, (s, ) =

We shall use the theory of Gaussian sams. Let & > 0 be an arbltrary
common multiple ¢f the numbers nw?T and Sk(KL)hw(e)

Let us put 4 = a/f. We have

(14) . I/KL) c P4|k(LL)I = P}” C_wET eP,.
We shall show that '

(15) u ?PWT,‘ veP,.
It is enough to prove that

(16) : S E = xwl # EP?G

Then (15) is satisfied by  ow e DY (7) and (16).
1. w = 2. We have

(17 F = [ = p8/8® = (V L se /8)°
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by (iil). We have &, (¢) = k{e). By (ili): (s, 6) = 1, k(se) = sk(e), s 2k(KE L),
Vdse €Popn Pnlk(KL)lk;,(e) Py, dek, =P, by (14). By (17) ==
= V 4+ se/d satisfies (16).
2. w=4 Wehave b, =P, = Q(}/——_l). We shall nse the arithmetie
of P,. We have
{18) E = y/d, ~where y, é are primitive integers of P,, § = 7.
An integer of P, is called primary if it is congruent to 1 mod 2 -} 24.
Let us put
(19) oy =FAHE A, 0 =Y A—RE L A,

1< oy < 3, p; = m 7y, Where p; is a prime, p, =1 mod 4, 7, 7; aze primary
prime numbers of P,,, 'yz i an. mteger of P, and %, equals 0 orl.

Hence 78 = 2 19 N (7}2)‘1 On the other hand, by (iii), 8
"*':—N()_”SE’S—'2156_? pII-N(yz);, : ) :
{20) k:,(e) = '4('3) =pP1---Py

By (18) and (19) L
{21) E = g ]’-’51) - 7 (yafFa)

Since one of the numbers Ry is primary in the sense of formula
{11a) of {27, p. 443, we have by (10a) ibidem

(22) ) = Pﬁ? = pi(”"ﬁf)g’ a7y = (v () /7),
‘where - R R
25— . .
(%) _2 2y @) = (;;‘) -
=1 4 14
v (20) . o ‘
(%) EP@J I 13‘Mjl P4k, -0 c Py, eP, = Py.

Obviously {, e P,. By {21) and (22)

w= G (e /m™ - (@) im) (val7a)
satisfies (16). ‘
3, w =6, We have ky =P, =P, = Q(Y —3). We shall use the
arithmetic of P,. We have .
(238) & =y/6, where y, d are primitive integers of Py, ¢ = 7.
An integer of P is called primary if it is congruent to 1 mod 3.
. Let us put

(24) B T T L 0% S B G P e AL
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o =", 1<, <5, p; = m7, where pj.ris a,_prime, #; =1mod 6,
#;, ®; are primary prime numbers of P, y, is an integer of Py, 1, equals
¢ or 1. Hence

y6 = 3157 . N ().
On.the other hand, by (iii),
98 = N(y) =se, & =231 ¢=p ... 00 N(p),
(25) Kh(e) = Ky (e) = py... ;.
By (23) and (24)
(26) B = G my )" L () (raf70)°
Bince —m; = —1mod 3, we have by (10c) of [2], p. 445,

(27) Py =H(—5) = 0,7, =F = (ﬁf’_lm‘f(lﬂi’j)/ﬁj)ﬁ;

where
pi—1
By = (0, ) = D) pw@)E,
=1
@ i)
wor-{5) o =(3)
¥l pj ? xj( ) uj s
By (25)

(%) EPapj = Papp..m = Pak;v(e) c Py TEP o P

Obviously {,, &;, €P,. By (26) and (27) _
% = ng“l(ﬁfl—lmﬂh'}’ﬂ/ﬁl)ﬁ oo (fgzz}l_l)"zt(xz'lfr)/ﬁzrz(‘)’2/72)

satisfies (16). (16) and hence also (13) are proved completely.
Let us put

(28) (g) = (Bip'“) for s|k, m = kjwT.

By (15) u, »e P, and

CRER
aly aj,
Let D be any positive integer. Let F be any positive integer divisible

by kDELMF, (e, §) and by all eonductors of power-residue symbols
oecwrring in this proof. We have P, < Pg.
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- Let us put
Gy ={s:5¢Q,(s, ) =1,8 =1mod k}
(G is a group of rationals mod F corresponding to the field P,).
A = {a: aan ideal of Py, (a, F) = 1},
H, = {a: aan ideal of P, (a, F) =1, Na = 1 mod F},

H = {a:_ aan ideal of P, (a,F) =1, Na = 1mod F,(%) = 1}-
k

By the assumption on ¥, 4, H,, H are groups of ideals mod F in virtue
of Artin’s reciprocity law. .

Let ¥ =1lmodk (r,F) =1, re@. Obviously r e@,. By Lemma
6 and {28) in [6] and by (7) and (15)

GQ(‘M) = ‘WTGQ(‘V) = GQ(ET) = GQ(E)'T = g,

Hence '
{30) ¢p, (v} = ¢gv) = 1. .

Aceording to the definition of k and by (28), #im. By Lemma 4 of
[6] for any % prime to n there exists an ideal af® of P, such that

¥4
(@@, F) =1, N =rmodF, (—arz;-) = E.
1 "
Let ¢ denote the coset of A with respect to H containing af®, i.e.
by (29)

o= ={a: a an ideal of P, (0, F) =1, Na = rmodF,(»—ii) == C,’f}-

k

Put
(31) B (A:H).
Let ¢ = |J € denote the set-theoretic union of the sets €.
zmod n ’
{z,n)=1
Put

B = {g: q a prime, ¢ =rmod F, ¢{@, ; i} |
(r =1modk, (r, ) =1).

Let v e Gal(P,/Q). If q is aprime ideal of P, of degree one and q = G then
7q € ¢. Indeed, ¢ = Ng is a prime number congruent to 1mod %k, q|g,
rq|g and by Lemma 1 ¢ € B, 7q € ¢. Henee and by Lemma 1 if q i§ & prime
ideal of degree one in P, and q € € then there exist exactly || prime ideals
of degree one in Py, 7q (t € Gal(P,/Q)) belonging to ¢ and dividing a certain



126 J. Woicik

prime number g belonging to B (g = Ng). Conversely, if gis a prime number
and g €.B then g splits completely in P, and each of its prime divisors
'belongs to C. Hence by Hecke's theorem and by (31)

(32) a(() m—h—, d) = Zd/‘ O = ‘P(”’)
(z,n)=1 .
2 MNay . Py
4(0) = 3}:11110 1“_———0g(1/ ~3) [Pklal]ﬁ.lo Tog(L/s =1 = |Pld(B}.
Hence . .
(33) d(B) = @(n}/| Pl h.

By Lemma 2 of [6] the quatlent group A]Hl ig isomorphic to. G,/Hp.
By the Galois theory

— (@, Bp) Py /B,

(4 :H)) = (Pp:P,) =
By Lemma 4 of [6] and. by (29), (28), (30)
: (Hy:H) = m = EjwT.
By (31) : o
h=(4A:H) =(4: ‘: =|PFI-_;"-_
b= ( : ) = (4:H,)(Hy: H) P Wl
By (33) ,
(34) a(B) — 2mel
ko (F)

Suppose thét D = 0mod k. Put

B = {g: g a prime, g =7 mod D, ¢|Q 4y}
where (r, D) =1 and r = 1 mod %. '

Let P be the group of all residue classes mod F prime to # and P, the
subgroup of residue classes mod F congruent to 1 mod D: Since for each
rational integer & prime to D there exists a rational mteger 7 prime to
' gatistying n = £ mod D, we have (P:P,) = (D). Hence the number
of residue classes mod F which are congruent to v mod D is equal to
o(F)jp(D) and all the classes are congruent to 1 mod % because of
D =0modFk. It follows that the set B’ apart from at most finite number
of primes g dividing F is the set-theoretic union of ¢ (F) /(D dlSJomt gets
of type B. Hence d(B') = (¢(F)/p(D))d(B) and by (34) :

(35) A(B') = g(n)wlikp(D).
Thus we have proved the theorem for D = 0 mod %.

icm
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Let D be any positive integer. Let us put

= {q: ¢ a prime mumber, ¢ =rmod D, ¢ =1mod k, ¢1Q, 1y}
where (¢, D) =1 and ¢ =1mod (D, k). There exist rational integers
@, y such that ¢ = 14%z4 Dy. Obviously

= {g: ¢ & prime number, g = 1+ ke mod %, D1, 1@ g1yt
By (35) (the theorem for D = 0 mod k):
d(B") = p(n)w kg([k, D).

The theorem is proved.

LeEMMA 2. Let w be any positive integer. If a, f are dszerem fwm zero
and afB is ot & root of unity, then there ewists a positive integer k divisible by
dnk{EL) and such that for every positive mfeger D there ewist. infinitely many
primes q satisfying the condition

g =1imodk, ¢lQyq-urs {(g—Dk, 'D) = 1.

Proof. Put & = 8 \k{EL) k,(e)nwtT. Let D be any positive integer.
D = D, D,, where D, contains only prime factors dnudmg i a.ud (D, &}
= 1, Lot + satisty the system of congruences
k41 mod %2,
2 mod Dy,

D, being odd since  is even. Hence (v, D) = 1,7 =1 mod k. By Theorem
1 there exist infinitely. many primes ¢ sa,tlsfymg the condition ¢ = 1 mod %,
g=r mod Dk, 219 (-1 Henee (g ~1)/k, D) =1 The lemma is proved.

Proof of Theorem 2. Let k be any positive mteger sa.tlsfymg Lemma
2. Put N () = Np,o(£2) and let for an abelian extension B[R, f(E]Q)

be it conductor. We have @(e/f) = Q(}/ﬁ). Hence off € Pyyrry = Fr-
Let us put in Lemma 4 of [5] ky = Py, g{z) = Fylx), 6 = L,
F = k(2|P)! ldischKLMQnEN(f(Pk(:/E[ﬁ)/Pk)).
By Loemma 2 there oxists a prime g,such that
(36)  go = 1mod'%, ((go—1)]%, F) = 1,
Since g, = 1mod %, ¢, sphts in P,. There cxists a prime 1dea1 a in P,
such thab :
(87) . fo = ¥
- By (36) and from the definition of 7
F = 0 mod k(2 |P,|) discF,, Na= 1 modk,
- ((Wa—1)fE, Fy=1..

QO'EQTL (g 1)k o> F.

(a,F) ;"1:
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By Lemma 4 of [5] there exists a polynomial f(x) such that the poly-
nomials f, (@), fa(#) = (f,(z)--1)/k satisfy the assumption of Conjecture H.
By this conjecture there exist infinitely many positive integers @ such
that ¢ = f,(2), » = fo(x) are primes. We may assume ’

(38) g > |KLMQ,],
Again by Lemma 4 in [5)]

p>n.

(39) g=Nq, q~a'modF,

where q is a prime ideal of degree one in P, .

By (36) and the definition of F': g, > |KLMQ,|. By Lemma 1 and by
(36) and (37)

(%i—é) = & for a certain # prime to ».
k

Hence by Artin’s reciprocity law and by (39)

a

(40) (f_/ﬁ) = (w_’f)_ = [, * for a certain x prime to % .
q /& a Je

By (39) and (37) ¢ = 1 mod k. By (40), (39) and (38) and by Lemma 1
918 q—1y- Bince (g—1)/k = p, we have

(41) 219ny
by (2).

Without loss of generality we can assume that L > 0. Then for K > 0
we have in virtue of (4.1) of [4] and by (38)

[anj - R&wm)(zs—l),
where
ALM
[T
[4E M|

if M<O0,
it M>0
and for K < 0 for p > ¥ (a, 8)/n by the fundamental lemma, of [31

(42) (@l > a2 s o /a2 ot

where »(n) denotes the number of prime factors of #.
Thug in any case for p large enough we have @l > kp 31 = g and
(41) implies that @,, iz composite. The assertion of Theorem 2 follows.

Remark. Using Baker’s theorem [1], one can obtain an inequality
stronger than (42), namely

5 1y 2l +Y
(@ny (2, B)] = Va¥ie-1 eg2lv(t) )lﬂznp,
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where ¢, = 0,(a, ), p >mn provided L>0, K <0, M 0, and aff is
not a root of unity.
Tt a/f is a non-trivial unit, then we have
g7 it

+ N{e) =1,
(43) aff= liei*:“" ‘

it N = —1
where &; 18 the fundamental unit of k,.

Henes
|logla/gllogleyt i N(ey) =1,
[logla/p||/2log(e) # N(g) = —1.

Put T = ocoif @ = 0 or § = 0 or a/f is a root of unity. Below we shall
study the computation of T = T(L, M). We have

(1) a/f is unit if and only if {M,| =1, i.e. M[L.

Indeed, the trinomial 2% (L/M —2}z4+1 has roots «ff and ffa.
a/f is & unit if and only it M|L, ie. | M, = L

(ii) e or § i3 zero if and only if M, = 0.

Thig is clear.

Let us put .
maximal T, satisfying: M, = 4 €1, ¢, a positive integer
= for (M, > 1,

oo for | M, =8 or 1.
By (i) and (ii}

(44) Tmax =

Hence by (8)
(45) T < Toax-

PROPOSITION, If ky = Q or k, s a quadratic imaginary field with
class number 1 or 2, then T = Ty . '

T a==0o0rf =0 or ¢/f is a root of unity, then by (44) T' = Tpor
= oo. Assume that a, § are different from zeroTand a/f iz Dot 2 root of
unity. Then T, T,,,, are finite. Wo have M, = e, ™", whero ¢, it & positive
integer., Hence

Tm ax

if and only if @ = ¢ or 8 = 0 or ¢/f is 2 unih

(46) wfy = M} = o,
ky == Q. Since oy, p, are rational integers and (ay, f) = 1, We have
= eyTmx pogfTmex g1, oy, 8eZ, (y,0) =1
Hence

= ayfpy = (8, alf = L[
Hence, by the definition of T, Tpax < T+ By (48) T = Tax-
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ky is quadratic imaginery. Since o,, f, are integers of oy, (ay, f;) = 1,
B, = o}, by (46) there exists an integral ideal a of &, such that

(47) (ay) = ™",

Since %, has the class number 1 or 2, we have g2 = (y,;) where y, is
an integer of iy.

Hence N(y,/N¥a) = 1. By Hilbert’s Theorem ¢0 y,/Na = y[y', where
¢ is a primitive integer of &,. Hence afa’ = (y,)/(Na) = (y./Na) = (y/v")
and by (47)

(alB) = (a¥]B%) = (o)) = (afa’) ™% =

Hence (aff) = (y{y") m’“‘. Passing to the numbers, we have a/ﬁ =
Z{,,(y/y) max Hence Ty < T and by (45) T = T ...

Now we shall give some method of finding 7' = T'(L, M). By (43)
and by the proposition we may assume that «, § are different from zero
and e/f i8 not a unit, and %, is a real quadratic field or an imaginary quad-
ratic field with class number > 2. In particular %, # P,, P,. We have
T < o0, Thyoy << 00, w == 2, T may be defined as follows:

(iv) T maximal T, satisfying the following condition: Ty|T ..,

= 49, 2, there exists a rational integer s, such that sy, = 95, % €%, &1
d_rndes the discriminant of %; and ¢, i3 squarefree. ‘

Indeed, by (8), {9), (11) and (iii), T|Tmexs @ = 71, 8171 = 7%
iy ¥ € 1y and & is squamefree and divides the d1scr1mmant of %,. On the
other hémd i a = ey,, y 88 =1, v, ek, 819 = ys, y; €k, 8, €¢), then
B = E% Y 317" =y and o%f? = aff = (?’0/3’2) B (?’3/7’3 Tl- Hence

(By) = o Tmas,

O R

afff = 4 (yfys) 1. Thus <7
Let us put
_ VxED) #f  k(EL) = Lmod 4,
(L+VE(EL)/2 if #®EL) =1mod4.

The numbers 1, o form an integral basiy of %,. Since ¢, iz an infeger,
¥2, vs are also integers.

By {iv) we shall find 7 if we solve a finite number of equations of
the form a-+bo = (z+yof = flz, y)+g(z,¥)v in rational integers
z, y where a, b e Z, b # 0, and m is 2 positive integer. f, g are forms of
degree m with rational integral coefficients. The above equation is equiv-
alent to the system of equations

fl@,y) = a,
gle,y) =>b, a,beZ, b F£0.

This system may be solved by wusing the elimination theory. We shail
use & certain method independent of elimination theory. For any rational
integers @, y satisfying (48) we have a---bw = 2™ mod y.

{48}
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Hence b = 0 mod y. I #,, y, satisfy (48), then y,!b, @, satisfies the
equation f(z,y)—a = ™+ A, 0™ ... + 4, =0, where 4,,..., 4,
are rational integers, g(z,, ¥,) = b. Conversely, every such x,y, satisfy
(48). After a finite number of steps we shall find the solution z,, y, of
system (48) if there exists a solution.

Exawere 1. L = 6, M = 128. Wehave L, — 3, M, = 25, T, = 6,
T6. a;, f, are roots of the trinomial 22-L195z14086. K == [ —4M

= ~-506. k =QW—759), o=(14V—759}/2, a = —63+a,
= —63- o', None of the equations —63+w = L (r+yw),, —63+
= (#4yw)® is soluble. We have 3(—63+ w) = (1+ )2 Hence T = 1.

EXAMPLE 2. L = 6, M = —128. We have L, =3, M; = —2°
Tpax = 6, T16. K = 518, ky = Q(VT77). ay, P, are rocts of the trinomial
221312 - 4096, w= (1 +V777) ,iz. a; = 65+, By, = 65+ w’. None of the
equations 654w = 4 (x+yw)?, 60+ o = (- yw)? is soluble. We have
360+ w) = (1L+w)? Hence T = 1.

EXAMPLE 3. L = 256, M — 36. We have L, = 64, M, =32, T,
= 2, T'|2. a7, f, are roots of the frinomial 22 —462181, K =112, &
= QV7), o =V7, a =23+8V7, p, =23 8Y7. We have 23-+8V7
= (44+V7)2, 2(4+V7T) = (14+V7 )% Henee T = 2.
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