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Imtroduetion. In the following we consider Hilbert moduler forms
over a real quadratic field k == @(}/q) of diseriminant ¢ = & or an odd
prime ¢ =1 mod 4. We shall further assume that & has ideal class number 1.
All what will be said will certainly be true for more general guadratic
fields with more or less modifieations, but we think it useful to treat the
simplest case first. The modular forms to be considered are those with
respect to the group

(; g) ad—fy =1, aep, feqg ¥, yeglp, deo
where p i8 the maximal order of %. )

ANl modular forms will turn out to be linear combinations of theta -
feries in the sense of Kloosterman and Schoeneberg which were studied
in [3], and of which we now repeat the definition. Let K be the quaternion
algebra ramified only at the infinite spots of % and My, ..., My ideals
with & common maximal left order O which represent all left classes.
The right orders of the M are O,. For a given integral ideal m = {u)
of & we form all integral ideals

() M= M WY, McE

of norm m and left orders O; and given left class. For a certain represen-
tation & (M) of the multiplicative group K™ of degree (I +1) introduced
in [3] we form the sums

Bym) = 3 R(M)e}*

extended over all 9% in (1) where ¢; is the index of the unit group of »
in that of ©;. The By (m) are arranged in H (I -+1)*vowed matrices B {m),
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the Brandt matrices, which are equivalent to the representations of
the Hecke operators 7, ,(m) in the spaces of integral modular forms
of weight 2 if I = 0 or of cusp forms of weight I+2 for I > 0. The Kloos-
terman—Schoencberg theta series are

(2) @I(zl, Ze) = ZBE(M) 627“:(91!4“{*52#0]

summed over ¢ = 0 and all totally positive integral u (o is the canonieal
automorphism of k).

TunorEM 1. If the ideal class number of % is 1, all integral modular
Jorms of weight 2 and all cusp forms of weight 1+-2 are linear combinations
of cocfficients of the matriz series (2),

The proof has been given in [4] for > 0. It consists of the comparigon
of the traces of the B;(m) and of the Ty, ,(m) which have been determined
by Shimizu [12]. Recently Ishikawa [6] has caleulated the traces of the
', (m) in the eusp forms. His formula consists of two summands the second
of which is, with the — sign the trace of T,{m) in the Eisenstein geries.
Thus the first summand is the trace in the space of all integra! modular
forms, and this i3 equal to the trace of the B,(m).

If the ideal class number of Q(ﬁ) {where & iz allowed arbitrary)
i3> 1, the Bj(m)and 7 ,(m) do not span a ring over Z, and certain other
Brandt matrices 4;(m) and Hecke operators Vy,,(m) have been introduced
in [3] to complete the picture. A proof of Theorem 1 under more general
conditions requires the 4;(m) and T}, ,(m) to be included in the comparison
of the fraces,

Our ehief concern here are the symmetric modular forms

Flzyy 2] = flag, 2)

whieh preserve this property under all Hecke operators. We want to
find all linear combinations of theta series which are symmetric in this
sense. The problem can be stated in a slightly different way. The matrix
(2) is diagonalized by a constant matiix @:

(8) G710 (2, 2,)0 = (dizw B, (21, 23},
@ o2 = 3 Byt

the Fourier coefficients of which are the eigenvalues of the Bi{p} = By(m).
The symmetric theta functions are those whose Fourier coefficients are
yyminetric in the sense

B.(p) = B.(u7).

The determination of the number of linearly independent symmetric
D,(z,,2,) is connected with the arithmetic properties of the algebra K.
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Agwill be shown in § 2, the canonical automorphism ¢ of  can be extended
to K. A maximal order O will be called weokly symmetric it

{5) D7 = 0700
with some (' € K*. It will be called strongly symmetric if

(6) ' D7 =90.
In §3 we will prove

THEOREM 2. A weakly symmetric order D s equivalent with a strongly
symmetric one if the diseriminant of k 1s either 8 or an odd prime.

For Theorem 2 we need not assome that % has elass number 1. We will
see that the number of strongly symmetric © is equal to the number of
classes of definite gquaternary quadratic forms of diseriminant and redunced
determinant both ¢ which represent 1. The number of such classes has
been determined by Kitaoka [7]. It can be conjectured that, for more
general quadratic fields, the maximal orders can be divided into gemera,
and that Theorema 2 holds for one of the genera.

Returning to the symmetric modular forms, we shall further prove

THEOREM 3. T'he number of linearly independent symmelvic modular
Jorms of weight 2 s equal to the number of classes of (weakly) symmetric
maximal orders in K,

The number of linearly independent syimmetric modular forms can
be obtained by specialization of a much more far reaching theore{x_l
of Saito [11], 7> 0. It has also been determined for arbitrary & = Q(l/ day
by Busam [1], but his number is in our notation }(h-+ H). On the other
hand, our method employed in the proof of Theorem 3 can also be extended
to higher weights. The complications caused by the units of finite
order can certainly be handled.

Our last question concerns the unsymmetric funetmn&, D, (7, 2)-
As pointed out by Peters [8], Ponomarev [8], [10], and the antor [2], [3]
there is a bijection between the classes of maximal orders O of K and the
classes of maximal lattices Q in a space 8. This connection leads to an action
of the Brandt matrices B;(u) on the row vectors %(7) of theta functions
{with spherical weight functions) as factors on the right. Now, together
with (3), these theta funetions are transformed simultaneously

(7) GG = (.., pl7)y .. )
with ecomponents
(8) (1) = 32, (m)e™.

The @D,(#,, 2,} in (4) which are symmefric are the Naganuma lifts of the-
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¢,(7) with the same », unless the latter are zero. Today itis an open question
when ¢,(7) = 0 in the symmetric case. But we will prove

TamoREM 4. If @,(2), @) is not symmetric, the p,(v) with the same v
vanishes.

This statement is both an interesting application of the “ifting
theory” which has today so much publicify, and an explicit deseription
of a large clasg of linear relations between theta series of which only par-
ticular examples have been known go far while many more actually do exist

§1. The symmetry of the Brandt matrices. Tn § 1 we restrict ourselves
to the cage I = 0. Now By(m) is the number of infegral ideals (1), Let M;
= I 0; be another system representing the left classes and

W= WP = O7 (R0, M 07 ¢
run over all integral ideals of norm m. Then (1) holds with M = M 01,

and the coefficients B;;(m) of B,(m) are independent of the class represen-
‘tations.

Let us assume that the right orders Dy, ..., D, be weakly symmetric,
while 05, 2~ Oy, ... Under this assumption we have

{9) By(m?) = Py By(m)P,

where Py is & permutation matrix fixing the indices 1, .++y i and exchang-
ing k41, &4+3,... with A--2, h+4, .., Let

{10) _ By(m)@y = &, diag(,(m)).

The eolumns of the matrix &, are eigenvestors of By(m) with the eigen-
values B,(m). (10) holds with the same matrix &, and m” instead of .
Expressing By(m") in the way (9) we get

Bo(m)Poff, = PGy diag(p, me)).

But disg(f,(m")} is obtained from diag(f,(m)} by another involutorial
permutation matrix P;, and we arrive at

(11) Bo(m) Py, Py = Pofd,P, diag(8,(m)).

By Theorem. 1 the matrices B,(m) span the same semigimple commutative
ring as the representations 7,(m) of the Hecke operators in the gpace of
integral modular forms, and the By(m) and the T, (m) have the same traces.

Therefore the By(m) span a ring of rank H ; and then the comparison
of (10) and (11) implics that

GO == OPQGOAP‘;
with a sealar factor ¢, or

Py =P =aPG,.
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Comparing the traces of P, and P, we gee that P, leaves exactly & eigen-
values 8,(m) fixed:

Bom®) =g (m) forv=1,.., %

H

and no other indiees. This was contended in Thecrem 3.

§ 2. The metric space over Q and its similarities. We congider the
Witt elass of quadratic forms

ﬂ’}%-—gl/“_;) +.fq(ff'a; ey mﬁ)

where f, is the norm form of the definite quaternion algebra K, over @
which is ramified at oo and g. This class contains a quaternary definite
form in 4 variables (sce [2], Batz 23.3) of diseriminant ¢. The metric gpace
attached to this form will be called 8. We will consider maximal lattices
£ < § of rank 4 and norm 1. Under our assumption the rednced deter-
minants of these lattices are equal to ¢. They all Lelong to the same ideal
complex.

Lmanra 1. There ewists in 8 o mawimal lattice 8, of rank 4 and norm 1
which contains o binary sublattice of norm form equivalent with -} yE
There also emists a lattice Ly of ramk 4 and norm 1 in § which comiains a
sublattice of norm from o?---my -yt

Proof. We show at first that § contains the binary subspace (1,1)
(short for = space with norm form w*-+-y2). This is the case if and only if
there exists a binary space B, such that the Witt classes of (1, —g)+f,
and (1, 1)+ B, are the same. An equivalent expression is: the Witt class

(1’ _Q)+fg+(“11 _'1) ""‘(_17 ~Q)+fq

contains a hinary space. This in furh i3 equivalent with the statement:
J; represents the binary form (1, ¢). And eventually, this is the ease if
and only if Q(V:E) is a splitting field of the quaternion algebra M, which
is indeed the case, '

Similarly we show that § contains the binary space (1, 3). The analogue
considerations lead to the necessary and sufficient condition that Q(l/«_—_gé)
is a splitting field of K which is also the case.

In these ftwo cases S contains a binary lattice of norm form 24 y2
and also one of norm form 2?4 ay 442 Beth binary lattices can be ex-
tended to maximal lattices of rank 4 and norm 1.

The second Clifford algebra of § can be identified with the quaternion
algebra K [k which is only ramified at the infinite spots of & (see [4], [8],
[9]). The orders D <« K, gencrated over Z by all produets g ... 0y, oOf
vectors in & maximal lattice £ of norm 1 are mazimal orders. If the £,
represent  all isomorphy eclasses of maximal lattices the D, attached to
them- represent all types of maximal orders. '
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The scalar products of vectors a,b eS8 will be written (q, b) and
(e, a) = n(a).

The g.c.d. of n({a) for all ¢ contained in the latbtice L is the norm of 2:
n{L).

Elements of the second Clifford algebra K will be denoted by eapital
Roman letters. Vectors will offen be considered as elements of the first
Clifford algebra. Ag sach they satisfy the equations aaq = a® = n{a).

We are especially interested in “unit” wvectors e of norm #(e) = 1.
They can all be transformed into each other by isometries of §. Therelore
we may assulne that a system of class representatives 2, of lattices, contain-
ing unit vectors, contain all the same vector ¢. This ¢ will be kept fixed
throughout.

Ag an element of the first Clifford algebra, e defines an isomorphism
of K by : '
M e ' Me = eMe =

for all M e . In % it induees the canonical isomorphism.
The canonical antiautomorphism = of K iz defined by

M* = Sgp( M) — M = MN g, (M)

Tt eommubes with .
If ¢ s 0 is an arbitrary vector of 8, the order ¢'Oc = ' is altached
to the lattice

(12) el = w0 B = &7

whose vectors a’ are obtained from the g =2 by the reflection
_ {a,c)

13 o =n(c) e =a— ~— ¢

(13) (c) e

at the 3-space orthogonal to c.

LEnvva 2. To the lattices 25, 8 in Lemma 1 containing the wveelor ¢
strongly symmetric orders O,, 0, of K are aftached which contain units U,
U, of orders 4 and 3 with the property

(14) Ui =070 (i=2,3

Proof. As already mentioned, the assumption e & &, does not restrict
the generality. Then Of = e 'O = ;. From Lemma 1 follows that
£, ¥, contain further unit vectors e,, ¢, such that U, = ¢e, and U, = ety
are units of D;. Now (14} is evident. Because ¢ and e, are orthogonal,
we see that U2 = —1. And because n(me—r—ues) = oL gy +y? we have
U, =1L

Limwsza 3. Tel q = 8 and the lattice given by (12): &' = 8. If the vector ¢
is assumed fo be a primitive vecior in L, ifs norm is either 1 or ¢. In thelatier
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case it is conlained in the complementary lattice qQ* where ¥ is defined
By (8,2 = 2.

Proof. Aecording to the assumption #(c) divides all products (a, ¢},
and thus either a(¢) =1 or n(¢) = ¢ and (L, ¢7%) = Z.

LEvwmaA 4. Let ¢ # 8 and the latices 8, & connected in the way (12}
Furthermore assume the orders of these lattices connected by

O =000

with a C €D of norm 2. If again ¢ is assumed to be & primitive vector in g,
it has either norm 2 or 2. In the latler case ¢ is contained in q2*.

Proof. Under the assumptions we have 20" < £, and #»(c) divides
all produets 2(a, ¢) n(c) cannot be odd because, otherwise, £ = 2. Thus
we have either #(c) = 2 or 2¢.

§ 8. Proof of Theorem 2. In § 3 the clags number of % need not he 1.
‘We omif the cases ¢ = 8 and ¢ = 5 when all mmaximal lattices and therefore
all maximal orders © belong to the same class (resp. type), and these O
are strougly symmetric. We assume that D satisties (5). Applying ¢ to (5)
we obtain © = (00°)"10(0C") which implies

{15) CO0° = ol

with e« €% and a wnit UeD. I U is not contained in %, the Dirichlet
unit theorem allows for U the following possibilities:

1) U has orders & or 10 or 8.

2) U® is a totally negative unit in k.

3} U/ has orders 3 or 4 or §.

The cases 1) are only possible for ¢ = b or 8 which have been excluded.
In case 2 U° must be — ¢ with the fundamental unit & of %, and then
U =Vé, ¥?= —1, contrary to the assumption.

Now we assume U to have order 3. The maximal order O, mentioned
in Lemma 2 contains a U, of order 3 with U; = U;% Let A7'UA = U,
Then we can treat D = A™'0 4 instead of O and therefore assume without
loss of generality U = U; and U® = U~". This implies

(16) U= 009 = U274,
Furthermore from (15)

C°C = al7'UC = a°U° = a°U7,

Wwhence
{17) CU0 = o'
and ¢~ =1 and even o'~° = 1. Then

U0 = U
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and from (15), (18), (17)
UCCUY = U(T )" = a.
Since we may replace ¢ by U~C in (5), we have been led to the case U = 1.

It U =1, Cand ¢°in (15) commute. If they lie in %, D is strongly
symretrie. If not, k() is invariant under ¢ and therefore

BO) = QVa, M), M =M, M=-m<0, ec0.
Let

O =f+yM, 07 =p"+y"M, (B,yek).
Then

00 = B —myy" + (By" + 87\ M = ae@.
Therefore fy° = —f% = —{(fy°)” and with some b e Q:

By =g, C = (BpT—bVqM)p .

We replace ¢ by (7" and have then ¢ = a——b]/&M with a, & e ). Now
we see that _
{18) 0% = (°
where # is the canonical antiautomorphism.

Such a C can be written as a product of two vectors one of which is e:
¢ = ce. Indeed we have O¢ = ¢+ B where B is the product of 3 orthogonal
vectors. Application of » leads to eC” = ¢— B, and (18) to

(—B =e¢0* =e0° =0 =c+B
or B =10 and
0 = ce.
Now we find
D7 =¢'0e =7 Ore
and D = ¢ 'Oc¢, and then
2 = 8.

Let¢ = fe, with a primitive vector ¢;in £ and f a factor in @. Due to Lem-
ma 3, n(cy) =1 or ¢. On the other hand, 00" = fin(c,). Since ¢ = n(ﬂ/ s

00°% = n(4) for some ¢ € k. Replacing ¢ by 05~" we obtain (0" = 1, and
then

¢ =@1+0r.
Now D' = (1+0)'O(1+0) iy strongly symmetric.
At last we have to treat the case T* = —1 in (15). Let O, bethe order
mentioned in Lemma 2 containing a wnit U, with U2 = —1, U2 = U;%,

and U, = A7'UA. We replace © by 4704 and ean therefors assume
without loss of generality that U° = U~! = — . From (15) we deduce
again (17), and ¢~ =1 or o"" = L1. In the case of the lower sign,
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(17} fimplies that ¢ and U commute. Now we tind, using U=(1+U)"",
CA+DCA+ D)) =200° = 2q,
and hence o = ¢, & confradiction.
Thus we have a® = o for which we write a, an slement of Q. From (17}
(19} 0700 = U1 = —1.

Since T = (14 IN'"% (15) ean be written
A+D)CCA+ T =a

and hecaunse of (18)

{20) CL+U)C(L+ U)) = 2a,

and (0(1+ U)* = £ (C(1+T))°. In case of the lower sign we veplace ¢
by Oyg which changes the sign. As above, there is & vector ¢ snch that

Cl4+U)=w or C==5%k(1+0)e
and
D7 =e7'De = 700 = (t(1+ U)e)™'Ofc(1+ T)e)
which leads to
'O = (1— T)"'0(1— T).
From Lemma 4 follows n(c) = 2f? or 292 with an fe@, and
COA+DHCE+D)) =20 =22 or =2qf
now ¢ = n(d) with a § in%. Again we may replace ¢ by /67" and obtain
(21) oC° = U.

Because U° = —U, and U eD, also U e D, Then there exists an
o[T}ideal A such that

DY =AD"
Comparison with (5) yields
oA = WO,
and thig ambigue ideal must be Da with an o-ideal a. Replacing ¥ by
Ya~! we have ' '
(22) DAC™! = ACTD = O.
Here we apply o:
DACT =0 =700

which g (gee (22)) ‘

' COC'ONCC = D.
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On the left we use (21) and obtain
DO =
But because of (19): AC™' = ¢7'UA” and by (22)
O0U" =D = 007",

This yields D¢ = OC™Y, and then € is & unit in O, and O is strongly sym-
metric.

§ 4. Proof of Theorem 4. The class number of k will again be assumed
to be 1. p will always denote a prime which is decomposed in & such that
P = an’, mEA,

In [4] we connected the matrices P;(m) which count the integral
tramsformations mapping the lattices of norm 1 into other lattices of
norm m with the Brandt matrices By{u) of K. We proved (the subseript 1
will be omitted in § 4) '

(23) - P(p) = Bn)+B(a").

Now we need a similar equation for P(p?). As pointed out in [2], the con-
siderations there on which the present ones are hased are valid if the linear
transformations just mentioned are restricted to such which have given
elementary divisors p, p, p,p or 1, 1, p% p® or 1, p, », p?. The respective
matrices will be called Py(p?), P,(p2), and P,(p?). ‘

For the proof of (23) we used the fact that two lattices £, &' and
their orders ©, D’ are connected in the way

Q - I =27,
D -0 with WM =NIHD

by O-left ideals . The norm of the similarity transformation attached
t0 MR 18 Ny Nzp(IM)) (see [41, Theorem 1).

The present guestion is: what is the system of elementary divisors
of a matrix taking a basis of £ into one of £, if £ and ' are connected
by (24), and if # (¥ (M) = p*? The answer can be worked out locally,
For sake of simplicity we write 8, D ete. for their p-adic extensions.

Without loss of generality we may asstme ee 2 and D° = 0.
(Tf necessary we can exchange e for another unit vector.) The p- adle
extension of the principal order o of % becomes

0 = Elz:p@SaZ

with two orthogonal idempotents e, & which are interchanged by o.
Accordingly

{(24)

O = e, B, PeR,

Where R, is the ring of the two-rowed matrices with elements in Z,.
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The “symmetric” elements 4 ¢ £ with the property 4" = 4 have
been shown in § 3 to be A = eq with vectors a & 8. It is easy to see (cf. [5],
p. 630) that such 4 €D have g e L.

Now we consider the map (24) with I = QM where both sides
are multiplied by e:

(25) ef o8 = eMCM = MR,

Put 4 = e.d;+ed, for an clement of e Because 4* = A, it musé
have the form

A =B+, B* (B = 4,),
With M = & ¥, 4, M,, (25) becomes
(26) BB = MIBM,.

In the p-adic extension of o, p becomes

P = (EL'P‘I'EQ)(Ei*I‘f?Sz) = I,
A primitive ideal DM with Ng,u(M)} = =® has the loeal ecomponent
8, My + e, M, with M, a primitive matrix with determinant p? and M,
2 unimodular matrix. Becanse of (26) such an ideal generates a linear
transformation £ — 8’ with elementary divisors 1, 1, p2, p?. The analogue
hOldﬂ fOI‘ NKM(JH) = 9'526

M = O=, we have M; = p times a unimodular matrix, and such
an 9t yields a linear transformation 2 -» 2' with clementary divisors
P, 2, 2, 7- The analogue holds for 3t = Da”.

Eventually if Ny (I) = p = =a”, M, and M, have both determinants
p, and then (26) is a transformation & - 8 with elementary divisors

1, p, p, p*

The transformations £ ~ £ and the andt matrices are both rep-
resented in the space of weighted numbers of representations of the natural
integers » by the norm forms of these lattices as in [4], § 4, In this repre-
sentation we can summarize the above considerations as

Py (p*) +22,(p") = B(a')+ B(a*),
P, (p*) = B(p)
where evidently Py(p*) = p'F with Z the unit matrix.

Next we compare the action of the P;(p2 on the (vectors of) theta
funetiony #(z) as in [4], (24). They are based on the equations

H)Pi “““ Z Ql v '?’n‘? (ﬂp H v)'

{27)

These have been proved in [2], (18.33), and it has beun mentioned that
they are valid if the P (p?) are specialized to fixed systems of elementary

12 — Acta arithmetica XEXXVII
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divisors. The €, mean certaln residue classes of € mod p28, and the

2:(€,} are certain numbers attached to them (sce [2], § 11.4). Their calcu-

lation is un easy task which we omit for sake of brevity. The eonsider-

ations end up with

(PPN +Po(p%) = 2(7)]11.T (p?),

(28) P(2) Py (p?) = 4(7) )., T (97).
With (27) this is
(29) M) B () + B (@) = 9(v)Blp) = #(1)h.T(p%).

Together with {29) we need [4], (28):
(80) B(z) §(B(w) + B(n%)) = 9(0) 42T (p).

(We may add thab (29), (30) hold also for ¢ = 0 in which case By
has constant terms which have not been compared on both sides. But they
must also be equal because both sides are modular forms, and all cosf-
ticients ¢(n) with # 5= 0 have shown to be equal.)

With this we are prepared to prove Theorem 4, We start from the
functions (3) and (7) wibth their Fourier expansions (4) and (8), where
we may sssume f,(1) = 14,(1) = 1. Contrary to the theorem let 8, {m)
# B.(=") for some p, but ¢,(r} % 0. Equations (29) and (30) are now

Bo(m)+ B, (n°%) = 24,(p),
Bule®) + B, (%) = 2P, (p) = 24,(p?).
The Naganuma Hii of ¢.(7) is o symmetrie eigenfunction and therefore
D, (1, %) = Dyl2, ) for some p % (see for example [L1] or [14]).

Therefore the same equations hold for x instead of » while the right sides
remain nnchanged.

Now we form the function

(31)

Wiz, 2) = &, (2, )+ D, (2q, ) ”2¢),u(31: %) .

It hag the following properties: (a) together with its Hecke transforms
it gpans a space of dimension 3, (b) its Fourier coefficients are () =0
for p =1, m =%, p, =¥ =@ (because y(a?) +y(7*) = ¢ trom (31) and
y(af) = y(a'), since ¥(z,, &) = ¥z, 2y)).

From (b) we see that ¥(2), ¥(2)|T(x), ¥(2)|T(#") have Fourir coe-
fficients »(1) == 0. Therefore they are linearly dependent. But also Wz}
[T (2*) and ¥{2)|T(7*°) have y(1) = 0. Hence the latter are linear combi-
nations of ¥(z) and ¥(2)|7(x) of ¥(z) and ()T (#°). This implies that
the space spanned by ¥(z} and all Hecke transforms has dimension only 2,
in contradiction to ().
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