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1. Introduction. Let F be a field of characteristic different from
two. The quadratic form structure of F is reflected exactly by the Witt
ring W(F). The group structure of W{F) sppears to be easier to analyze
than the multiplicative aspect, and a primary reagon for this is the pregent
lack of knowledge about the Kaplansky radical, R{F), of P. Here we
determine W({F) for all fields which have at most four quaternion al-
gebras and for which R(F) has finite index in ¥ = F—{0}.

Diagonalized quadratic forms over F will be denoted as (ay, ..., 6,>
and their valme sets in ¥ as D({a,, ..., 4,>). The number of guaternion
algebras over ¥ is m = m(¥) and ¢ = g(F) = |F/F?. The guaternion
algebra with structure constants ¢, b e ¥ will appear as [a, b]. The nota-
tion {a,,..., a, G with @, ¢F and & a subgroup of F -will denote the
subgroup in F gencrated by & and the a; where the a; are independent
modulo &. Usually & will be either ¥*? or B = R(#). Other notation
and terminology will follow what is used in [9].

Atternpts have been suecessful in classifying Witt rings with smadl ¢
{and small [F"/E|). Almost all of these fields, however; have at most
four quaternion algebrag. The key to finding W(F) when m <2 was
the fact that D({1, —ad) = D({1, —b)) if and only if ab & E. In general
this very powerful result (whose proof is easy when m < 2) fails when
m = 4. We will show here that it does hold when m = 4 and 8 < {F"/R]
< o0, .

The proof will depend on a eollection of D ({1, —a))’s. It is well-known
that [Q(a)] = [F /D1, —a))l where @{a} = {{a,b]| beF}. Thus all
D({1, —a>) must have index at most m in F. The first part of this paper
explores what kind of collections can cxist when m = 4 for which the
D(, —a)) all have the same index. The second part introduces two
new subgroups of ¥ when 8 < |F'/R|< oo and m =4, and these are
used to find W({F").
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2. Existing results. Call % = #(F) the u-invariant of F. Then m = 1
it and only if 7 is non-formally real and # < 2. W(F) then depends on
whether the level s = #(F) is 1 or 2 and the resnlt ig given by Theorem 3.5
of [9] (p. 44). For completoncss, we will state it here as Theorem A. As
with our other structure results, we write W(F) as a direct sum of cyelic
subgroups and state the multiplication in terms of a set of generators
for these subgroups. The generators will be given as anisotropic forms,
but it is nnderstood that these are just representatives for their Witt
classes. :

THREOREM A. Let B be a field with m = 1 and suppose F' = {{ag};, F*.
If s =2, assume 1 el and sel ¢y = —1. If s =1, assume 1 ¢I. Then
W(F) is & direct sum of {1y and {{1, —a sy The order of {15 is 2s,
the order of every <1, —a;) is 2, and the product of eny (1, —a;)’s is 0.

Kaplansky [7] showed .that when |F'[R| =2, then F i real and
R =DK1, 1)). In fact it is easy to sce for real fields that [F'/E| =2
it and only if m = 2. W(F) now can be written as the same direct sum
as in Theorem A it D((1, 1)) = {{a;};;> F*. The non-real case for m = 2
is not known in general yet but is given in the proof of Theorem 1 of [3]
when |F'[R| < oo. Note that if m = 2, then s < 4.

TreorREM B. Let F be a field with m = 2 and suppose B = ({a}.) .
If =1 eR—F*%, asswms 1 el and set ay = —1. Otherwise assume 1 ¢ 1.

(i) Xf F is real, then F [RB| = 2 and W{F) is the direct sum of (1>
and {{1,—a >}z 1> has infinite order, cach {1, —a;> has order 2, and
the preduct of any (1, —a;»’s 4s 0.

(i) If F 4g non-real, | ¥ |B| < oo, and 8 =2 with —1 R or s =1,
then there exist {by, ..., by, ¢, d} where (¥ |R| = 2°*, such that W(F) is
the direct sum of (1, {1, —@ha-m, &1, —b Yty and (1, —c, —d,
edy>. The order of {1 1s 25 and i8 2 for all other generators. The product
of any two non-{l) generators is 0 evcept {1, —b>-(1, —b> =, —e¢,
—d, od> which holds if and only if {j, &} = {2e—1, 2e} for every 1 < ¢ < n.

(i) If B 43 non-real, | F R} <C oo, and 8 = 2 with —1 ¢ E, then there
exist {byy ...y boy_o}, where 1F [R| = 2°", such that W(F) is the direct sum
of Iy, {, ~aleer, {1, —bDHS". The orders of (1) and {1, —boy
are 4, the orders of all other generafors ave 3, and the same product rule in
(i) holds (where {1, ¢, —d, ed) iz the unique, awnisotropic, qualernion
form over 1),

(iv) If I is non-real, {F'[R| < oo, and & = 4, then there ewist {b,, .
vory Do}y where (I [RY = 2**71 sueh that W (I is the direct sum of {1},
{Q, —adlier, and {1, —bYEET*. The order of <1) is 8 and is 2 for the
other generators. The product rule 4n (iii) holds.
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Tt should be noted that for non-real fields m = 2 and m =4 both
imply % = 4. The group structure of W{F) is then given for any F R
by Theorem 4.5 of [1].

3. Fields with m < oo. This section containg some results for fields
with m < co. Included is a weak form of D((1, —a)) = D({l, —b))
iff ab e .

PrOPOJITION 1. If F is o field with m < oo and d € F', then there are
exacily i — I [D({L, —d)| anisotropic forms of determinant & and dimen-
ston 4 which represent 1.

Proof. Lot ¢ be a 4-dimensional form of determinant ¢ which repre-
gents 1. Then g =<1, —ad, —yd, zyd). The Hasse invariant of ¢ (a8
defined in [107) is [ =1, —1):[#, ¥]. Thus there are exactly m such forms.
And ¢ is isotropie if ¢ = (1, —1,a, —ad). Clearly there are IF (DL,
—d>»)] of these. m _

CoroLLARY 1. If F is mon-real, m << oo, and <4, then there are
m— B DL, —d>)| anisotropic 4-dimensional forms of determinant d.

COROLLARY 2. If m < co and D({L, —ad} has index m in F, then
DL, —c)nyD (L, —ax)) + B for all o,y eF.

Proof. By Proposition 1, {1, —&, —¥, ary) must be igotropic. =

THEOREM 1. Let T be a field with m << oo, and suppose DL, —ay),
DL, —by) both have indez m in F. Then D1, —a)) = D{, b))
if and only if abe R.

Proot. One direciion follows from Proposition 1 of [2]. So assume
D1, —ad) = D1, —b)), and et 1, &5, ..., T be a set of coseb repre-
sentatives for D({1, —a)). Then {1, —a, —%;, b)Y, is a set of m—1
inequivalent, anisotropic forms of determinant ab. By Proposition 1;
|F' D1, —aby)| < 1. Hence ab e k.

4. Binary form value sets when m = 4. Throughout this section,
weo will assume F is a field with m = 4, |¥[R| > 8, and H is a subgroup
of index 2 in F* which containg B, We will be interested in the collection
{(D(L, —=d)| we H} for some fixed 2. In particular for z =1, can this
collection of value sets all have index at most 2% Can they all have index 1
or 4% The same gquestions will also be asked if #z ¢ H. One of the answers
will allow us to strengthen Theoremn 1 when m = 4. .

PrOPOSIIION 2. Suppese D{L, —&)> has index 2 for all e H-—R.
If a,be ¥, ab ¢ R and D({l, —a)), D{Q, —b)) both have index 2, then
DL, —ad) = DL, —b)). | -

Prootf. Suppose D({1, —a&)) = D{({L, —b)). Then the Lemma of {4]
implies these sets equal D (<1, —ab}. Oonsequently, D((L, —@y)n{a, by &
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= R for all d ¢ D({1, —a)). In particular D ({1, —d>) must have index 4
and so H = D({1, —ap). Notice —a, —b, —abeH then yields —1,
a,beH.

Claim 1. If ¢ ¢ {a, b} R, then there is no 4 ¢ ¢R such that D ({1, —))
= D({l, —d)) and such that these subgroups have index 2 in F'.

Otherwise, by the above, D({1, —¢)) = H for 2ll ¢ e ¢a, b, >R —R.
Thus for any ¥ ¢ H, D({1, —y))n<a, b, ¢) R contains some ¢ ¢ R; and so
¥ e D({1, —e>) = H. Contradiction. _

Claim 2. If B = {[¢, 2]| c e H —<(a,b) R, # € F'}, then |H = 2. In
particular £ is a subgroup (of the Brauer group).

First note that [F'[R| > 8 implies # # @. Secondly gince D1, —&))
has index 2 for all ¢ € H —R, there are only two quaternion algebras of
the form [e,z] for a fixed ¢. Suppose ¢, de H —<{a,b)R and e ¢ dR.
By Clim 1, D({1, —¢)), D1, —d)), and D{{l, —ed>) are distinet
subgroups (of index 2 all of which contain the index 4 subgroup D ({1, —e>)n
nD(1, ~@))). Henee F' = D1, —ed)uD(1, — YD (L, —edd). Se-
lect some y ¢.D({1, —e))UD({1, —d>). Then ¥ eD{1, —ed>) and so
[ed, y] = 1. This means [e, y] = [d, ], and we see every pair of non-
split members of B are equal. The claim is established.

Consider some ¢ e H —{a, by R. Since ¢ ¢ H, [e, a]-[ac, ] = [a, 2]
€ B for every xeF'. Similarly (b, o], [ab, 2] e H. Let 2 ¢ D({1, —a))
= D({1, —b)). Then |B| == 2 vields [@, ] = [b, #] which in turn gives
[ab, #] = 1. But this contradicts z ¢ D{{1, —ab)), and the proof of
Proposition 2 is finished. m

Prorosrrion 3. If B = {[a,2]| acH, o e F}, then \B| = 2.

Proof. This follows by using Proposition 2 and applying the same
argument as in Claim 2 above. m o

THEOREM 2. If F is a non-real field with m = 4, {F'/R| > 8, and
if H R is a subgroup of indew 2 in F, then there is an-a € H such that
DL, —ay) has inder 4.

Proof. Suppose not. Then there are two cases to congider.

L. There exists b e F"—H satistying bD({1, —B)\NH = @. Here we
bave F = (byH, and all the quaternion algebras over ¥ are of the forms
[a, 8], [a, Ab], or [ab, Bb] where o, B e H. I [b, b] e &, then this would
show all quaternion algebras dver B belonged to E. Bub [¥] = 2 then
contradicts m = 4. Now bD({1, ~B)NH + @ implies there is an a c H
such that ab e D({1, —b)). Thus [ab, b] =1 and so [a, 8Y == [b, b] e B.

II. 6D({1, —b))nH = (3 for all b ¢ H. Herice DL, ~by) <« H for
b ¢ H. In particular —1 ¢ H, and so D(1, a>) c H for all g ¢ H. Tt now

follows that D({a;...,a,)) € H for a;cH. But using # = &-+1 and
a; =1 for all ¢ shows ¥ < H. Contradiction. m
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Both of the hypoetheses | F'[R| > 8 and F non—real‘aare necessary for
the conclusion of Theorem 2 to hold. If X is a field with # = 2, g = 4,
then for F = K{(#)), BR(F) = F? g(F) =8, and m(F) = 4. Mm{em«ter,
D1, —zd) = KF* forall we H = KF* —F* A‘real fl(_‘ld, not satisfying
Theorem 2's conclusion may be obtained by &pplym.g K}ﬂa 8 T_heorem ?.3
of [8] to Fy == R and Iy = @, (the 2-adies). This will give a field F w;th
m =4, R =F? ¢ =16 that even satisties D({1, —ap) = D({L, —by)
iff ab & B. But H = {positive elements} gives the counterexample.

Next we congider the ease of the D(¢1, —a) where the a's do Dot
belong to H. Here we can make a much stronger gtatement than '?heorem Zi
The restriction |F°jR|> 8 ean be halved and the resw'alt a-pphes“to rea
tields ag well. Tn fact the only exception will be the unigue, real, Pytha-

orean-type” fields with |F'/R|j =m =4. :

: TILES;};'RJEM 3. If ¥ is a fidld with m = 4,. 1 F R > 4,'cmd if IE}ILQmIi

is o subgroup of index 2 in F, then there i5 an ecF—-H sluc.‘ a

DL, —a)) has inder & . .
) I"roo;.) Suppose not. Note then that Proposition 2% 90nclu:sixonhstﬂi

holds. To see this, proceed just as in that p_roof up to Qlanm 1. t 8 ?W

that ¥ —D({, —a)) = H. -

Thig is impossible since D{{1, ~a)) has index 2.

Kaplansky ([7], Theorem 2) showgd that if every D(él,f))—];a;
index at most 2, then m < 2. Thus there1s an % € H such that D({ d’igtinct
has index 4. By Proposition 2, D({1, —a}) and D({l, »am}l)) arf o
subgroups of index 2 for all e ¢ H. T]zlus by %t(a(Llemn;a; )of: {fg,((l({ _:@) "

1, —ax>) = D{3., —a)), and 50 y —2¥) S 1, .
;aj.:c)t(lziiar a'?D({l,%}) for all a ¢ H shows _D((l, ay) =F .hThe_ aél:;v:
also demonstrates that the only z e F for which D({1, _—a,?) : as ;‘n ox &
are those x € —R. So if ¥ ¢ LK, t;tzlzll)l(g., ']:ilil:ﬁ) %f(glsi];?ﬁsg(i, yI;)

i ‘9 whose intersection ig ;1)) Th {{1, s
f(f}ffrlziile; ¢ i.R. But there can. exist only 3 dismx‘mt subgrgup: ;fﬁ ﬁﬁi z
containing a given subgroup of index 4, Hence |F /R < 5. Contrad i

ConorLARY. Lot F be a mon-real field with m = 4 and li; / ‘L_e .
where 3 < r< oo. Then there are (;;t leastdri‘l distinet eleme s‘ iedl
modulo R for which D((L, —a;)) has inden 4. .

Pro of‘.fLet H = R be any subgroup of index 2 in# :&T%en bﬁ}éﬂl;o;eg
3, there is an a, ¢ H such thab D4, T»ax}) has index 4. bowmhe_er ;z; .
be any subgroup of F of index 2 with -a; EEI. Ag:n:w yc&n oren 3 é
fhero T am an ¢ B, 80 Dﬁéﬁ;aﬁ? '_:‘11?:011'21?32:, 1I:.hel:(:\l is an element
in this way to get @y, ...y 6. y Th ) 2, 1 an
Oy € <a1-a5;, --':ga’la‘r>R with D({1, _'""a‘r+1>) ]'I&an }ndexmét. f_[_‘he proot

o The last corollary could be stated for arbitrary fields Oi; e
showed that if 2 < » < oc, then a,, ..., 4, Call always be cohtained.
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Remark, All the regults in this section thus far actually hold when
m = 4 is replaced by the (apparently) weaker condition of D (1, —ab)
bhaving index at most 4 for all # € #” and having index 4 for at least one
guch . When F is non-real and |[F'/R|<C oo, this new condition implies
m =4 or 8. The case m = 8 can occur if 4 = ¢ = 8§ as well. Of course
the requirernent of | F'/R| > 8 is not met here; and we know of no example
where this is met and the new condition and = = 4 are not equivalent.

We now want to investigate the same type of question but switch
the roles of the index 2 and index 4 valne sets. Here it has been necessary
to rely heavily on counting arguments, and so the restriction ¥ jR| < co
is seen almost throughout. We have no evidence to snggest the results
do not hold in the infinite case but have been unable to extend virtually
any of what follows in thiz paper beyond the above finite limitation.

PROPOSITION 4. Let F' be a field with m — 4. If D({1,—a)), D1,
—by), and D({1, —ab}) all have inder 4 in F', then for any x, y e I,
DL, —ap) # DA, —b). _

Proof. If we have {z)D((1, —ay) = (y>D({1, —b), then for any
z ¢ (> D((L, —b)) it must be the case that D({1, —ad)n 2D, —b})

= . But this contradicts Corollary 2 of Proposition 1. m

THROREM 4. Let I be a field with m = 4, 4 < |F'[R| < oo, and suppose
H = R is a subgrowp of index 2 in F. Then there is an a ¢ H such that
D, —ay) has index 2.

Proof. Suppose not. Then D ({1, —a’)} has indcx 4 for all a s H —R.
Consider the collection {(>D({1, —a})} where a e H —R and w ¢ D({1,
—ay). By TProposition 4, this colleetion contains 3(#/2 —1)
distinet subgroups of index 2 in F where t = |F'/R|. This number still
holds if we regard everything modulo R. But F'/R only has t—1 distinet
subgroups of index 2. Thus 3(#/2 —1) << t—1 or ¢ < 4. Contradiction. m

Remark. Using results in Section 3 of [3], it is easy to see Theorem 4
holds for all non-real fields with {F'/R|< oo and m = 4. This generaliz-
ation faily in the real case only in the esgentially unigque situation where
F Rl =4 and H = {—-1)R.

The problem seems very much more complicated when we try to
obtain a resnlt in this setting analogous to Theorem 3. But it is this last
case which will prove to be so useful in finding W(F).

5. Some involved counting. We are interested in showing that if
m = 4, then there is an « ¢ H such that D({1, —a)) has index 2. This
fails to be true for all non-real fields satistying m = 4 and [F/R| = 8.
When |F/E}< 8, there is essentially only one type of field which has
= 4. Thig is a real field with |F"/R{ = 4, but it is not a counterexample.
8o obviously we will need |F'|R|> 8 if we are to get anywhere. But
first we prove a useful proposition and a technical lemma.
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PROPOSITION 5. Let T be a field with m = 4 and suppose DL, —ix))
and D (L, —y>) both have indes 4 in F. Then D({1, —X)ND ({1, —u>)
7as index equal to 4 times the index of D({L, —zy)).

Proof. If index D{{, —zy))is 1, then 2y € R and the result is clear.

Suppose index D({L, —ay)) = 2. Now D(1, —my) & D, —ayd)
for otherwize D({1, —z>) = D({L, —a)nD(L, —xyy) = DL, —%>)
implies oy € B by Theorem 1. Contradiction to index D((1, —xy)) = 2.
Thus D ({1, —a3)ND(CL, —1)) = DL, —a)Nn DL, =) nD({L, —ay>)
= D({1, —a))ND({L, —xy)) has index 8.

Finally assume D ({1, —ay)) has index 4. Clearly 4 = D(d1, ——.)3})('\'
AD (<1, —y>) has index 8 or 16. If it is 8, ‘then there are 4, b, ¢ EF
such that D(L, —ad) == (ey 4, D({1, —¢>) = byA, and F = {a, b, cr A
But then D(<1, —a))neD ({1, —4>) = @ is a contradiction to Corollary 2
of Proposition 1. m

LiEnMA. Let F be a field with m == 4 and | {R| < oo. If D({1, —u3)
has index 2 in F for x in exactly 3 cosels of R, then R < 8.

Proof. Let a, b, ¢ be representatives for the 3 cosets. If a, b, e are
independent modulo R, then F = (a, B, ¢, %, ... K and Hm\ {ab, @y &y ...
.. R is a subgroup of index 2 in ¥'. Moreover, J_D((la —y»} has index 4
for all ¥ ¢ H —R. This contradicts Theorem 4 if |F/R|= 8. The cagze
|F(R] = 4 is clear. So we MAy NOW assume ¢ = w‘b.

Let @ e F"—<a, by R, and consider D{((l, —u?) and D({l, —ax}).
Both of the subgroups have index 4 and by Proposition 5, A = D1, —ad)n

ND{{1, —aw)) has index 8. Thus there are d, 5,y such thafg].)((l, —.7:?)
= {ay A, DL, —axy) = {fr4, and F = <a,,8,‘yj>4. It is 1107&7 easy
to see that there is exactly one common subgroup of index 2 of the sets

1, — and (2>D({1, —az)). . ‘_ o
<y>DN(§}v’ lef >)H 2 R< 139, (a<-ny subgroup of index 4 in I gatiefying
F = (o, byH. Just as in the proof of Theorem 4, there are S(t.lé —1)
distinet subgroups of index 2 of the form Gy D(<1, —ay) where x € H —R.
But those of the form (y>D({1, —azy) add at least 3 (¢/4 —1) additional
ones, and the ¢y>D{{L, —abz)) add t/4 —1 more. Thus t~_-1 = 6(14—1)
or 110, & : _ !

Txmowmnt 5. Let F be o fiehd with m =4 and \F[R| < co. If F oon-
igins a subgrovp H =2 R of inder 2 such that D({L, —ad) has indew 4 for
all aeF —H, then [F|RI<8. '

Proof. Let t = | [R|. The iden of the first part of the proof is to

count the total number of appearances in X = t%)ﬂ.l)((l, —ay) of cosets

of R as @ runs through a set of representation for ¥ —H modulo R. Thig

count will be done in two different ways. ,
Step 1. Each D({1, —a)) contains t/4 cosets of I, and so there

is a total of /8 such appearances.



62 C. M. Cordes

Now for y € H, how many D{{1, —a)), a ¢ H, does ¥R appear in?
Since y e D({1, —a)) itf o eD((l —¥»), the answer is the number of
R-cogets in D({1, —yH)IN H). Congsider 2 ¢ H. Slmﬂarly =R appears
in (D1, —2)) naH),LR[ _D(<1 —a&y)s.

Suppose D({l, —a>)c H for some a¢ H. Then —aeld Imphes
—1 ¢ H. On the-other hand, if D({1, —y)) < H for some y € H, then
clearly —1 e H. In-pa.rticular, these two possibilities cannot happen sim-
ultaneously. We will consider each separately.

Step 2. —1eH. Then D({l, —ad)NH has index 8 for all a ¢ H,
and so there are $/8 R-cosets in D{{1, —2>)neH for all# ¢ H. This means
that the number of appearances in X of R-cosets which do not lie in &
iz */16.

Let: p = the number of R-coset representatives, y e H, such that

D{{1, —y>) has index 2 in F but is not H.
g = the number of such y for which D({1, —y)>) < H.
7 = the number of such y for which D({1, —¢>) = H.
Then t/2~p—g-—r—1 is the number of such y for which D(d, —%))
hag index 4 in I but is not contained in H.

Using the observations stated in Step 1, we are now ready to count
the appearances in X of R-cosets, ¥R, which do lie in H. This total will be
/2 (correspondsto y € R) plus p-(#/4)+-¢-0+5-0 +(#/2 —p —g —r —1}-(1/8).
So by Step 1, £3/8 = 12/16+¢/2 +pt/4 +(4/2 —p —¢ —r —1)t/8 which sim-
plifies to g+7»—p = 3.

Step 3. Clalm: p > ¢-1. This is clear if ¢ = 0 or 1. Suppose ¢ 2
and let @y, ..., 3, be an appropriate set of representatives with D (<1, —a;>)
< H. By Theorem 1, D({1, & )N D1, —;) has index 4 in H and
hence 8 in F° for ¢ # j. Thus Proposition 5 shows D{({Ll, —z2>),
2 i< ¢, has index 2 in F'. The claim will be established if we can show
D(L, —mw) # H. But it equality did hold here, then .D({1, —z>}
= D(A, —20)"DL, —z2) € D((1, —a3). Thus DL, —2,)) —
D, —xp) which contradicts Theorem 1.

Combining the claim with the equality in Step 2 gives » > Bnt
it DL, —od) = D({L, —yd) = H for ay ¢ R, then D{1, *ry‘)) =
Hence r = 3.

Step 4. 8et T = {y e H| D({1, —>)
see T i8 a subgroup of H. :

Cluim: [T/B{< 4. If thiz is not the case, then T = (=, ¥, ) R for
some w, ¥,z e H. Fix aeF —H. Clearly (&,¥,syBRND({1, —ax)) # R;
leb o ¢ B be in this intersection. Thus axr e D{{1, —ad) = H. But s e &
Implies @ € H. Contradiction and so  |7T/R| < 4.

But clearly [T/R} =s-11, so the above shows that r = 3. From
Step 2 then, p = g.

= H}UR. Then it iy easy to
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~ Btepd. Wewant to show p = ¢ = 0. Supposenot, andlet W = fu, ...

..,u) be a set of distinet elements modulo E which satisfy
D(1, ) < H. Also let z,y, zy be representatives for the 3 cosets
of B fer which D({{1, —a)) = H. Now for aed{s,yyB—R, v,a¢ W
becanse ofherwise D({L, —ip) = DL, —a))nD{{Q, —ay) = D{{L,
~,¢y) would contradict Theorem 1. For the same reason D{{L, —x,a))
has index 2 and @, & {w, y>R implies. D{{1, —wa)) # H. Thus =z,z,
@,¥, @y are 3 of the p elements satistying D ({1, —y)) # H of index 2.
From Step 3, we know ¢—1 of these elaments are of the form s, ...
vy By g Henec at least 2 of x,@, o9, z,0y arc of this form. But if #,a
= @, 2;, then a = u; yields a contradiction. So p =g = 0.

Wa huve now, in the case where —1 ¢ H, shown that # satisfies the
hypothesis of the last lemma. Thus F/RB| <8

Step 6. —1 ¢ H. Again let » be as above, but now let ¢ = the number
of @ ¢ # modulo R such that D(<1, —a)) ¢ H. Note that by Step 1,
for v € H, the number of D({1, ~a)), a ¢ H, that yR appears in is
BD(Q, —) R

Sc the number of appearanees in X of elements yR = H is the sum
of #/2 (eorresponding to y = 1), p-{¢/4) (P{1, —y>) has index 2}, and
(t/2 —p —1)8/8 (D({1, —y>) has index 4). The number for =k & H is
g0 (D((1, —2>) < H) plus (12 —gi/8 (D(<1, =) ¢ H). By Step 1
1218 = t[2 +pt /44 (1/2 —p —1}tj8+ (/2 —q)t/8. Simplifying yields ¢—p,
= 3. But even though g is different here than in Step 3, the same result
and preet holds. Clearly p 2z ¢—1 eontradicts g—p — 3. Thus the ease
—1 ¢ H cannot occur. =

Aetnally the remarks prior to Proposition 5 allow us to conclude
more. Tf F is a field with m = 4, |F'/R} finite and different from 8, then
for every subgronp H = R of index 2 in F, there is an ¢ ¢ H with D{{,
—a)) having index 2. There is also a corcllary =analogous to the
one feliowing Theorem. 3. The proof is the same.

COROLLARY. Let F be a field with m = 4 and |F"[R| = 27 with r <C co,
r = 3. Then there are at least r+1 distinct elements a; ¢ F modulo B for
which D{{1, —a)) has indexr 2.

6. Preliminaries for finding W(¥). Theorem 5 and the remarks
immediately following its proof give the key to finding the strueture
of W(F). Tt is the same powerful result which holds where m < 2, but
we must make some restrictions on |F/R|.

THROREM 6. Let F be a field with m = 4 amd |F |R| finite but not 8.
Then for a, beF, D({1, —ay) = D(1, —b}) if and only if abeR.

Proof. If ae R, this is clear. Theorem 1 yields the result when
D({1, —a») has index 4. So snppose that D({1, —eap) has index 2 and
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that ab ¢ R. Then a8 we have seen several times before, D({I, —ad)
= D{{L, =) =-D({1, —ab}). Consider =z ¢ D({X, —a>). Glearly D({1,
—&nda, byR =R, and consequently D({1, —a)) must have
index 4. But this being the case for all ¥ € 20({1, —a)) is a contradiction
to Theorem 5. =

TFinding the structure of W(¥) when # = 2 involved the discovery
of a set {b;};.s for which D(<L, —b)), b e {{4;}> R, had index 2. Tn par-
ticular the non-split quaternion algebras of the form [b,¢], b e {{b}> R
were all equal. We will use this concept when m = 4, but the situation
iz complicated by the fact that not all the non-split algebras are the same.

ProposrrioN 6, Let F be o field with m =4 and 8 # [F'|R| < oo.
Suppese D(<1, —ad), D({1, —b>) have index 2 and abg¢ R. Then
D, —ab>) has index 2 if and only if the non-split quaternion algebras
of the forms [a, a] and [k, f] are equal.

Proaf. Set 4 = D({1, wco)r)r\D({l —b3). Then 4 has index 4 by
Theorem 6.

Suppose D(<1, —ab}) has index 2. Then by Theorem 6, D ({1, —ad),
D, —b)), and D({1, —ab)) are all distinet; and clearly they all con-
tain A. Thus the union of these 3 subgroups must be F since an elementary
2-group hag exactly 3 subgroups of index 2 which contain a given
group of index 4. Let ¢eF —(D({1, —ay)uD(1l, —b>)).

e e D({1, —abd) and [ab, ¢} = 1. Thus [a,¢] = [b, ¢] # 1.

Conversely suppose D({1, —ab)) has index 4. Then 4 = D(1,
—aby). Pick ceF —(D({1, —ad)uD({L, —b})). Hence [ab,e] %1
implies [a, e] 5= [b, ¢]. Contradiction. = .

sub-
Then

ProrosrtioN 7. Let T be a fisld with m = 4 and 8 # !F'[R| < co.
If @ is o fized non-split quaternion algebra over F, set A, = {a c F'|
DL, —a)) has index 2 and [a,b] =@ for b¢D(CL, —ax)}l. Then
By == AyUR is a subgroup of F.

Prooi. Since 4, containg cosets of B, it suffices to show that ab ed,
whenever a, b €4, and ab¢ K. By Proposition 6, D({1, —ab}) has
index 2. Let ¢ ¢ D({1, —ab)). Then as in the proof of Proposition 6,
ee D((1, —ap}uD(CL, =B}, but e DL, —ap)n D1, —b>). If
CED(<1: —ay) _-D(<17 —b3) then [a‘bn 6] = [a, ¢] [bJ t}] = [b: ¢] = @

In order to simplify the notation, whenever we are dealing with
more than one non-split gquaternion algebra, we will write A, ':I.Il(i B;
ingtead of 4, and By, . The next proposition is a collection of facty easily
proved by Propositions & and 7

Prorosirion 8. Let F be a field with m = 4 and 8 # |F'|R < co.
The following hold:

iy BynB, =R, 4,04, = .
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(ii) If d, 0" cA,, b,b' cd;, and b =a'b (mod K), then a =a’,
b = b (mod R). :

ity If acd, and bed,,
DL, —abd) has index 4 in F.

One might think that it shiould be possible for Ay # @ for all non-
split @ over F. Surprisingly tbis is not the case when 8 = [F |R| < oo,
but it can happen when |F'/R| = 8.

ProrosrrioN 9. Let F be a field with m =4 and 8 5 |F'[R| << oo,
If @, Q,, @, are the non-split quaternion algebras over F, then exactly one
of Ay, A, A; 8 emply.

Proof. Suppose first that none of A4, 4,, 4; = @, and let a € 4;,
bed, and ced;. Set A =DK1, —a), B =D, —b)), and €
= D({1, —e>). By Proposition 8(iii), AnB = D1, —ab)), AnC
= D{(1, —acd}, and BnQ = D({1, —bc)) all have index 4. Thus (4N
NB)N¢ has index either 4 or 8. But AnBnC = DL, —abd)n
ND({1, —acd) which has index 16 by Proposition 5. Contradietion and
50 at least one of 4,, A,, 4; is empty.

Suppose in fact that A, = Ay = @. I B, =¥, then m = 2 by
Kaplansky {[7], Theorem 2). Thus B, # F' and there is a subgroup H 2.8,
of index 2 in . Moreover, D{(1, ——w)) has index 4 for all v e ¥ —H.
This contradicts Theorem 5. So no two of A4,, 4., 4; can be empty. m

Tor the remainder of the paper, we assume 4,, 4, # @ and 4, = a.
Also denote |B,/R| = 27 and |B,/R} =2% If BB, # I, then just as
above, there is an H = B, B, of index 2 which contradiets Theorem 5.
So by this and Proposition 8 (i), we see F'[E is the direct sum of B,/R
and B,/R. Hence # — p-g where \F'/R| =2". Another way of stating
the above is the following propesition.

ProOPOSITION 10. Let P be a field with m = 4 and 8 # [F[B| < 0.
IfB = (byy oy By R and By = {6y, ..., e B, then F = (bl, TR

o R.

CororrAry. If D{{1, —x}) has index 4 in F, there aré g € .Al, b eAa,
unique modulo B, such that @ = ab. Moreovsr, D, —2d) = D({, —w})n
AD{{L, —b)),

ProrosITION 11. Let a € By, b eB where © # 5. Then b e D((1, —a})

Proof. Yt either ¢ or b & B, then clearly b e D({1, —a}). So suppose
a,b¢g BRIEb ¢ D((1, —ay), then a, b] = ©;. But then also & ¢D (L, —b>)
implies [b, a] = ¢;. Contradiction. m

7. The struacture of W(F). The notation of the previous sections
wﬂl still be in foree. In fact they will be further restricted to the following:
= {a};>F? where if —1eR—F?, then 1T and o, = —1; other-
wise 1¢.J: In any event, sctting I' = I —{1} means I’ = I except when

then D(1, —a))nD(K1, —b)) =

5 — Acta Arithmetica XLL1
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—LeR~F* By ={by, ..., by R and By = (¢, ..., ¢,y R where b, = —1
it D(<1,1)) has index 2. By the Corollary to Proposition 10, it D{(1, 1))
has index 4, then there is a unique (modulo R) b ¢ B, such that —pe B,
and D(<1, 1>) - DL, =by)AD({1,)). If s34, then not both b,
~& e D{<{1,1>). If one of them belongs to D(1,1>), we assume it is
b = b, & By. If neither belong, then exaetly one of b or —p i is totally posi-
tive. Assume it is b = b,. Finally pick d;, ¢, 1 <1< 3 so that [d,, &l
= ¢; and @, is associated with the B; above for i =1, 2.

The structure of W (F) will be given as a direct sum of cyelic gub-
groups gemerated by some of {1y, {1, =6 e, (KL, —bDY,,
{4, oo, and {1, —d;, —6, dyedher. There are 10 cases, and
they depend on s and what happens to D({1,1}). The bs, ¢, &, & may
be different from case to case, but they will always satisfy the conditions
in the last paragraph. Propomtwn 11 shows that most of these generators
have a 0 product in W(F). In fact we will select them so that there are
essentially only 2 ways the products are not 0. The only possible non-zero
product of {1, --b;> with another generator iz if this other element is
either {1» or amether (1, —b,>. This is 68y to see unless 8 = co and
the other element is of the form <1, —d, —e, de), but we will select the
dy, ¢, 50 this will work too. A s1m11ar statement can be- made for the
{1, —6>. If the b; can be selected so that <1, —b>-(l, — by 0 iff
{i, 3} = {3 -1, 2f}, 1<f< p/2, then wo say condition B(M) holds. We
say condition B(XN) holds if the above product is non-zero if and only
it {4, =£f,2f+1}, 1<f<(p—1)/2. C(M) and C(N) denote ansil-
ogous situations for the (1, mc,c> Notice that {1, —b>-<1, —b, } #0
means this product must be Ay —dy, —&, dyey).

We are.now ready to state the structure theorem for W( ). The

proof fechniques are Slmﬂ‘ll‘ for cach ease so onIy one will be done in
detail. ' : . ‘

TEROREM T. Let F be a fwld with m = 4 and 8 < |F'|R| < oce. Then
there are elements as deseribed above so that W (F) is the direct sum of the
subgroups gemerated by (L, {(L, —a5ber, {1, —b)¥ i, (1) —60H .,
and {1, —d;, —e;, dye>}r. These subgroups  all have mda'r 2 unless
speoifically stated otherwise. There ewist 10 cases. C

L 8 =1. Then p,q are even; (m n) = (1,1); L
(M hold :

II. s =3, ~1eR. Then p,q are even; (m, #)
B{M) and C{M) hold; <1 has order 4.

= {1, 2}; B(M) and

=(1,1); I ='{1,2};

0. s =2, —1eB, —R. Then P, 4 are even; (m,n) = (2,1);
={3}; B M) (for f = 2) and C(M) hold; Ly and {1, —byy Kave order 4.
IVis =2, ~1¢B,. Then p, g are even; {m,ny = (1,

2); L = @
B{M) and C(M ) heldy (3, <1, —by)y, and {1, —e> have. orde'r 4. :
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V.s =4, —1eB,. Then p iz odd, q is even; (m, n) %(2,1), = {2}
B(N) and C(M) hold; (1% has order 8.

VI. s =4, b, e D({1,1)). Then p is even, q i3 odd; (m,n) = (1, 2);
L =@; B(M) and C(N) hold; (1> has order 8, {1, —b,> has order 4.

VII. s =4, by ¢ D(Q, 1D). Then p, ¢ are 0dd; (m,n) = (1, 2); L = O;
B(N) and O(N) hold; {1> has order 8, {1, —by> has order 4.

VIIL, IX, and X are cuactly the same as 'V, VI, and VII respectively
except “g = 4, (1) has wder 87 is replaced by “s = oo, {1 has infinits
order”.

- Proof. We prove on'ly VY where § = 4, —1 = b, € B,. The methods
are similar to those used for Theorem 1 in [3]. Now ¢ = 4 implies D((1, 1)
¢ B, and so Gy = B,nD({1, 1>) has index 2 in .B,. In fact B, = {—~1)>G.
By Proposition 11, B, © D({1, —b))forall b ¢ B,. Clearly R  D({1,—b}).
Coansequently B, ¢ D((., —b)) for b € B, —R by Proposition 10, and so
B,nD({, —b)) has index 2 in B, . Theorem 6 shows that {BlnD(<1 —&>)1
b € B; —R} forms a set of 2P —1 distinet snbgroups of index 2 in B,, and
since this is all there can be modulo K, for any R < @ < B, of index 2,
there must be a b € B, satisfying @ = B;nD ({1, —b)).

Let b, € G, —E and write G; = (b,>@;. Then there is a b, EBI such
that B,nDA, —b> = { ~1>@,. Moreover, by € B,nD ({1, 1>) = &,. No-
tice that —1eD({l, --a)) (and hence {1, —a) has order 2 in W(ZF))
for all a eG,—R. We have b, ¢ D{{1, —bp) for {i,j} = {2,3} and so
A, —b>(L, —byy 52 0 in W(F). Also B, =.{ —1,b,, b)@; where 64N
DA, —b3)ND({L, —bsy) = Gy. H Gy 7 B, then select b, e G;—R and
set @, = {b)G,. There exisis b, B, satisfying B,NnD({, —b;>)
= =1, by, b>6,. And b; e BinD({L, INND({1, —b))nD(KL, —bs))
=G, Bo {1, —b>- (L, —b> = 0 and B; = {—1, by, by, b,, bs>G, where

G,nD({1, —b)ND({1, —b>) = &;. Contiming in this fashiqn, we see
p 18 0dd and B(N) holds. _

To construet the ¢;, we employ the same technigque. Recall -1
e D{{1, —e))for all 6 cB,. Pick any e, eB.,—R and & coeB,—D((l

—eyy). Then {1, —e, -1, —e,> == 0 and B, = {¢;, ¢)> G where G, = B;n
AD ({1, —e,3ND{{1, —e.)). Proceeding as above, we see q is even and

C (M) holds. :

We have found the desired multiplicative properties and snbgroup
orders. Showing the sum is direct and that W (F) is all of tlus sum i‘ollows
from the proof of Theorem 4.5 in [1]. m

Theorem 4.5 in [1]is used to finish off all the non-real ﬁelds (I—-VII),V
and the main idea behind finding the multiplieative structure is the same
as above, Namely every subgroup {containing R) of index 2 in B; is obtained
as B,nD({1, —b)) for some beB;, i =1 or 2. Getting: started is. the
ohly problem. We briefly deseribe this process below. e
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Finding the #'s in I, I and the ¢'s in I, II, TIT is done exactly the
same way as finding the ¢'s for V. To find the b's in ITL, let b, e B, -+
—D{1, 1} and build B, from {--1, b F 2. Finding the b's in IV iz more
complicated. By the Corollary of Proposition 10, there are b, € By; —b, € B,
so that D(<L,1>) = D(1, —b>)ND(<L, b)). Then &, = B,nD({1, 1))
= B,nD(<1, —b,>) has index 2 in By, and B, = {a)G,, &, = {(b;>G,.
Now there is a b, eB; satisfying B,nD({l, —by») = (a>@,. It turns
out a can be changed to this b, and the other b’s are built from (by, b)@,.
The same procedure, starting with ¢, = —b, gives the ¢’s in IV and the
b’s in VI. I b, ¢ D({1,1)) (where D({1,1)) < D{{, —by))), set B,
= <b1}Gl, and for b, €@, —R, set G, = (b,>G;. Then there is a by e B,
so that D({L, —b) = (b, )G B, is now built from by, by, By>. This
method gwes the b’s in V.II and,’ by starting with ¢; = —b; ; the o8 in
VI, VII.

Fmdmg the #s and ¢'s in VIII, IX, and X is done in éxactly the
Way it is for V, VI, VIIL, That the orders also work out comes: from the
eonstructlon and Proposition 1. 3 of [8], p. 298.

‘Theorem 4.5 of [1] applies ‘only to mnon-real fields and thus does
not help with the direct sum in VIII-X. However, since m = 4, we have
that P*F is torsmn-free from Theorems 3.1 and 3.4 of [5]. So the dimen-
sion, determinant, Hasse invariant, and total signature classify guadratic
forms over F (Theorem 3 of [6]). Actually the total signature is easy
becaunse by the followmg proposmon, F has only one ordering when
[FR| > 4. '

PropostTION 12. Let ¥ be a real field with m = 4 and |F[R{> 4.
.The’n F has a umque ordering..

== U D(ndl))
has index 2 in F". Since m = 4, D({1, 1)) has index 2 or 4. It‘ 11; is 2, we
are done. Suppose it is 4. If D{{1,1,1, 1)) has index 2, we are done H
and if not, then o(F) = D({1, 1)) Thus for every aco(¥), D (1 ay)
= d(¥). By Theorem 1, a ¢ R and so [F'/B|< 4. =

When {F[R|< 4 and m = 4, then |F'/R| must be 4 and there are
exactly 2 orderings on F.

Using the same principle agin the proof of Theorem 4.5 of [1] 'tlong
with the signature, it is easy to see the sum in VIII-X is direct.

Leuma. Let F be a real field with an ordering P. If f, g are quadratic
Jorms over F which have the same signature with respect to P and the same
determinants and Hasse invariants, then dimf = dimg (mod 8).

Proof. It suffices to consider f, g in a real closure K of ¥ at P. So
let » = dimf, »™ = the number of 1’8 in a diagonalization of f over K,
and #~ =the number of —1's. Similarly for g, m, m*, m~. Then d&(f)

Proof. F has a unique ordering if and only ii o(F)
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= d(g) impiles #~ = m~ (mod 2). That is, #7 = 2k-+1 and m™ = 2k'+1
where I is 0 or 1. Now the Hasse invariant of f in K is [—1, —1]%*, Since
this must also be [—1, —11¥*, we have & =%’ (mod 2). Finally since
the signatures o(f) = o(g), we have

' 'ﬁ—m = o(f) =~ o(g)+2(2k+T—2% ~1) = 0 (mod 8). m

The lemma enablés us to show the divect sum in VIII-X is in fact
all of W{F). Let f be an anisotropic form over P (where 8 < |F'/R| < oo).
We build a form by first taking o(f){1)> (to get the desired signature)
and adding appropriate (1, —a>, <1, ~b>, <1, —¢,», and (1 ——1) to
make the determinant right. Then add appropriate (1, — -1,
<, =b;, 1, —b>, and (1, —d, —e, ded> to make the Hassa mvanant
right. Thiy new form, by the lemma hag the same dimension mod & as f.
Adding the necessary multiple of (1, —1><1,1><1, 1> to the praper
side gives equivalent forms by Theorem 3 of [6].

Possibly obscured by writing down & decomposition of W{F) when
8 < |F[R| < oo and m = 4 was what actually determined it. We sum-
marize- the angwer in the following corollary to Theorem 7.

CoroLLARY. If F 4s o fidd with m =4 and 8 < | F (R} < oo, then
W(F) is determined by \F'|R), p,q, and the behavior of _D(<l 1)

8. Value sets of ternary forms. When m = 2, it is Well-known that
every anisotropic ternary form <a, b, ¢> represents everything except
—abel. For m = 4, they ugnally miss more. We will keep the notation
developed prewnusly and note that it is sufficient to caleulate D{{1, a, b)).
The answer depends on which of @, @, or ¢ that [—a, —b}is.

" TupoREM 8. Let F be o field withm = 4 and 8 # |F'[R| < oc. Supposs
{1, a, b is.anisolropic over F.

(i) If [—e, —b] = Q; where {?,,3} = {1, 2}, then D({L, a, b)) F-—
—(~abB;). 7 :
(i1) If { a, —b] = @, then D((l @, by} = F o (—~abByV — asz)

Proof. D1, a, b)) represents ¢ € I if and only it d,a,b, —¢)is
isotropic which is frue if and only if there exists an » e F' satizfying
,a, b, —a> =3, —1, 2, aber). So ¢ € D({1, a, b)) 1s equivalent to find-
ing an # suweh that the Hasse invariants of the two above 4-dimensional
formsare the same. Thatis, [ -1, —1][», ~abe] = [ —abe, —11{a,b][ —e, ab].
This equation simplifies to [ —abe, —ex] = [—a, —b]. So when is there
a ¢ € ¥ such that [ —abe, ¥yl =[~a, 1Y [—a, —b]1=@Q, + =12,
then the only ways are when D({1, abe)) has index 4 or when —abe e B;.
Thus by the Corollary of Proposition 10 —abe ¢ B, UE, or —abe € B;. Now (i)
follows. If [ ~a, —b] = @, then there ig such a y if and only if —abe
¢ B, U By; and (ii) follows. m
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COROLLARY. Let F be a field with m =4, B = F?, and 8 # g < co.
Then anisolropie ternary forms over ¥ are defermined by their value sets.

Proof. Tt guffices to show that D({1,a, b)) = D({1, ¢, &) implies
{a, by == {e, &» for anisotropic (1, a, b>, {1, ¢, d>. By a cardinality ar-
gument on the value sets mod #*? and by Theorem 8, it is clear that it is
impossible for exactly one of [—a, —b), [—¢, —d] to be @,.

I [—a, —b] = [—~¢, —d] = @, then by Theorem 8, —abB,U —abB,
= —cdB,V —edB,. Thus abed ¢ B,nB, = F*, But then Corollary 2.9
[9, P.60]shows { —a, —b) == {—¢, —@>. L[ —a, —b] =[—e¢, —d] =@Q,,
i = 1 or 2, then Theorem 8 yields abB, = ¢dB;, {i, j} = {1, 2}. But the
quaternion algebra equality also implies —a, —b, —¢, —d € B;. Thus
abed € B,nB, = F* and again {—a, —b> o2 {—¢, ~d). Finally assume,
[—a, —b] = @, and [ —¢, —d] == §;. Then from Theorem 8, abB, = ¢dB;.
But this cannot happen sinece B, = B,. =
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Introduction. Throughout, p, will denote the #nth prime. In Theorem 1
o 3 ) .
we find estimates for > p, (sce (3)), but because of the applieation of
Jo==l
Theorem 3 later, it will be more convenient to weork with the sum y(n)

n
= 3+ 3 p; instead.
k=4

THEOREM 1.
{1) y(n) << in*{logn +loglogn) for n = 4.
Given 0 << a<< ], there ewists an infeger N(a) such that

(2) . 2nt(logn 4 aloglogn) << 4 (n)
for > N(a), and N (0) = 5. Moreover, (2) is true if

log2
—1 _
2 og [1 logn]

<1~

loglogn
so that given 0 < e<<1, we can take a =1 —s in (2), provided n > ny(e)
= N{1—e)
n
(3) Zpk< $n2{logn +loglogn) for n =6,

k=1
and lower bounds jov' this sum are given by tkose for y(n).
COROLLARY. Z P~ 03 logn-}—loglogﬂ)

We shall see later that N (.1) = b and N (.156) = 140 (see Rem:nk 1
following the proof of (2)). The inequalities (1) and (2) are used in proving

THEOREM 2. Leét &> 0 and write y(n) =y. Then

VayViogV2y - (3 —e)loglog¥2y < p, < Va2yViogV2y +(} - #)loglogy 2y
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