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Introduction. A set 4 of nonnegative integers is said to be an (asymp-
totic) basis of order v it every sufficiently large integer can be expressed
as a sur of at most » integers taken from 4 (where repetition is allowed}
and » is the leagt infeger with this property. In this case we write ord (4) = 7.
A bagis 4 is said to have exact order s if every sufficiently large integer
is the sam of epacily s elementis taken from A (again, allowing repetition)
where § is the leagt integer with this property. We indicate this by writing
ord*(4) =s.

It is easy to find examples of bases 4 which do not have an exact
order, e.g., the set of positive 0dd integers. Of course, if 0 e 4 and ord (4}
= r then ord*(4) = r a5 well, However, it is not difficult to construct
examples of bases A for which

ord*(4) > ord(4).

For example, the set B defined by

oo
. B =UI
k=0
where
I, = {&: 2% 1 o g 2%}
has '

ord(B) =2 and ord*(B) =3.

In thig note we characterize those bases 4 which have an exact order..
Tt turns ont thal the only bases which do not have an exact order are
those whose elements fail to satisfy a simple modular condition. We also-
estimate to within a constant factor the largest value ord™(4) can attain
given that ord(4) = r. (The reader may consult {1] for a survey of resulis.
on bages.)
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Bases with an exact order
THROREM 1. 4 basis A = {8y, @, ...} has an evact order of and only
.@f
{*) godfap—op b o=1,2,...} =1.

Proof. (Necessity). Suppose for some s that ord*(4) = ¢ and assume
(%) does not hold, ie.,

god {og, —a: b =1,2,..} =d>1.
‘Thus, for all k,
Menq = G (mod d).

‘Therefors, the sumtof any ¢ integers taken from A is always congruent
to0 sa, modulo 4 which contradicts the assumption that ord®(4) =s.

(Sufficiency). Denote ord(4) by r and assume (*) holds. Let md
denote the set !

o+ Tyt o Tyt @y A},

Faor. For some #,
ndn(n+1)A = .

Proof of Fact. It follows from (+) that for some i,
god {a i~ 1<k =1,

Thus, for suitable integers ¢, we have

H

{1) 2%(%4—1"“%) == 1.
k=1
Define p, and ¢, by
tpey G20, 4, = ay, it e =0,
P = i, it e<0, g Gpyr AL vg <O

Then (1) can be rewritten as
i

E legl (Pe— &) =1,

Rl
ie.,
f ;
2) ‘ Siealpy =14 ) loalaa-
fe=1 =1

Now congider the integer

13
M = Z 10D

k=1
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Since
¢ lexley ¢

(3) =3 3 age() o)

k=1 {=1 k=1
and also

i leglog ¢ .

) M= 3 3 pee( D lelg) 4,

fr=l j=1 Ew=1
the Fact follows from (2) by taking

¢
n= 3 legs.
k=1
It follows immediately from (2), (3) and (4) that
2M = M+ M c2nAN(2n+1) 4N (2n+ 214
and, more generaily, that for any w > 1,
w
{n wMe () (wn+k)4.
k=0
r

However, by hypothesis, every sufficiently large integer 2 belongs to {J i4.
‘Thus, from (5) with w = r—1, ws have £=1
{6) a+(r—1M e ((r~Lyn+r}4

for all sufficiently large @, This shows that 4 has an exact order and
in fact, that .

ord*(4) < (r —1)m 4,
This proves Theorem 1. m

Comparing ord(4) and ord*(4). Define the function g: Z7— Z*
a8 follows:

g{r) = max{ord*(4): ord(4) =» and A gatisties (x)}.

A erude analysis of the proof of Theorem 1 shows that ¢(r) exists and,
for example, g(r) << er* for a suitable constant ¢. The following regult
sharpens this estimate considerably.

TagoreM 2. For all 7,
{(7) HL+o)r<gr) <51 +o(1))re.

Proof. We first prove the upper bound. Assnme.ord(4) ==+, Thus,

all sufficiently large o satisty
1{8) _ wel k4.

© k=l
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From {8) it follows that for any 1,

(9) el )thd

fews 1
for  sutficiently large.
It also follows from (8) that for some m and tome 6 l<egr,
{10) mesAn(r4L)4d.
Thus, letting
d=r+l—¢
we have
2mededn{Bo-+-d) AN (2e+24) A

and, more generally,
iw

(11) ~ um € [ {uetid) 4,
=0

a special case Dbeing

wd
(12) wdm e () (wde+id)A.
g0
Setting ¢ = d in (9), we obbain
(13) dy e |_} dkA
k=1

tor all sufficiently large w. Therefore,

(14) do 4 udm e (dv -+ ude) 4
for all sufficiently large # provided

(1B) wd = r—1

since for each dw e dkd, 1 < k< r, we also have udm e (ude- (r—kyd) A.
In other words, if (15) holds then all sufficiently large multiples of &
belong to (v +uc)d4.

Our next task is to find o number w = o(#®) 50 that wd contains
@ complete residue system modd. Let 4 = {I,,...,1} denote the seb
of distinct residues modulo ¢ which oceur in 4. Sinee 4 satigfios (=) by

hypothesis, we can assume that a@; and ; are labelled so that a; = I, (mod &}
and, for some ¢,

(16) B>0>. . >6 =1
where

t; =ged. fy—1, i, —1,, ..., Ly —bh.
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Hince @, divides &, for all 4, it follows ab cnce that

logs < logd  logr

an "Sog2 S 10g2 ~Togz”

A

Thus, for any z(modd) there exist integers e, = ¢,(2) with 0 < 6, < d
80 that

¢ i
{18) Dlelln~1) = ¥ o(@,—a,) =2 (mod d).
w1 Je=1
It follows from (18) thab all residue classes modulo 4 are in (#41)dA.
Tinally, using this together with (14), we see that (provided (15}
holds) ol sufficiently large integers belong to d{r +ue4-t-+1) 4. To satisfy
. r~—1
{15) it is enongh to take # = [ F —E
An easy caleulation (using (17)) shows that the mazimum value the

-1
coctficient & (¢+ ¢ [? 7 ‘E +1 -|—1) achieves ig (1 + o(l))rz. Thus,

glry <3{1+o(1))r?

which is the upper bound of (7).
To obtain the lower bound of {7), consider the following set A,(m)
defined by

A,(m) ={w>0: @ =1 (mod n) for some %, rm << i< (r+2)m}
where # = rm(r/2+42) and we assume » is even. Reduced modulo =,

A,(m) is simply the interval of residues {rm,rm-+1,..., rm+2m}. -
On one hand, since .

P
o

¥ ) ¥
E(?m+afm) e - == (5 —!—1) i
and
r{rin--2m) = n-- §¢{rm)
then all residues modulo # belong to
rd (myu(r2 -1 A, (m)u ... wrd,{m)

and consequently

{19) ord (4, (m)) < 1.
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On the other hand, for any %, kA,(m) reduced modulo # forms an interval
of length 2mk-+1. Therefore,

— 2
(20) ord* (4, (m)) > nol r— _1_

Taking m large, it follows from (19) and (20) that
g(r) = (L +o(L))r
which is the lower bound of (7). This completes the proof of Theorem 2. &

Concluding remarks. We mention here several questions related to
the preceding results which we were unable to settle.
7 :
1. Show that limg—?(&i exists, and, if possible, determine its value.
r—+ca

To obtain the exact value of g{r) seems very difficult. It can be shown
that 7(2) = 4. However, at present we do not even know the value of
g3} (It is at least 7.)

2. For a get A, let A, (z) denote mAN{L,...,s}. If 4 i3 a basis

. . Ay
= _— = DO?
and 4,(2) = o(x) is it true that E_*Ir:o 2.0

3. By the restricted order of A, denoted by ordgy(A4), we mean the
least integer ¢ (if it exists) such that every sufficiently large integer is the:
sum of at most ¢ distinet summands faken from A. Ag pointed out by
Bateman, for 4> 3 the set 4, = {w> 0: 5 =1 (mod h)} has ord(4) =&
but has no restricted order. However, Kelly [2] has shown that ord (4) =2
implies ordy(4) <4 and conjectures that, in fact, ordp(A) <3 is true.

(i) What are necessary and sufficient conditions on a basizs 4 to
have a restricted order?

(ii) Xz there a function f(r) such that if ord(d4) —r and ordg(4}
exigts then ordg(d) < f(r)?

(iii) What are necessary and sufficient conditions that ord(4)
= ordz(4)? Hven for sequences of polynomial values, the situation is
not clear. For example, for the set 8, = {n% w1}, ord(8;) =4 (by
Lagrange’s theorem): and ordg(S,} =5 (by Pall [3]), whereas for the zet
8, = {(n?-+n)(2: n =1}, -

ord (§,;) = ordgx(8;) = 3.
(iv) Is it true that if for some #, ord (4 —F) == r for all finite pets I,

then ordn(A) exists? What if we just assume ord(A — F) exists for alk
finite 77 :

4. Let n x4 dencte the set {a, + ... +a; a; are distinet elements of
A}. Is it true that if ord(4) = r then r x4 hag positive (Jower) density?
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If 54 has pogitive upper density then s x4 must also have positive upper
density %

B. Given k and m, when does there exizsta set 4 < Z, so that 4, 24, ...
..y kA form a digjoint cover of Z,,? For example, for & = 2, m = 81 —1,
the set 4 = {t,#--1, ..., 20—1} works.

. Of eourse, many of the preceding gquestions eould be formulated for:
ordn{A) (defined in the obvious way). However, we leave these for a later
paper (TWL).
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