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1. Introduction. In the sequel we ghall use the terminology of
O'Meara’s book [6]. Additional concepts will be explained. Let F be an
algebraic number field, o its ring of integers and V a 2-dimensional regular
guadratic space over I with the quadratic map Q. After sealing ¥ suitably
we may asgume that 1 € @(V). Then V is igometric to its second Clifford
algebra 0" viewed as the quadratic space over F whose quadratic map
equals the norm map C*—F (see [2], § 5, 1.). Therefore we may identify V
with €. The structure of the commntative F-algebra ¢ is given by the
following data: After embedding, F is a subalgebra of 0, and C¥ has
an F-basis of the form 1, w, where w? = —dV and 1 iz the identity of #
and C* (see [2]). Hence, if ¥ iz anisotropie, ¢* may be identified with
the number field 7' = F(l/ —avV). Let L be a lattice on V with respeet
to o and denote by A" (L) the number of proper classes in the genus genls
of L. Apparently A" (L) does not change when V is scaled. For the case
where F is totally real, ¥ totally positive definite and I maximal Pieuffer
[8] and Shyr [9] independently found the formula:

w'h’

T

Hore @', », U’ denote the number of roots of unity, the class number
and the group of units of B respectively, and k, U are the class number
and the group of units of F respectively, and » is the number of discrete
gpots of 7 which. ramify in F'. Pieuffer’s proof of (1) essentially consists
of computing the local dengities in Siegel’s formula [10] for the mass
m (L) of genL. Shyr uses an equivalent analytical device, namely the Tama-
gawa number of algebraic tori. Recently Peters [7] pointed out an arithme-
tieal proof of (1) which i rather simple and rests essentially on the fach
that the maximal lattices on V are just the fractional ideals of F’ and
that consequently the number of their similarity genera is explicitly known
from the theory of quadratic ficld extensions [4]. It is the purpose of the
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present paper to show that this arithmetical approach can be extended
so that it yields a geperalization of (1) to wrbitrary ¥, ¥ and L. As is
customary and guite natural in the caso of an arbitrary L, we interprete I
as a proper ideal of u certain p-order M = My of the algebra O {sco defi-
nitions in 2.). Let o’ be the maximal g-order of O*. By simple group theor-
etical arguments Harnest and Estes [1] nroved that

{2) ' B (L) == ()

and that A+ (M)/AT(0') is essentially the product of indices of certain
local unit groups in ¢, Modifying their mothod slightly we show that
the indices can be replaced by indices of analogous groups in the local
completions of 0F (see Lemma 3). The latter indicos can be computoed ex-
plicitly by means of the results [3] on integral representations by binary
quadlratic forms over local Helds. Since AT (0') can be evaluated by Peters’
method, A" (L) i obtained in the desived shape (seo Theorem 2); in por-
ticular, the fact that &t (L) depends only on. F, d¥ and vL(nl)™* (which
follows already from (2)) becomes more transparent. Of course, for tho
cage where J is the field of rational numbers, the result for h* (L) ie classical
and due to Gausgs, Dirichlet and Dedekind. At the end of this paper we
shall indicate, for the sake of completeness, how the formule obtained
for At(L) can also be deduced from Pfeutfer’s ovaluation of m (L) for
the cage where F is totally veal, V tobally pogitive definite, but L not
neeessarily maximal. The latter approach to A (L) does not seem a4
nabural, since there the relevance of the invariant nL(nL)™ can be ¢xhi-
bited only after some lengthy computations.

2. Notations, definitions and known consequences. According to the
introduction we have ¥ = 0%, i.e. V is simultaneously a quadratic space
and an F-algebra. By o we denote the non-trivial automorphism of the
F-algebra ¥V, ie. (@-Fbw)’ = a—bw for all ¢, b e F. Then the norm map
and the trace map V -=JF arve given by Q(z) = aa” and T'(z) = a--a’

(xe V). Hence the bilinear formw B of V associnted with the
quadratic map @ iy _
(3) B(w,y) = tT'(2y°) (0,yeV).

The anisotropic cloments of ¥ are just the units of the ring V, lence
their set ¥V, it an abelian group with respect to multiplication in V, ity
subgroup Vy = {ye V| Q(¥) =1} will be also of intercst. For ye Vy
- we denote by 7, the map V — V, defined by 7,0 = v (v e V7). Apparently
7, belongs to the group O (V) of rotations of 7'; more precigely one knows
(see [2], §58,1) that o

(4) : O (V) = {r,| y &V},
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in parbticular the assignment y > 7, yields the group isomorphism
(8) OH(V) = V. ‘

Note that for (4) one only needs that F is a field of characteristic = 2.

According to [6] any discrete spot or prime ideal of # is denoted by p,
and V7 is the completion of V at p. For any subset 8 of V we denote by
8, its closure in the complete metric space V,. For any fractional ideal a
of T or F, the abgolute norm is abbreviated by XN (a). For any p we put
2p) =1, it V ¥, otherwise x(p) =1 or =0 or = —1 according
as p splits or ramifies ox ig inert in F'. Let b, (¢} denote the quadratic defect
of any @ € Fy. For any subgroups K, L of the additive group ¥ the module
product KL ig defined as nsual as the subgroup of ¥V generated by the seb
{fl| e K,lel}.

By an o-laftice we understand a lattice on ¥ with respect to o (Le.
a finitely generated submodule L of the op-module ¥V with FL = V).
According to [6] the symbols nl, sL, oL denote the norm, the scale and
the volume of any o-lattice L. If K and L are o-lattices, then KL is an
p-lattice with n(KL) = (nK)(nL). ' _

The mazimal o-order o’ of the algebra V is defined to be the set of
all w e V with Q(z) and T{®) in 0. We note that »’ i3 an p-lattice and a
subring of ¥V with 1 ep’, namely in the cage ¥V = F' it ig the ring of in-
tegera of the nurmber field F’, and in the case V£ F, ie. —dV I, we
may assume that —dV =1, puthing 5 = (w+1)/2 we obtain because
of 52 =un, gy° =0, 55" =1 a decomposition of the identity into or-
thogonal idempotents, hence

(6) B T

i.e. the algebra V as direct sum of the two fields ¥, »"F both isomorphic
to I, and then )

(7) . DI — nn+ﬂdn '

ag the direet sum of the two rings zo, #°0 both isomorphic to . By an
o-order we understand any o-lattice 3 which is o subring of 0" with 1 e M.
For exmnple, for any o-lattice L the seb

My ={weV| ol = L}

is un p-order. All p-orders M arve obtained this way, since M = M.
An p-lattice I ig ealled an ideal of an p-order M, if My = M. Such an ideal
I is callod proper, it My, = M, it is called invertible, il KL = M for some
ideal I of M, and then X is also invertible and uniquely determined by L.
Apparently every invertible ideal of M is a proper ideal of M. The converse
of this statement is also true, but not as trivial (see [1]). Therefore the
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set I, of all proper ideals of M is an abelian group with respect to module
multiplieation. All g-orders and their proper ideals ave characterized by
(see [1]):

Tmmva 1. An o-latfice M is an o-order if and only if
(8) M =p+ce’  (Symbol: ¢ = c(M))
for some tntegral ideal ¢ of T, and then
(9) oM = c*oo’,
An p-lattice T is a proper ideal of an p-order M if and only if
(10) L)% s .

A consequence is the known

TEMMA 2. An o-lattice L is maximal if and only if L is an ideal of o'.

Proof. If I is maximal, then o'L is an ideal of o’ with nl == n(o'L),
L < o'L, henee L = o'L because of the maximality. Conversely, if L is
an ideal of o', then there is a maximal o-lattice L* with nk = nL*, L c I*
(sce [6], 82: 18), hence by (10): oL (nL)™ = vo’ = v My, v oL (L),
hence v = pL¥, hence I = L*. m

For later applications of (9) we note that

according ag ¥V == F' or not. Here Dyy denotes the diseriminant of the
ficld extension F'(I'; namely for any p and any o,-bosis ., @, of o, we
have (vn"), == o, det(B(a;, o)), henee (11) from (3) and (7).

Whereas in the case ¥ = F' the group I, equals the group of fractional

ideals of the number field F’, we have in the case ¥ = I from (6) and (7):
(12) Iy = {ga-%0| a, b e I{F},

where I(F) denotes the group of fractional ideals of ¥,

Tor any p-order M wo denote by U (M) the group of units of the ving M,
and we put B(M) = U(IMNV, and U == U0, B == H(o). For any
p-lattice I the isomorphism (5) induces tho isomorphisin :

(13) OV (1) o2 B{My).
3. Groups of genmera. It follows from (4) that for any o-latiico I:
(14) cstL = {wl] @ e Vy}

and (see [6], 81: 14):
(18) genD = {(M(Vrw,Ly)l @, e Vy(p)Vp; 4, =1 for almost all p},
P .

where V,(p) = {x eV, Q{z) =1}. For any v-order M we infer I[rom
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(10), (14) and {15) that gen M is a subgroup of I, and cls* M a subgroup
of gen M and that genD = Lgen M for every proper ideal I of M. This
implies in view of At (M) = {gen M : els* M) that (2) holds. '
Denote by U(M,) the group of units of the ring M, for any p and
put B(M,} = U(M,)nV (p). .
Levwa 3. If M is any p-order, then

wHOOE B = wt ) [](Bo) : B(M,)).
Pl 24} .
Proof. Via (14) and (15) we see that the map f: gen M -» genn’,
defined by L +0'L, iz an epimorphism of groups, taking cls*M onto
clgto’. Therefore f induces an epimorphism g: gen M /cls™ M — geno’fels*o’,
and the kernels ker(f) and ker(g) of f and g satisfy

(16) ker(g) = ker(f)/{ker(fyncls*M).
In view of (15) ‘we have
(17) ker(f) = {Q(Vnprpn @, e B(o,)Vp}.

In (17) we may suppose that always a, = 1 for p{c(HM), siﬁce_Mp = 01;
for such p because of (8). Therefore the map [] E(oy)—> ker(f), detined

ple(a}

by
gy = (Y(Voo, M) with a2, =1 for pfe(d),
PIBe) »
ig an epimorphism whose kernel equals [] H(M,), hence
pic(3)
(18) ker(f) = [] B(oy)/B(My).
vit(3)

(Here [] means the direct product for groups.) Furthermore we obtain
from (17) and (14) that ker (f)ncls* M = {o M| x € E'}, hence the map B’ —
—ker(finclst M, defined by » — oM, is an epimorphism whose kernel
equals B (M), conscquently

(19) ker(f)nels* M o B [B(M).

Sinee h* (M) == (ker(g): 1}h* (o), the assertion of Lemma 3 follows from:
(16), (18) and (19). m

4. The evaluation of »"(p). The aim of this section is

TagoreM 1. If L is any maximal o-lattice, then A1 (L) = k(o)

and '
onytagtl—tups

s — . —p
N e 2
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according as —AavV gél;"z or & I*. Here Ny, Ny, U denote for T respectively the
number of real archimedian spols, the number of complew archimedion
spots and the number of those real archimedian spois ot which AV is positive.
Furthermore, B' = {w e U’| aa® =1}

Remark. If Fis totally real and V¥ totally positive definite, The.
orem 1 immediately reduces to (1), namely then #, ==u, #, == 0 and
{(F':1)< oo because of B’ =~ O (n") (see (13)), hence B’ ig the group of
all roots of unity in ¥, hence ,

(U UE)y = (U : O)(UE": U) =(U": UY{(E" : BOUYy (U U)2 ',

The relation At (L) = h"'(o’) is clear from Lemma 2 and (2). Forther-

more from Lemma 2 and [6], 102 :3 we know that for overy Lel,:

{20} genl, = {K e I, nll =nl},

Now the ease —dV e F? of Theorem 1 can be settled ag follows: From (12)
and (20) we infer that geno’ = {ya+- %" a e I(F)}. Since by (4) and (6)
any two lattices no-f-n°a~' and #b-n"H~* With. a, b s I(I"y are properly
isometric if and only if a = ¢b for some ¢, we obtain A% (0) =h.

Therefore in the remainder of this section we may assume that V
= F". Any two p-lattices I, L are called similar or in the snane similarity
class, it I = al for some ¢ & V. The éimilarity genus QEEL of L is defined
to Lo the seb of all p-lattices which are similar to ot least one Iattice from
genl. From (20) it follows for every L e I, that

(21) genl = (K eIl nK = Q(2)nk for gome v e Vo).

Tn particular, genp’ is a subgroup of I, and the gimilarity clags H of o’
is & subgroup of genn’ and just the group of principal ideals of ¥, further-
more genl = Lgeno’ for all Liel,. Now &’ i3 the number of similarity
classes in I,. Therefore, if % denotes the number of similarity classes
in gonn’ and 7 the number of similarvity genern in I,., we oblain

(22) foow== B[,

Lsyma . With the abbreviation Vg == {we V| Q(2) € U} the rolation
B (0" = (Vi : U'VOE holds.

Proof. Let {4, ¢ eI} be any complete system of rvepresentudives
for the similarity clagses In g;fe;:.n’. Affier roplacing A, by a.guitable similay
lattice, we may assume that each 4, is in geno’. Now take any eomplete
system {&;] j € J} of represeutatives for the vosets of UV, in the group Vy
(viewed ag subgroup of V). From (4) and (20) it follows casily that [y 4]
Jjed, iel} is a complete system of representatives for the proper clusos
in geno’, hence At (") = (Vi : O'V,)h. m
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It remaing to compute 7. By its definition and (21) we have
(23) §= (In’ : G):

where @ = {L eI,| nL =nP for some P & H}. Since nL equals the norm
of the fractional ideal L of F' relative to F for any L e I,,, the theory

of quadratic extensions of algebraic number fields yields (see [47, §13,
Batz 13): :

(24) | (Iy:6) = h(Q(VU) . U:’.) oru—ny=ng=1_

The consideration of the epimorphism Vi — Q(Vy), defined by & s Q (),
with the kernel V¥, shows that

(25) (QVy): T?) = (Vy: UVY).
From Lemma 4 and (22)-(25) it follows that
ht (D’) _ 2n1+n2+1—r—~uhf/(h(U:V1 : UVi)) )

Since (U'V,: UV, = (U : U'nUV,) = (U': T(U'nVy)) = (U : UF),
the proof of Theorem 1 is finished. C -

5. The general ease. According to (2), Lemma 3 and Theorem 1
it suffices to compute the index

$(M,p) = (H{oy) : B(My),

where M is any oc-order and p|c(Bf). Since the epimorphism U(oy) ~
—Q(U(ny)), defined by @ r» Q(#), has the kernel EB(v,), we obtain

(26) $(M,p) = (Uloy): U(My))/(Q(T(oy)) : QU (M)

Congider the subgroup U,(M,) = {v e vy @ = 1 mod ¢(M)n,} of U(M,).
Then '

(27) (Tlog) = U(M,)) = (U(ng) : To( M) AT(M,) 2 Ty(M,)).
In view of (8) we have
(28) (T(I,) : Uo( M) = N{c(M)){1 —F (p)7Y).
Furthermore, in the case ¥ = B it follows from (7) that
(29) (U(05) 2 Ta( M)} = (N{e( M) )L — N (o)),
and in the case V = F' algebraic number theory also shows that
(30) (T(0g) : Uu( M)} = N{e( M, [ [{1 By,

B

where P runs over all discrete spots of F' with Pjp, and N(P) denotes
the absolute norm of PB. Since

TR = 1—F ™) L —2p) ¥ @p)™),
P
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we obtain from (27)~(30) for all cases:
(s1) (Ulog) : U (M)} = N{e(M)}{L — 5(p) ¥ (p}7).
LuMma 5. Leb w, be the group of units of the ring o, and pul
ordp M, if ordypM ds odd,
(52)  y(i,p) = lmin {Dld (Eii/{—b (—dV)), %01‘(’:[1,(41).]1{)}, otherwise.

Then
(33) QU (M) = Q(Vy) Mg (1 --p*hP).

Proof. Note that QT (2, )m Q(M)nw, and that w(M,p)>> 0,
since plc(M). Therefore (33) I8 a; special case of Theorem L in [B8), if p

is-dyadic. If p is non-dyadie, then for any @ €u, we have a e Q (M) it and
only if (ay | <a"'dM,> = M, hence Lemma 2 of [h] implies (.3‘-3). ]

LcxMa. 6. The relation Q(U(D;)) = Q(V,)nu, holds.

Proof. Again note that ¢(U(oy)} = @ (o) u,. Take any a e Q(V,)N
M, . Then there exists a lattice K on ¥y (with regpect to p,) with il = o,
and @ e (K). By [6],82:18 we may assume X o be maximal. By Lenuma
2 and [6], § 32 K, the lattice o, on V), is also maximal, hence oy == KK by
[6], 91:2, hence acQ(v,). W

From the Lemmas 5 and 6 we obtain with the abbreviation w, (M)
== L -+p? P Decanse of 1k = @(V,)Nu, that

(34)  (Q(U(s) : @(U (M)
== ((Q(Vp)ﬂup)uﬁup(M): uf,up(M))
= ((Q (V) )1ty (I) : ufus, (M)
_ (ug: “%uv(M_})((@(Vp)nuu)“p(M)
(“v : (Q(V,,)nup))
P)fe(IL, ),

(00w

= a (M, P)b(M,
where

a(Myp) = {(u, iy (20)) 2 (wp P, (D),

BIM, p) = (up (M) : (1, (M)0Q (V)

o(M,p) = (s : (pn@(V,)))-
From the structure of the group iy, /(1-+p') for 1> 0, ay determined in
algebraic number theory ([3], page 236), we know that
(35) a(M,p) = N (pJMBRI ox = 2 (p)r*
according as y(M, p) < ordyd or not. For @ CF,, put k(@) = (J’;dv) .
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Consider the homomorphisms u, — {1, —1} and u,{M) — {1, -1} of

‘multiplicative groups, defined by @ — %(%). The kernels are u,n@(Vy,)

and u,(M)NQ(V,}). Therefore ¢(M,p) =1 or 2 according a3 k(z) =1
for all # e, or not; and b(M,p) =1 or 2 according as k(z) == 1 for all
weu, (M) or not. If V £ ', then obviously o(M,p}=b{M,p) =1.
Now the case V = F' remains,

(a) Let p be unramified in #'. Then ord,dV is even and b,(—dV)
€ 40,dV. Therefore by [6], 63:11a and the Local Square Theorem:
e(M,p) =b(M,p) =1.

(b} Let p be ramified in ' and ord,dV be even. Then p is dyadic
and b,{ —dV) = 40,d4V. Therefore ¢(M ,p) =2 by Lemma 1 of [5], and
that lemma implies also that b (M, p) = 1 or 2 according as d,( — —dVyprn
< 40,4V or not.

(¢} Let p be ramified in F’ and ord,dV be odd. Then by [6], 63 : 11a
we have k(4) = —1 for every 4 e, with b,(A4) = 4o,. Therefore ¢(H, p)
=2, If p(M, p) > ord 4, then u, (M) < u bV the Local SBguare Theorem,
hence b(M,p) =1. If w(M p) < ord,4, then there exists a 4 s, (M)
with b,(4) = 4o,, hence b{M,p) = 2.

Collecting the results (28), (31), (34), (35) and (a)~(¢), inserting these
in Lemma 3 and observing (2) and Lemma 1, we arrive at '

TrmorEM 2. Let L be any o-lottice and M = Mp. Then
B (o) N (e () ” e(M, p) (1_ £p) )

@B L e\ T
Here h* (o) is given by Theorem 1, cm,d c( M) is the integral ideal and DM
the fractional ideal of F determm@d by (Moo’ =vM =vL(nL)"* and
vo’ is given by (11), and a(M, p) by (35), and (M, p) by (32). ¢(M,p) = 2,
if all of the following conditions are satisfied: —dV ¢i7‘2, p ramifies in F’,
either 2jord,dV, by(—aV)p*™? < do,dV or 2tord,dV, vw(M, p) > ordy4.
In all othav' cases e(M Py o= 1.

Remarks, (a) In the case ~dV ¢:F2 it follows from (8) that
B(M) = {ment+c{Mp'| @z) =1}.

(b) In the case —dV e 7™ it tollows from (7) and (8) that

B(M) = {pu~t5"u"Y wel, u* =1mod c(M)},

(L) =

hence

(B : B\M)) = (U: Uy (M), where Uy(M) = {we U] u* =lmod c(M)}.
. (¢) In the case where F is totally real and V totally positive detinite
Theorem 1 yields '

a

Ry (B(M) t1) B
E-B) (U
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To the special ease considered in the last remark we want to indicate
now how h* (L) can also be obtained from Pieuffer’s evaluation of m(L).
Since by (13) and Lemma 1 we have O*(K) o B(M) for all K egenl,
the definition of m (L) implies

(38) W (L) = 2(B(H) 2 1)m(T).

For later evaluation we uge
Lmvma 7. If p is dyadic, then the weight wk, of I, satisfics

67  wI, = by —#L,) (nly) " + 25,

- Proof. (a) Let I, be modular. Then b,(~dL,) = (nly)(wl,} by
[6], 93:17. Therefore (37) is clear, if wL, = 260, If wly s 251,
then wlL, = 2sL, by the definition of the weight, hence by(—dLy)
= (nL,{wkL,) by [6], 93:17 and 93 :10, hence (37) follows.

(b) Let L, be non-modular, then L, ==<{ay L <b> with a, be F,
a0, = nl,, henco by [8], § 94: wiy == ab,(b/a)+2sL,. This implies (37). w

Inserting Pfeuffer’s formula [81 fox m(L) into (36) yields k* (L) in
a form almost as explicit as in Theorem 2. The cssential difference lies
in the appearance of the additional genus invariants wiy, ot those dyadic
gpoty p where L, is modular. Now, expressing wl, in the form (37) and
using b,( —dL,) = (vL)b,( —dV)/dV leads, atter some easy, though lengthy
calculations, to the shape of A* (L) as formulated in Theorem 2.
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