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- Bioctic Gauss sums
and sixteenth power residue difference sets

by

RoNALD J. Evans (La Jolla, Calif)

1. Introduction. For an integer k > 1, define the Gauss sum
p~1
Gy = 3. ¢tz where p denotes a prime congruent to 1 modulo k.
ne=0
One object of this paper is to evaluate G;¢ (up to some sign ambiguities).
This is done in terms of parameters that appear in the representations of p
as binary and quartic integral quadratic forms. We shall make heavy use of
the results and notation of [2], wherein G, is evaluated for k = 4, 6, 8, 12,
and 24.

The values of G, are connected with a well-known problem on power
residue difference sets, namely that of characterizing the set of primes p for
which the set. H, of kth power residues (mod p) (or the modified set
H,w {0}) is a difference set. In the period 1933-1967, this problem has
been solved for all the values k < 20 except k = 16. For references and
good expositions, se¢ the books of Baumert [1], pp. 119 ff, and Storer [4].
In 1957, Whiteman [5] obtained a partial solution for k = 16 by showing’
that H,s and H,su {0} are never difference sets when 2 is dn octic residue
(mod p). The problem for k = 16 when 2 is an octic nonresidue remained
open (see [1], p. 124, [4], p. 82). Using our evaluation of G, we complete
the solution for k = 16 by showing that H,, and H,qu {0} are never
difference sets. The case where 2 is a quartic. residue (mod p) is solved
in §4, and the case where 2 is a quartic nonresidue (mod p) is solved
in § 5. In the latter case we ulitize several results from [5] which are proved
using the theory of cyclotomic numbers; in the former case, the theory of
cyclotomic numbers is not used. Qur methods are similar to those of [2].
Chapter 5, wherein we obtained new and relatively simple solutions to the
problem for & = 4, 6, § and 12.

2. Notation and the formula for G,¢. For characters A, y (mod p), defing
the Jacobi sum
-

1
(g, A = ( x(mi(l—n)

re )
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and the Gauss sum
p—1
G(x) = Z x(n)emcinll’_
n=9

Write J(x) = J(x, 2} and K(p} = x(#)J (). It is well-known that J(y, 4}
= G()G(D/G(xA) when y # 1

Let p = 1{mod 16) and fix a character y(modp) of order 16. Let
¥ = y% As in [2], Theorems 3.9 and 3.12, designate integers da, ba, ay, by

for which
K@ = ag+iby  (@f+bi = p, ap = —1 (mod 4))
and

K() = ag+ibg</2  (a3+2b% = p, 4g = — 1 (mod 4)).

As in [3], Theorem 3.5, write
| K() = a15+bi6+/2 +icss \/2”"\/5 “i“idls\/i:m:/ﬁ?,
where d,g, Dig, €15 and d,¢ are integers such that.
p = aig+ 203+ 2cdc+2d3s,  ays = —1(mod 8),
C2yghis = Bs—cle—2e6dis  and  byg, 016, dis = 0 (mod 2).

Put Rg = G)+G{*), Ry = G)+G (), and Ry = G2+ G @),
as in [2], (3.9), (3.18). Let ¥ = Ry-+R,. Note that 'Y and Rs are real and
independent of the choice of x. By [2], (3.10), (3.19), we have

Rs = (sgn Rg) {2p+2a, p*/*}12

and
= (sgn Y) {(p'? +as) @p'2 +2nRe)}2,
where :
' . 1, if 2 is a quartic residue (mod p),
= - 24 (mod ¢)
. —1, otherwise.
Define o = +-1 by .
¥@), i p=1,
°T {w(:z)/f, on= -,
Define » = 41 by '
o, if f = i:;
! "{masgn(bl;Re). if n=-1
When n = 1, « is independent of y, and when n = —1, ab, is independent

of X% Hence 7y is independent of 3. Let
S = y(sgn ¥) {(p"* + ag) (4p* + 2R} 1.
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Thus,
j oy, ' if

1 ¥ e
W | —aS{R,-—pl?

“(14)/[74,, if . = -~ 1.
Observe that § is real and independent of y

We can now present the formula for G,

Tukorim 1, We have Gy = pY 4 R+ Y+ M, where
(2} M? = EINAB(- 1) gy Y24 28 X

x(:”m'f"aify“(l’m ~tg) (Ry ~ay=p'?) b g/by hy)
and
(3} N?* = d(ptufet a6 "2 - 276) x
X (Ap -+ 2ey pHF A4 pU2 Ry 2 (o 1Yo D/ “ptz3).

Observe that while by, b, and fy cach depend on x, h,¢/by by does not.
As a numerical example, we give the following values (rounded off to
the nearest millionlh) when poe= 11314, =7, 0y = —9, a3 = —1, bis/baby
=18, e I, ow =1, Ry = 19.360321, Y = —§ = [1.508043, |N|
= 415660969, |M| = 42.121436, and y; = 414985104 {(42 - 121436).
Here M is purcly imaginary, and the first term on the right side of (2)
iy -2|N|.
. Proof of the formula for G,,. We begin with \omc lemmas, the
first of which is proved in [2], Theorem 2.5.

LiMMma 2. Let ¢ be an odd prime and let A be a characier (mod q)
of order 2m. Then

i K@= (";T ) Ky

and
(i) KA = A~=DJ@A, A" L.
_Lt-:MMA 3. We have
s K(l//) and GO G) = gp*? GF?).

Y2 1, Yy = pY2 K (1), Hence

(I (I
GG ”“-Gﬁ %

Livma 4. We have G@f*) = Re/241(2p—2a, p')V2 (sgn b4R6;)/2*
Proof. Since Re (GW*) = Re/2 and [GH)* = p, we have

G (2) = Re/2+1(2p~2uq p'*)11? 52

npt’ = np'? G (%), m
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for some & = +1. Thus, |
AG2 (%) = Auy p'? 4 2i0Re (2p—2us p*P)? = duy ' +4i8p" by (sgn Re by).

Since 4G () = 4p'F K (y*) = 4p' P ay+4p'2ib,, we have § = sgn (Reby),
as desired. =
LEMMA 5. Let 6 = +1. Then

(G4 3G W) = K4 (28p'7 +nR,).
Proof. We have
(G )+ 3G WY)? = G () -+G* () +28G (1) G (1)
JUN G A+ T P G+ 206G (0 G )
(K ) G+ K ) G A+ 28G ) G o).

K (/%) by Lemma 2(i), it follows with the use of Lemma 3

i

i

Since K () =
that

(G W)+ 3G (W) = 2K () (6p' 41 Re (G ?) =
LeEmma 6. We have

Ry—Rg = —diphy (sgn by

Ky (26p* 2 4+nR,). w
Re) {p~ay pt2 137y,
Preof. In the proof in [2], Theorem 3.18, we saw that
R} = 2p+2n Re {G (W) K (W)}
and
R = 2p+27 Re {G (P2 K ().

Thus, R} —R3 = 2y Re | K @) (G(lfl"“.)—G(l/—Jz))}. The result now follows from
Lemma 4 and the fact that Ry—R, = (Ri~R3)/Y. w

Lemma 7. We have
2Re 1 (2) C§(|/1)+1])3(2) Gl = 3§,

Proef. This follows from (1} il 5 = 1, s0 suppose that # = ~ 1. Then
the lefi member above equals —2x Re [H{G)~G ()] = 2a Im | G ()~
~G($3)). By Lemma 5,

Im {G ()~ G == —by /22" 4 Ry).
Hence,

G = 2o Im {G N~ Gy
N 2 Re {G ()~ GOy

L= =2aby /2 2p”1+Rf,/(R3-
By Lemma 6 and (1), this last expression equals S. m .

G (i) —
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Lemma & We have
2Re (2 Gn—d 2 Gpt) = S{ag—p'™ Ry —ay—pY?)/b, by \/5

Proof. Let L denote the lelt member above. First suppose that n = 1.

Then L = a{R;—Ry) and the result follows [rom Lemma 6 and (1).

Now suppose that 5 = —~1. Then
Los 20 Im {G )+ G ph)
By Lemma 5,
tm [G Q)+ G * == by \/2 (2p12 - R,
Henee,
2o Im '(r(lff o+ (r(e/ )2 ,
I, o = D [ 2 2 1]lmR ¥
1Re Gl + G *by /2 29 Ro)
and the result follows from (1), m

Proof ol Theorem 1, We have

-1

(4) Gy oo Z gy Z ¥ n

[T

(13*{"‘1 +P1+F§+F7MGgiM

where F; = G{x/)+ (x(x-’) and

{5) M* s (F 4+ Pyt Fab Fo)h
By [2], Theorem .18,
() Gy = pY24 Ry + Y,
Hence G, = p' 2+ R+ YEM. By (),
(N M? = (F 4 F) +(F3+FsF+2N..
where

N = (B F P (Fy ek Fa).

It remains to verily (2) and (3).
We have

F3 eGR4 G2 00+ 2py (= 1) = J (1) GUp)+J (F
= G R K () Gl () K(x3~i~2px(-1

Since K (x) = K{x") by Lemma 2(i), .
G () 2) KGO+ G W) 2 K (D) +2px( 1),

) G+ 2px(=1)

Thus,
(8) F34F3 = dpy(~1)+4 Re {K{x)} Re {#(2) Gih)]
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By Lemma 2 (ii},
G G = p T x7) = p' (1) K(z).

so that _
G(z) Gl(}f) 12 12 R
G(D) G(x) = —tm e (2) pH2 y (= 1) = pM2 2 G ().
(0 Glx) Go) G VAN
Therefore,
(9) 2F, Fq =4Re {G() G+ G Gl )

_ = 4p1 7 g(—1) Re {K {3)} +4p'/? Re {iF (2) Gop) .
Thus by (8) and (9), |
(Fy+F0% = 4(p"2+Re [K {0} o (— 1D p' 4 Re [p42) G,
Similarly, ' '
| {Fa+Fs)t =4(p"+Re (KON (x(= 1 p"* +Re [y (2) Gap)).
Thus,
(Fi4Fa)? = 4(p 2 4 ay o+ /2) (pH3 (= 10 VIO L RG 1(2) G (1))
and
(F3+Fs)? o= 4(pY2 4ay,—byg +/2) (pU2 (= D07 D6 4Ry L)242) G ().
Adding, we have
(10)  (Fy+F2 +(F3 +Fsf = 8(= D0 210 (p gy, pl2) 4
+4(pHE ayg) Re (Y GO+ (2) G +
+4bys /2 Re U () G ()~ (21 G ()
Also, '
(1) N? = (Fy 4 Fo) (Fy+ FsP = 4(pruie+2p'? aye~—2b3) %
x (Ap+4p! 2 (= DT I Re (i (2) GO+ (2) GO+
+2 Re [G (W) G+ 20 Re {G (W) G(pM),

By Lemmas 3 and 4, the rightmost two terms in the last factor in (11) -

add up to p"?(2dg+Re). The result thus follows from (7), (109, and (11),
with the use of Lemmas 7 and 8. w
4. Nonexistence of difference sets when 2 is a quartic residue.

Tueorem 2. Let p be prime such that p = 1 (mod 16) and 2 is u quartic
residue (mod p). Then neither H o nor H s U {0} is a difference set.
Proof. Assume the contrary. Then, by [2], Theorem 5.2,

-{12) p = 17 (mod 32),
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and by [2], Theorem 5.1,
(13) {Grot+ VP = 15p+v?,
where
_ ~1, il Hye is a difference set,
"S5, i H 16 {0} is a difference set.

By (12), x{—1) = =1, 80 for j = 1,3,5,7, 6(f) = ¢ (- DG () = -G
Thus, by (4), M is purely imaginary and

(14) |G 6+ v* = (Ggt+v)*— M2
Thus, by (13), (14) and (6),
(15) M2 = (P24 Rg+ Y+v)2 = (15p +2).

Since n = 1 by hypothesis, we have, upon expanding,
(16) M2 = ~8p42p"% (ay+ 2ag+v)+ 2R (20" + ag + )+ 2Y (07 + R +),
where we have evaluated RZ and Y? using the formulae for Rs and Y in
§2. By (16), (1) and (2), .
{17 4N = A+ BR¢+ Y(C+DRy),
where
A = p'(ay+2ag+v-+dags), B = 2" +ag+y,
C = p*{1—o)+v—aas—u(p*? —us) (a4+ p*2) byg/by bg,

and

D = 1+o(p'*—ag) big/bs bs.

By (17), (1) and (3),

(18) N? u (A-}-BR;,)”-!—*YZ (C+DRe)*+2(A+BRg) (C+DRg) Y ”
= 4(p+ade+ 20y, pU2 —2bde) (Ap+2ag p** +p' Rg—2ap 2y,

Note now that Q(R) has degree 2 over its subfield Q(,/p) and that
RZ, 4, B, C, DeQ(/p) and Y*&Q(Rs). However, Y¢ Q(Rg), in view of (6)
and the fact that |Q(Gg): Q| = 8 (see the proof of Theorem 52 in [2]).
Thus we may equaie coefficients of ¥ in (18) to obtain

(19) (A+BRg) (C+DRg) = —dap'?(p +ade-+2dy6 0"~ 2b36).

Equating coeflicients of Rg in (19), we have
(20) _ AD = fBC.
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If we expand in (20), multiply by by bs, and equate the rational terms,
we obtain

ophi g (ay+2ag +v-+4ay,)

= (ag+v) {by by (oays—v)+abyg (p—aq ag)} +2p{a— )by by + 20pb 1 6 (ay — ag).
Reducing (mod p), we have
(21) (ag+v) (cae—v) by by = {ag+v) b4 ag dy (mod p).

Assume that gg+v = np for some integer n. Since ag = ~1 (mod 4),

- it follows that |n| = 2, and we obtain the contradiction
p < lag+vl < |agl+p € af+p = 2p—-2b% < 2p.

Thus it is permissible to cancel (ag+v) from both sides of (21). Squaring
both sides of (21) and using the fact that af+2b} = aZ+b} = p, we obtain

(22) ‘ {oa; 6 —v)* = 2bis (mod p).

The first two primes p for which (12) holds and # = 1 are 113 and 337,

For p = 113, we have a;5 = —1 and |b;4| = 4. Hence (22) cannot hold for
p = 113, so :
(23) p = 337.

Since 2}b,¢, it follows from (22) that (ag,g—v¥ ~
noenzero integer n. Thus,

24)  4p € |(maye—vY - l
15. Then by (24),

—~2b}¢ = 4np for some

a15+2b ‘+"U +21va15§ p+v +2!Vﬂ16|

First assume that |ag =
4p < p+vi+2ads < 3p+v?,

s0 p < v* < 225, which contradicts (23). Now assume that |a;e} < 15. Since
a1 = —1(mod 8), we have Ja;¢| £ 9. Then by (24), 4p € p+225+270,
wh_ich again contradicts (23). m

5. Nonexistence of difference sets when 2 is not a quartic residue.
THEOREM 2'. Let p be a prime such that p = 1(mod t6) and 2 is not
a quartic residue (mod p). Then neither Hyq nor Higw {0} is a difference set.

Proof. Whiteman ([5], pp. 409, 410) proved in this case that H,¢w {0}
is ‘ot a difference set. Assume for the purpose of contradiction that H,
Is a difference set. Then formulas (12)- (15) hold with v = —1. Since = -1,
(15) yields, upon expansion,

25 M= —8p+2p”2(a4+208-1)-~2R6-(1+a5)_+2Y(R6-1+p‘/2).
By (25), (1) and (2),
(26) ' . &N = a+bRs+S{c+dRy),

cand 50 ~hE = dae. But since 0 = g =
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where
i == ]71"/2((14"}‘2ﬂ8—'1"}"4{116), b = "‘1"’"'(13,
¢ = —=p'P—ay g+ (ag—p') (ay -+ p ) by ofba by —a (1 +p"?)(a, +p'2)/b,,
and '

d = (p”z“"‘ﬂg)bug/b‘tbg +ﬁ(£14+1)/b4_.
By (26) and (3),
@7) N% = (a+bRe) +8* e+ dRef +2(a+bRy) (c+dRy) S
= 4 (p+aty+ 2ty p'? ~ 20%6) (Ap+ 2ag p*E 4 pM2 Rg—2pM2 5),

By the argoment used to obtain (19), we may equate coefficients of §
in {27) to obtain

(28) (a-+bRe)(e+dRs) = —4p** (ptate2a,4 p'? —2b3).
Equating coefficients of Rg in (28), we have
29 ad = —be.

In view of the assumption that Hs is a difference set, it follows
from [5], p. 409, that a, = ~1, a3 = —~1+b§, and p = 1 +b§ = 14b3.
We have b, == 8b§ for some & = +1. Thus, after expanding in (29), mul-
tiplying by b, by, and comparing the irrational terms, we find that

(30) tg bl.:,(a4"|‘2llﬂ““"l +4(1“,) .

= (=~ 1—ag) (—bybg +bf b1s) = b§ (Sbg—by¢).
Since (ag, bg) = 1, it follows that :
{31) agi(bys —bs).

First suppose that byg~dbg = 0. Then by (30), a =0, so by (29),
a= ¢== 0. Then the lelt side of (28) is

bdR§ = ~(p"?*—ug) 2p—2p*2).
Comparing the rational terms in (28), we thus obtain
~(2pag-+2p) = Bas P,

= p'2 (duy o+ 2bE —4), it follows that
0= —hi+2bi~4, so b} = 4, Then p = 1+bf = 17. However, Hys is not
a difference set for p = 17, a contradiction.

Now suppose that byg~d8by # 0. Then by (31), ag < (byg+|bgl- ‘Now,

ay = (p=1)"2~1,  |by| = (p~DY%  and |b16| < (p=1)"%/2
(since p > aje-+2b4), 50
(L=1/3/2)(p- D)2 =(p- )4 ~1 < 0.
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This forces p < 318. The only prime p < 318 satistying p = 1+bj is p = 17,
which again yields a contradiction. m

References

[11 L. Baumert, Cyedic difference sets, Loeture Notes in Mathematics, 182, Springer-Verlag,
Berlin 1971, ‘

[2] B. Berndt and R. Bvans. Sums of Gewss, Jocobi, and Jucobsthal, 3. Number Theory
{to appeuar in 1979), o .

[3] — = Sums of Gauss, Eisenstein, Jacohi, Jucohsthal, and Brever, iinots J. Math, 23 (1974,
pp. 374-437. i

[4] T. Storer, Cycloiomy and difference sets, Murkham, Chicago 1967.

[5]1 A Whiteman, The cyelotomic mumbers of order sixteen, Trans. Amer. Math. Soc,
86 (1957), pp. 401-411,

Recetved on 30,7, 1977
arel in revised form on 23, 1. 1978 (967)

ACTA ARITHMIETTTCA
XXXVIT (1980

Linear forms on abelian varieties over local fields
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&

DaNwr BrERTRAND (Palaisean) and YuvaL Fuceker (Cambridge)

(. Introduction. Let 4 be a simple abelian variety of dimension d, defined
over a number field F. Denote by End 4 the ring of endomorphisms of A.
Assume that A odmits sufficiently many complex multiplications in the sense
that the algebra End A o9 Q s isomorphic to a totally imaginary quadratic
extension K of a totally real field Ky, with [K,: Q] = d. For any field C,
denote by A the set of C-rational points on the variety A, We shall study
here lincar forms in algebraic points of the (hormalized) exponential map
on Ag, when the field ¢ s non-archimedean.

- Lower bounds for lincar forms in algebraic points of cxponential maps
are fundamental in the theory of diophantine approximations. Such studies
were initiated by Baker, who obtained lower bounds for linear forms in
{ordinary} logarithms by means of a new extrapolation technique (see, c.g
[1D). Masser [8] later showed that similar techniques can be applied so as
to yield lower bounds in the case of an elliptic curve with complex multipli-
cation. This corresponds 1o the case of an abelian variety A as above, with
dimension o = 1. Masser’s work was generalized by Masser [9] and Lang [7]
to deal with arbitrary dimension J. A variant of the method, leading to
sharper bounds, was then given by Coales and Lang [5], using a theorem
of Ribet [117 on the degree of the division fields attached to rational poinis
of A, and these bounds were subsequently improved by Masser [10].

Our ohject here is to establish v p-adic analogue of the main Masser
Coates-Lang theorem on linear forms in algebraic points on abelian varieties
of complex multiplication type. ko the clliptic case, such p-adic linear forms
were stwdiod by Bertrand [3]. An essential ingredient in the study of the
higher dimensional case is a many viriables p-adic version of the “Schwarz
femma” principle, which has recently been established by Robba [12].
However, Robba’s result applies only for sufliciently well-distributed extra-
polation sets. [n order (o check this hypothesis in our sftuation, we have been
led to require (see § 6) that the rational prime p splits completely in the
tatally real field Ky, and all primes of K, which He above p have the same
splitting tvpe in K. We assume this [rom now on. Il is likely that our



