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Let m be a positive integer, I a field, and a4 e F.

- DEFINITION 1. We say that the polynomial, 4™ — a, is partially normal
it there exists a root a of 2™ —a such that F(a) is the splitting field of
™ —a. '

Drrpmneisow 2. We say that the polynomial, o™ —a, is drreducible
normal if ™ — ¢ is partially normal and 4™ — ¢ is rredueible.

Of course, if 2™ —a ig irreducible normal then every root of a™ —ua
generates ite splitting field. ' . ' '

Darbi and Bessel-Hagen, [6], and Mann and Véleg, [5], characterized
all irreducible nermal binomials over @, the field of rational numbers.
Gay, [3], characterized all irreducible normal binomials over real fields,
and Gay, et al., [2], characterized all partially normal hinomials over @.

In this paper we shall study the structure of radical extensions and
deseribe an interesting relationship between radical extensions and irre-
ducible and partially normal binomials. _

LeMMA 1. Let ¢ 50, ¥y € F, and «"—y" be irreducible over . Then
+ e B iff r|t. '

Proof. For any field K, let K" denote the multiplicative group
of non-zero elements and consider the quotient group F(y)*/F". If a7 —»"
ig irredueible over F, then the order of v in F(y)*/F* is . Hence ¢’ e I*
iff 7t m :

Throughout this paper a shall denote a root of 2™ —a. Lebt m be the
smallest power of ¢ such that o™ e F, that is, m is the order of a in K*/F”,
where K is any field such that X o F and ¢ € A. 'We ghall denote this by
o(a) = m over F*, or simply o(e), if F* is understood.
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Further, we shall assume, throughout this paper, that char Ptm.
We make this assumption more for convenience than for necessity. All
the theorems remain valid without this assumption.

For a, with o(a) == m, define

(1) #» =max{k: km, {; € F{a), where {, denotes a primitive kth-root

+ of unity}.

Set s = [F{a): F(L,)].

TusorEM 1. Lt o(a) = m over F* and n, s defined as in (1). If 7{a)
o K > F(L,), with I = [F(a):K], then K = F(d) end of —a' 48 irreduc-
ible over K.

Fuythermore, §m.

Proof. Let f(x) dencte the irreducible pelynomial that o satisties
over K. Since o™ =aeF <« K, we have that f(x)s™—a. Thus, every
1

root of f{w) is of the form, { a, for some i. Hence, f(@) = I (w—C:,{a).
i

Fe=l

, 4
The constant texm of -+ f(a), ( [T Lla) = (5", e = 3 4;, i3 an element of
. Foml F=1

K = F(a). Alse o € F(a), thus {5, e F(a), and by the definition of n,
fmnel(L,) = E, thus o' e K. Now I = [F(a): K] and [F(a):F(dH]<1,
since a safisfies the binomial 2 — &' over F(d"), Hence we must have that
F{d!) == K and & — o iy irreducible over K.

In particular, if I — s, then since o™ =a e F < F(£,), we have that
sjm, by Lemma 1. m

Theorem 1 generalizes Proposition 2.1 in [2].

Remark 1. Before continving we want to make a remark about
the notation ', The symbol a’” can denote any of the m roots of 2™ —a.
However, assume that k|m. Then F(d™*) ¢ F(a) and (a™*)* = a, so
a™* is & root of ¥~ a in F(a), so by o™ e F(a) we shall mean one of the
solutions of #" —a which is contained in F(a).

Remark 2. Let o™ —a be irreducible over ¥ and Lm € F, where
char Im. Then, by a well-known theorem, F{a) has cyclic Galois group
over F. This theorem gives very procise information as to the subfields
of ¥(a), namely, if Ijm, then F(d) is the unique subfield of ¥ () of degroe
[l over F and for Lim, ¢ = 1,2, F(dh) » F(ah) iff 4|l,. Theorem 1 is
& generalization of this result to the non-normal cage. That i §, if ¥ containg
every omth-root of unity that is contained in F(a), then if ts, where
& = [F(a): F], F(d) is the unique subfield of F(a) of degree s/l over 7,
and if L1, 4 =1, 2, then P(ch) o F{a') iff L,}l,. :

In the case where ¥ contains every mth-root of unity that is con-
tained in F(a), Theorem 1 gives very precise information a8 to the lattice
of subfields of F(a} as pointed out in Remark 2. In general, there are more
subfields than just those of the form F(d}).
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However, let us consider the following: Let F(a) > K = F, K n F(L,)
= F(6), and ¢ =min{i:{|{mand o'cKX}. Under what conditions is K
= F(6,cl)?

TEROREM 2. Let F(a) > K o F, KnF(L,) = F(8), t = minfi; ijm
and o e K}, r =max{i: ifm and F(d) o K}. Then K = F(9,d) iff
‘(3; t) = (81 'n"').

Proof. Let us firet recall the following elementary result: Let T = M
a field extension and let = M, > M, for ¢ =1, 2, such that M, M, = I,
MinM, = M, Then ¥ — M. N defines an injection from the lattice of
intermediate fields of M, over 3 to the lattice of intermediate fields of L
over M,, which preserves inclusions, intersections and coraposita.

Set M =0(8), M; =K, M, =F(,). Note that KF(L,) » F(L,),
80, by Theorem 1, KF{(,) = F(d"), where lls. Further, F(a") o K,
F(d) > E, thus F(a*") > K, where [I, r] denotes the Le.m. of 7 and ».
However, r was maximal with this property, thus [r, ] = 7, so I|r. Further,
F(aF(,) = F(e™9) o KF(L,), thusl = (s, ), and EF(L,) = F(a"F(L,)
= F{a®™). 80 we have that L — F(d"*"),

Now, K o F(8,d") > F(f) and the subfield, between F(a*")
and F(Z,) = F(a®), that corresponds to F(0, a*) is, F({,, o) = F(a®™).
Thus F(0, ') = K iff (£,8) = (r,s). =

‘We point out that Theorem 2 gtill doeg not aceount for all subfields K,
where Fla) = K o F. In fact, already in ¢ (a), where a'*+36 = 0, one
can find an example cf a field which is not ecovered by Theorem 2.

Recall that #'2+-36 is irredueible normal and §{u?) = @{l;,). Further
@ (a) contains the splitting field of 22 4+ 36 and thir field iz Q(a*, ) =Q{a"),
and [Q{a): @] =3, [@(a* &) : @{a®)] = 2. Now @Q(l,a*) iz a conjugate
of Q(a*). Further min{i: ¢[12 and o' € @({,a*)} =12 and max{i: §j12
and Qo) > Q(Ga")} =4, 50 (s,7) = (3,4) % (3,12) = (s, 1). |

TEROREM 3. Let o (a) = m over F*. If F(a) is normal over F, then {,, ¢ F{a)
and 2™ -—a i85 portially normal,

Proof. Factor

y 13
ar—a=J[f@ [] s,
jm1 S=ieg1

where each f;(x} iy irreducible over ¥ and for 1 < j < by, f;(#) hag a root

in F(a}), while for &, < j <%, f;(») does notﬁhave & root in Fla). If f;(2)

hag a root in F{a), then it is of the form {;a. However a ¢ F'(a), hence

lafa = £ e F(a). Let n be defined as in (1), then £ = {4 8o every
1 n—

1
root of f;(w) in F(a) must be of the form £, a. Hence [] f; () =jn (@~ a)
=1 =0
Ry -
=gt —a" But []f;(x) e Fa], hence 2" —a" e F[p]}, so " ¢ F. Bubt m
J=1

was minimal and n|m, hence # = m, 80 {, e F(a). W
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THEOREM 4. Let o(a) = m over F*, then F(a™") is the splitting fidld of
a” —a, that is, ™ —a is partially normal. If 3™ — a is irveducible, then o —q
is drreducible normal. Furthermore, (m[n)|s.

Proof. F{a™") is the splitting field of 4™ —a iff ¢, € F'(a™™), that is,
iff F(a™™) = B(L,) = F(a), and this cerbainty oceurs if (#/n))s. Consider
F{da™", £,). This i§ the splitting field of 4™ —a. Since F(a™", £,) F(L.),
we have, by Theorem 1, that F(a™", £,) = F(d}), where Is.

Since F(of) is & normal extension and o(d’) = mfl, we have thab
Lmn € F (o) < F(a), thus (m[l)n, hence (m/n)[l. Howover, Ijs, so (mn)ls,
So P(d™) = F(e®) = F(L,). :

If o™ —a is irreducible, then since n|m, we have that 2" —a is irredue-
ible normal. m ' ' '

COROLLARY 1. Let 0{a) = m over F*, F(a) = K > F, and X be normal
over F, then K <= F(a™") = P(a"™).

Proof. 8inee K is normal, we have that & (£,) i & normal extengion
ol ¥ and ¥(a) = K{{,) > F(L,), thus by Theorem 1, we have that K (Z,)
= F(a'), where Ijm, Since ¥ (d') is normal over F and o(a) = m 1, over F*
we have that £, e F(«). Hence (1 /){n, so (m/n)|l. Hence F(a™™ > F(d)
=E()> K. m |

Let us now specialize by setting F = @ and by assuming that o™ -—a
is irreducible, then we obtain the following interesting result.

THEOREM 5. Let o™ —a be drreducible over Q@ and o™ =a. Let 1
= max {i| {; e @(a)}, then 1 =6, 12, or 2%, k= 1.

Froof. Let n be defined as in (1), above, then @(5,) < (%) <= Q(a),
thus, by Theorem 1, @(Z;) = @(a"), for some 7, and hence, we may assume
that §(§;) = Q(a), thus, every subfield of @ (a) is abelian. Let Plm, P aprime.
Then o(a™?) = p, [Q(a™?):Q] = p and  Q(a™?) is abelian. From
this we obtain that p = 2 and thus m = 2%, Further since Q(a) is abelian
and o{a) = 2* we have, by Theorem 3, that L €Q(0). T £y, € Q(a),
then @(a) = Q({,.1), 80 I = 271, thus we may assume that L., ¢ Q(a).
Hence [@(L;): Q(Lw)] =2, 80 [ = 8-2% The ‘binomials, #*+-3, a*4-36,
how that I = 6 and I = 12 can oceur, and it remains to show that % > 3
iy imposgible. -

We have that (L) = Q(x?)’ where ! = 3-2% o satigties the irvedue-

ible binomial #** g a.g_c_il @ —a hag abelian Galoig group. From ([5],
we have that a = — ¢, thus o = 6", Hence QLia6"?) = Q&)
< @€ ur1r L)y 50 0¥ €Q(Cus1, &) Since k> 8, this implies that oY?

€Q(lx, &) =Q (&) (see [11). However this implies that ¢ 5
a cb?ltra,diction. Thus k<2 w . - i € QL)

icm

Structure theovems for radical eatensionsz of ficlda 115

References

[L] Lisl Gaal, Qlassical Galois theory, Chelsen, New York 1973.

[2] David A. Gay, Andrew McDaniel, and William Yslas Vélez, Partially normal
radical extenstons of the rationals, Pacific Journ, Math. 72 (2) (1977), pp. 403-417.

(8] — Onnormal radical emtensions of real fields, Acta Axith. 35 (1979), pp. 273-288.

[4] Serge Lang, Algebra, Addison-Wesley Publishing Co., Reading, Mass., 1969.

[6] Henry B. Mann and William Yelas Vélez, On normal radical emtensions of the
rattonals, Linear and Multilinear Algebra 3 (1976), pp. 73-80.

{61 N. Tachebotardw, Grundeige der Galoisschen Theorie, P. Noordhoif, Groningen-
Djakarta 1950, pp. 301-303,

APPLIED MATHEMATICS DEPARTMENT
SANDIA LABORATORIES

Albuguerdgue, New Mexico 87115

Boceived on 16. 9. 1977

and in revised form on 15. 4. 19%8 (984)



