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1. Intvoduction. For real x, put

z—[2]—% (2 + integer),
(@) = {0 {(r = infeger).

The Dedekind sum s(k, &) is defined by
ha\ ([ &
wn = 3 (F)E)
uimod &)

where the summation is over a complete residue system (mod#k). It is
well known that (b, k) satisties ([11], p. 4) the reciprocity relation

{1.1) 12kk{s(k, k) -+s(k, b}y = h*—3hk-+R*+1 (A, k) = 1).
Rademacher, at the 1963 Number Theory Institute in Boulder, Colo~
rado, proved the following generalization of (1.1). Define

wnan= 3 (b5 (E52)

wimod k)

where @,y ave arbitrary real numbers. Then

(12) 50, B2y 9)+5(E, By, 0) = — () 8y +(@(@) +
1{h - 1 = %
+E{Eﬂz(y)"f“]“l']"c"Bs(h@I-i‘km)-l“i—Ez(m)}:

where (h, k) =1,
_[1 (» = integer),
o@) = {0 (@ # integer)



118 L. Carlite

and

Ez (@) = By(z—[=]),

For z =y = 0, (1.2) reduces to (1.1). Rademacher’s proof of (1.2) appeared
in [10]. For a simplified proof see [7].
Let B,(x) be the Bernoulli polynomial of degree n defined by

ZB 'M’

and let B,(x) be the Bernonlli fanction defined by
B,(r) = B,(z—[=]).
Apostol ([11, [2]) intreduced the generalized Dedekind sum

8, (h, k) = 2 Bp(h:)Bl(k)

#lmod &)

By(z) = a*—ox—1%.

]

&1 Bn :Bﬂ.(o)f

and proved the reciprocity theorem
(1.3)  (p+1){BEs,(k, k) +Ekh*s,(h, k)} = (RB+ kB +pB,.,,

where (h, k) =1, p odd, » > 1. A proot of a different kind was given
by the present writer [3].
Rademacher’s definition of s(h, %; =, ¥) suggests that we define

- + +
g,(h, By, 0) = Z B, (72.”—7—0-—%-1— )Bl('uky),

[r{mod k)

which reduces to s,{h, %) when » =y =0. Since B, (2+1)
there is no loss in generality in assuming that

(1.4) ] 0<y<l.
The writer ({41, {8]) has proved the following
TagoreM 1. Let (h, k) = 1 and asswme that x, y satisfy (1.4). Then
(L5)  (p+1{AE"s, (R, 5 @, y)+ Khs,(k, R; 9, )}
(hB+kB—]—hy+Tcw)p+l+p B by + k)

= Eﬁ(w)!

Le<l,

Jor all p> 0

We may replace (1.3) by the following equivalent formulation in
which (1.4) i3 not asgnmed:

(1.6) (B +1){hEs,(h, &; @, y) 4 KhPs, (K, b5 4, @)}
(hB(y)+kB(m))p+1+p By i(hy + k).
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It iz o be understood that
_ ~ Pl
(hBly) + kB @)+t = ( )h E B (9 B,y ()
r=n
Both of the earlier proofs of (1.5) require congiderable computation.
In the present paper we give a simplified proof that makes use of the
following
Ly 1. Let (k) =1, k> 1,02 < h+h Pui [ =2z-—[2],
the fractional part of z. Then we have the identity

. nk B¢
(L.7) P I R .
(L—aMa—a 11
where the summalion is over all v, s such thet 0 r<T, 0 s<hy b4

+ks+2 << hk.
In the next place, let a, b, ¢ be three positive integers that satisfy

(1.8) (b, 0) = (¢, &) = (a,b) = 1.

Rademacher [$] has proved the following fhree-term relafion:

1
(1.9)  s(bc', @) +s(ea’, b)+s(ably 0) = — —+—G+q+£%

where o', b’, ¢' are defined by -

na’ =1(mod be), bb' =1(modoa), cc' =1(mod ab).

The present writer, in extending (1.9) to s{k, k; 2, v), defined the sum [6]

- t+2 t42
sta,by050,9,9 = > BlatE —a)fy—1 217,

H{mod ¢}

Despite the presence of the additional parameters, s{e, b, ¢; @, v, #) i
really no more general than sk, k; z, ). It was proved that

(1.19) s(a,b,e32,y,2)+58(b,0,8;Yy,2,5)+5(c, &, b;2,2,¥)

¢ -
cm)m%Bg(bm—ay),

¢ - b
55 Bg(cy—bz)—-—g-aBa(azw
where § = 1 if integers 7, s, exist snch that

4+ sty . t—!—z-

- b

a=b ¢

§ = 0 otherwise.
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Mordell ([8]; [11], p. 39) has proved the following result analogous
to (1.9):
(1.11) . 8{be, @) -s{ca, b)+s(ab, c)

1 1
= mabc+—(bc+ca+ab)—}—i(a+b~}—c)—}-
8 4 4
j_._ be cu ab 1 oW »
Tl tE T ) " Toabe —sla, b, o),

where N,(a, b, ¢) denotes the number of lattice points in the tetrahedron

7 s 1
(112) o0<r<ea, O0<e<d, O0Ki<e, 0<»E+»~b~+—<1.
: ¢
‘We ghall prove the following more general theorem,
TEROREM 2. Lef a, b, ¢ be three positive integers that are relatively prime
in pairs and let p be an arbitrary positive integer. Let m, y, = be real numbers,

i<, 0Ky <1, 0La< 1, Then we have
(L13)  (abo){a® s, (be, a; cy -t bz, »)-4-87"s,(0a, b; az+cx, y)+
+ " s (ab, ¢; ba+cy, 2)}

By (w)+

3 ?
= E (leBJJ(CO) -+ m—'

4+ ; ~1H {(aboB B | 0)?*'— (abeB+ B+ abo-- o)1} -

1
+ (Wa,b {(bGB‘!’C&B"‘}—abB"‘I—W)
—{B0B 4 caB + abB - w— abo)* %} — p(abe)” Y (o —1)7}

:l<1

where
7+ Z
w =box-+cay+abz, o=w—[w) ¢= -|— "; + bt ;
a o
and the final swmmation is over all v, s, ¢ such that 0 <r < @, 0 << 8 < B,

0<t<Cs 0 o<1,
The proot of Theorem 2 makes use of the following

LEvua 2. Let a, b, ¢ be three positive integers that are relatively prime
i pairs and It w be o real number, 0 < w < bet ca--ab. Put

'81 . mbcr - eas -Habl +w’

ber +eas +-abl +w < abe
8., = wbcr+caa+abt+w

a =
2

H
ber +cae +abf 4w < Zabe
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where i1 18 understood that

0<r<a, O0<Ls<<h, O0<Li<Ce.

Then
Emw(l — mabc)z grabeto

(L—a -2 (1—2") 1—2

(L.14) 08+ 8, = ,
where « = w—{w)], the fractional part of w.

Some special cases of Theorem 2 are discussed in the last section of
the paper. See in particular Theorems 3 and 4,

While Theorem 2 generalizes (1.11), it does not of course generalize
(1.10). Thus a generalization of (1.10) remains an open question.

2. Proof of (1.7). Put
(2.1) S — Zﬁhr-i-ka-i-t’

where the summation is over all r, s satisfying

(2.2) O0<r<k, O<s<h, Mitkstz<hk.

If we divide both sides of (1.7) by 4%, it is clear that we may, without
loss in generality assaume that # is an inbeger, 0 <2 < h-}-%. Also since
{1.7) is symmetrie in &, & we may assume that & < h. It follows that,
i 0 < 2 < h, the ineguality hr+ks+2 < bk can be satisfied for all r, 0
< r<< k—1; however, if 4 < 2 << b4k, the value r = % —1 must be deleted.

Hence, for z an integer, 0 <z << h, we have

E—1 k—1

8 = Z qhrre - ‘2 phrte Z Ak

=g ka< h(k —-r)—z r=0 Oéséh—[hr;'z}
k-1
Rk =% [(Ar +£)7k]
— AN ghrte 1-2
L 1—AF
=
B Rk LU e
— 4 1—-1 . A phr ekt e}k]
-2 1 1-2F Zr_u

The exponent on the extreme right is evidently the remainder obtained
in dividing hr+# by k. Hence the set of nnmbers

{2 =R +2)/k], 0<r<k—1)

is identical, except for order, with the set {0,1,2,...,%k}. It followa
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that
k-1
Z qhrse—klhr+2)fk] _ 1-¥
1-2
T=af)
and therefore
1 — Ahh pL
2.3 8 = — < .
2:3) Aoma—m 1=z O<#<h
Now let & < # << b+ % Then, excluding the value r == k —1, we have
k=2 k—2
1— Ahk—k[(hr +2)/%]
8 e 2,‘1’"‘4—2 lks o ].?lr+z .
=0 s < Bk —r)—z %‘ . 1 _l-i

— k_
¥ i 1—A"“’:L 1 Ak _ 2 Jhrba—kir+a)/k]
12 14 12

r=0
The set of numbers '
{hr+z—R[(hr--2) k], 0L r<k—2}

excludes the number #—# from the set {0,1,2,..., k—1}
It follows that

o 1— Ahk—-h }»M‘ { 1—2F Az-—?n }
I—Amy@—A% 12k V12
1— Ahk ihfc

z

(L=ma—a 1-1

80 that (2.3) holds in this case also.
This completes the proof of (1.7).

3. Proof of Theorem 1. Let
{3.1) 8, =hkPs,(h, k; m, y) + khPs,(k, h; ¥, @).

Then exactly as in [5], §2, we have

-1 h—1
oo S Sa R a4 3)

k h
] p=0 v=y
We may assume, with no loss in generality, that
{3.3) C<oe<l, O0<Sy<<l,
Put
: 4 y @
3.4 = =
(3:4) R R
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§0 thab
{3.5) 0Ko<<2 (0sp<k, 6<v<h)
Since ‘
Bi(w) =2—% (0<a<1),
it follows from (3.3) thab
(3.6} By(@)+ B:(9) = Bilz+y) -+ 3f(o-+),
where '
- -1 (0<e<l),
(3.7) @ =11 (<o<2)
Thus (3.2) becomes
-1 h-1
= (hk)? 2 D' {By(o)+1f(o)} Bylo)
p=0 v=0
and therefore
k=1 h—1 k-1 h-1 k-1 h—1
38) 8 =@EP{ Y 3 Bio)B,l0)+ %Z ;_Sj (o) %;: Zb' By(0)).
p=0 v=0 p=0 ¥v=¢ o=} 7=

It follows from the multiplication theorem

B, (kw) = k=" B, (w+-;i)
#{mod &}
that
k-1 h—1
> 3B, (o) = (%) B, (hy +Fo)
= peal
Thus (3.8) becomes
(3.9) 8, (hk)”T — (hkY* U, + thk By, (hy + ko),
where
k—1h—1 _
{3.10) = By{
p=0 ve=0
and
k—1 h—1 -1 i~ 1
(3.13) =ZZ‘Bp =2 B,
=0 v=0} p=D v=
o—1 <

It is proved in [H] _t;hat

1 1
(312) (PT, = = Byl + 507 (Bhk+B+r:)%+1+ 7 B0,

P
p+1
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where
(3.13) C e =hythke, ( =z2—[2],

so that { is the fractional part of 2.
To evaluate U, we consider

o0 hk k=1 h—1 k-1 h—1
ﬂ}: ( u)? ; % g;B hku g g 8h’i:aicu1

o<1 a<l

Nince by (3.4) and (3.13)
hlho = hp-+hkv+2,

we get
o (h;lm,}?’ . k-1 h--1 (h \ )
3.14 = Hrbtau,
ow o ler g SN
p=0 Tm:fﬂ'-{:‘;hk

By (1.7) the double sum on the right is equal to

gl Hk+)u . oku_q

6‘11___1 ___65 ( h11. 1)( ) -

Thus (3.14) becomes

(hka)? MRl  ohEHO hlcue®™

Yo, _ _ ’
[_/_J p! t th'u: —~1 e®-1 (ehu__l) (eku _1)

p=10

Now multiply both sides by % and we have

ZP WRPT, u? . Llue™  gett hu Tou o

pl T R 1 gy g

=1

Hence, equating coefficients, we get

(3.15) (p+1)(h%)°T, = (WhB-+hk-+B + LY+ —(hB -+ kB +#)P+1.

We now substitute from (3.12) and (3.15) in (3.9) and get (1.5). This

completes the proof of Theorem 1.

4. Proof of (1.14). Let @, b, ¢ be three positive integers that are

relatively prime in pairs:

(41) (®,0) = (e, ) = (a,4) =1.

Without loss of generality we may assume that w is also an infeger,

0w << be+ ca -+ ab.
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Put
(4 2) S]_ . wbcr+cas+abi+w
ber +-cas +obi +w < abe
and
(4.3) ,6’2 — ) mbcr+ca8-i—abi+w’
ber +cas +alt +w < Babe
where it is nnderstood in such sums that
(4.4) o<r<a, 0<s<h, O<i<e.
By (4.2) we have
Sl — ? 7 (br+as +w/k) 2 wabf
br+astw/e < ab f<g— —{%(br+as+w,’c)
1— mab(c ~ le(br +as +wjedfabl)
o mc (b +ag+w/le)
- . mal
br+as+wfe < ab 1 @
abe
- 1 % g OrFusvwiE) _ x (e +as+wicya)
i—a® 11— ’

br +as +wjc < ab br+astwic < ab

where R (m/ab) denotes the remainder obtained in dividing m by ab.

Put
(4.5) w ] Y == c(bé‘%—as)-}—w o(br 4 as) 4w < abe},
) = {v| v = e(br-+as)Lw, c(br-+as)+w > abe},
Thus
wabu mabc »
— " (u,’ab}_
(4.6) 8, _ml—w“bgm — 1;99

In the next place we take §, = S;--8;, where

S' c(br +astwle)-+ abl
2 ?
s oer-beasabl +w<2abo]
brt-ast-wle<ad
S;f - mc(br+as+w[c)+abt .
ber+cas+abl--w<Zabe
br+as-+wfc>ab

Clearly

e—1

y b
B P ) LeEe =

Or-as+wio < ab =0 well
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Ag for 8, we have

(4.8) 8 = Z gelorhasje) 2 20

b
*+ustivlo>ab f<2¢— %(br»{- as-+wje)

_ . o wubi _ 1— wab(zc-— [v/abl)

L 1 —g®?

veV i<2c—vi(ab) veV
2abo
__ I . il (wlat)
1—gp® 1 —a® )

weV eV

It follows from (4.6) and (4.8) that

mabc: — 1
b
e e DL e D
: uell eV
$2abc
1 g® { Z N Z o } )
wel reF
Sinece
ab—1
1—a%
§ gRlad) | 2 Riad) 2 M = T
uell vel” m=0
we have
mttl:-c 1 m2a.lm
4.9) o™ 48y =2 Zm” - Z‘ o — ]
( ) 1+ 2 1 — b . + 1_5&.05 < 11—
L

Ue

Hence, by (4.7) and (4.9),

1 _mabc wabc 1 wZabc
mabc‘g Sr S” - , l - 2 v
vh St 1—g® " 1—m“bj.2m T 2 T 1 s
uell vl
1 v u] mzccbc
I {z.: w“-%Z” | T 1%
well vl
a—1 b—1
= _____1 m Z 2 gltras)+w atehe
— & —
12 paul  ge=0 1—2
P 1 _mabc 1— wubc m2abc
T1® 1% 1% 11—z
Thus
(10) a4, = O aee

11— (l—a)1—2%) 1—g
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5. Proof of Theorem 2. Put
8, = a” ls,(be, a; oy + be, w) -+ bP s, (ca, b; artcz, ¥) -
+e? s, (ab, ¢; bzt ay, 2).
Then by {1.11) and the multiplication theorem for B,(w) we have

(5.1)

a—1 b—1 g—1

— 1
6o oo 35 S (TR L Y 1)

=0 §=0 f=0 .
— [rt+= - {8+ ~ {t+=
<l (55) B 05 <5 (50
o b ¢
H, for brevity, we pui
7

§=m’":b’ PR

(5.8)

(5.2) may be written compactly in the form

(5.4) 8, = (abey*? > By(e+n+D{Bu&+ Bi(m)+ B}
&ne
We assume in what follows that x, y, # satisfy the inequalities
{5.B) 0<oe<l, 0gy<l, 021,
so thab
(5.6) 0é<cl, O0gyp<l, O0gLI<l.

It follows from (5.6) and the definition of B,(») thab

By(&)+ By () + Bu() = E+n+L—7.
Hence we have
(6.7) B, (&) + Bi(n)+ Bi(l) = Bi(o)+e,
where ¢ = £4+5+4+ £ and
-1 {(0go<ly,
& = e(0) =10 A<o<2),
+1 (2 o<3).

{5.8)

Thus (5.4) becomes

(5.9)  (abo)78,
= > B,(o){Bilo)+ (o)}

= (@ Bu(o)=1)+ Y By(0)Bi(o)+ D By(ol{Bi(o)+1]

o<1 1o ;54

By(o)—{2 D B+ )

LN £t a<l Io<2

k-]

By(o)]

127
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Clearly
B, = D By(&+n+0)Bi(e+n+{)
sl
a1 b—1 e—1
= @ &1 tt2\_ [fr4+a2 8+ t-2z
DD e e LIl s
i a b 0 a b ¢
p==0 8=0 (=
o [ M w\ - [ m w
= 2.; BP(W+ abc) Bl(abc + abc)
m (miod abe)
& w m w
MZ (abc abc)Bl(abc+%)’
m=0
where
{6.10) 'w—-bcm—{—cay—ra,bz, w = w—w].

Then, exaotly as in the proof of (3.12), we get, first,

(3.11) (abo/’R, =

b
P+1 ,’p+1

As for T,, by the multiplication theorem for B,{x), we have

» = 3 Bylé-+n+0)

R

Thus, by (5.10),

(5.12) (abe)*T, = abe B,(w) == abo B, (w).
To evaluate U, we take

= {abe)' ™7 B, (box +-cay + abz).

Pl p=1 a<l. 1 a<2
g {
(abou)?
— E : {2 § B, (o) + § B,(a—1)
p=40 P a<1 lga<t
-9 ubowu e >"*| abot  eto—tju
- . gabeuw o # 6czibc:u 1
e Sd<C2
aboue™ ey %
= b {2 abow Z gobeou e 6abcau}
qoc
6 1 a<l 1<
aboue™ .
eabéﬂ I {(eahcu 1) gabcsu._i_

( )+—+““ (Babe + B+ 0)** + JaboB, ().
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1+ oe abcu abcﬂu -+ § abcw}
<1

-] o<l

129

= abou Y 600l

o<l
—abei
-+ abous abcu abccru + ubcu’u
eabcu_l
o<1 g2

By (4.10), with

abeo = abe(E-+n+E) = bor+eas+abi+w, w = box+cay + abt,

we have
& beu-t- b
pabou abccm_!_ gabeow e - ewu(ea i 1)2
be cath abcu_“_ :
. Zm Zm —1 (e ) (¢ )

Then it follows from (5.13) that

[==] b 2
}7 7, (@ GTG)
= P

abcueabcu-ﬁ-mu
(euml){eabm _»1) -

abouel¥ (1 s—ame)
_1)( Cau 1)( tzbu ) '

= abeu ewbc(a—l)u !

beu
o<1 (B

Equating coefficients of »¥/p!, we get

1
» . » _qyp-t . I_.
(6.14) (abe)”U, = p{abo) q{i (o—1)7""+ PR {abeB 4 B+ abe+ @)t
1
B3
(19 1o bc (beB -+ o0aB 4+ abB -+ w)Pt -
e 1 (beB + caB -+ abB +w — abe)? 2,

(p+1)(p+2)abe
Thus, by (5.9}, (5.11), (5.12) and (5.14), we have

P 3
(3.15)  abe8, = WBP+1(w)+§-abaBp(w) —p(abc)? Z(g~1)—|—

o<1

- pii (abeB + B + )Pt — 11 (abeB - B + abg - )P+ 4

N 1
(p+1){(p+2)ab

_ 1
(p+1)(p+ 2)abo

This eompletes the proof of Theorem 2.

- (boB - caB + abB - w)P+? —

(beB +caB + abB +w — abe)?+2,

8 — Acta Arithmetica XXXVII
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6. Some special cases. To begin with we take p = 0 in Theorem 2.

We agsume that
(6.1) C<oe<,

Then by (5.1) we find that
{6.2) abeS, = bew +oay -+ abz —§{bo - ca+ ab).
As for {5.15), we have

abie8y = (— }abe—}+ w) +iabe 4 (} abo -3 — abo - w) —

0y, 0z,

(w\—'—bc—ca.—ab +2w) (— abe) — L abe,

" Qabe

which reduces to the right hand side of {6.2),
The special case p == 1 takes more computation. By (5.15) we have

(6.8}  abeS; = }By(w)+i(abeB + B+ ) +2aboB, (o) —abs D1 —
o<1
. : 1
— ${abeB +B+ abe+ w)2+ e (beB 4 caB 4 abB -}-w)® —
~ G (beB + caB -+ abB + w — abe)®.
Olearly, the sum
(6.4) D1 =Ny(a, b,0)+1

gl

is equal to the number of lattice points in the tetrahedron
(6.5) 0<r<a, 0<s<b, O0<Ki<y, 0<i+-;+3'~<1.
a e
We now specialize further by taking o =y =2 =0, w = 0 = 0.
Thus (6.3) reduces to
aboS, = 5 +4(aboB+B)2—;abe—abe (Ny(a, b, o)1) —

1

—4(abeB 1+ B+ abe)® +
Babe

(beB 4 caB + abR)® —

1
. - - —_ g
Cabe (beB + caB -+ abB — abe)®.

Simplifying, we get
(6.8)  s,(be, a)+5,(ca, b)+ s, (ab, ¢)
b 1 1

=TT Taa T

1 {be ca ab
Ty (7 Tt

1 1
ab@+z(a+b +e)+1-(bc+ca+ab)+

) +Ny(a, b, 0.

¢
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Sinee s;(k, k) = s(k, k) +1, it is evident that (6.6) is identical with
Mordell’s theorem (1.11), thus furnishing a partial check on Theorem 2.
Moreover (6.3) yields the following direct generalization of Mordell’s
theorem.

THROREM 3. Leét a, b, ¢ be posiiive integers that are relatively prime
in pairs. Let @, y, 2 be real numbers, 0 <o <1, 0<y <L, 0 e<1. Let
w = bex—-coy--abz, o =w—[w].

Then we have
(6.7)  s.(be, a; cy+bz, x)+8,(ca, by azt oz, y) 8, (ab, 6; bw--ay, 2)

3 1
EBl(OJ)+——-2abc By(o)—Ny(a, b, e)—1+

+ o;bc {(aboB + B+ w)? — (abeB + B+ ab+¢ + )t} +

T (a,]l-m)z {(beB + caB -+ abB +w)>— (beB + caB + abB +w — abe)®}.

Finally we state the special case of Theorem 2 with » =y =2 = 0.
TEEOREM 4. Let a, b, ¢ satisfy the usual requirements and p = 0. Then

we have
(6.8)

3 P
=35 i@

a5, (bo, a)+ 87 s, (ca, b) "8, (ab, 0)

Byt

1
[ p+1__ n+i
+ B F1)(abe) {(t.EbGB*}—B) (ach B+B -+ abe)"™*} -+
1
-+ beB -+ caB 4 abB)P+? — (beB - caB 4 abB — abc)? t*}
TSI P )
Cwiaber-t S BT )
p(abo) Z(“’+”+" 1)

where the summnotion is over all », 8, 1 sotisfying

r §& i
0gr<a, 0<Ls<d, O0<i<y, 0“<‘3+3+"c_<1'
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Quadratic diophantine equations with parameters
by
D. J. Lewis* (Aon Arbor, Mich.) and A. ScHINzer" (Warszawsa)

To the memory of Poul Twrdin

1. In an earlier paper [3] written in collaboration with the late Harold
Davenport we proved:

THEOREM A. Let a(t), b(1) be polynomisls with integral coefficients.
Suppose that every arithmetical progression conlains an infeger = such that
the equation a(t)a®+b(T)y? = 2° has a solution in integers o, Y, 7, not all 0.
Then there emist polynomials »(t), y(8), #(t) in Z[], not all identically 0,
such that a{Dx(D*+b () y () ==(1)? identically in i

From this result we derived:

TueoREM B. Lel F(x,y,1) be a polynomial with integral cocfficients
which is of degree ai most 2 in © and y. Suppose that every arithmetical pro-
gression contains an integer T such that the equation I'(z, Y, ¥) = 0 is soluble
in rational numbers for © and y. Then there exist rational functions w (1), y (1)
in Q) such that Flw(t), y(1), 1} =0 identically in 1. '

Earlier, one of us asked [6] whether a result similar to Theorem B
holds it F(w,y,t) is replaced by any polynomial F (2, ¥, %, ..., t.) and
the stronger assumption is made that for all integral r-tuples #;,..., 7py
the equation F(z,¥, 7, ..., %) = 0 is soluble in the rational numbers
for z and y. The stronger assmuption is needed since the hypothesis anal-
ogons to the one of Theorem B involving arithmetical progressions is not
sufficient already for F(z,y,1) = a®—y*—1. We shall show here that
if F is of degree at most 2 in 2 and ¥ a hypothesis analogous to the one of
Theorem B suffices for any number of parameters ;. 'We shall also in-
dicate an equation of au elliptic eurve over @(#) for which the stronger
assumption involving all integers ¢ does not seem to suffice.

* Thig paper was written while the authors were partially supported by an
NEF grant. ' : .



