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The main object of this note is to show that the remainder termr
in ‘the prime number theorem, assuming the Riemann hypothesis, can
be reduced from

(1) p(@) = 2+ 0(a'"log)
to
(2) v(@) =@+ 0 (¢ (logloga)?),

except on a set of finite logarithmic measure.
We also give short proofs of Cramér’s conditional estimates ([1], [2]).
of the mean value of the remainder term
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It follows from (3) that for each function ¢ = ¢, for which p,~oco as
2 — o0, we have

y(2) = 2+0(s'g,)

for almost all , i.e. except on a set whose intersection with the interval
{1, X] has measure o(X). The proof that for ®. = (loglog®)® the excep-
tional set has finite logarithmic measure is a combination of the argnments
which prove (1) and (3). A similar method yields a short proof of Selberg’s
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conditional result [6] on the normal density of primes in short intervaly:

X
(5) [ (p@+h,) —p (@) —h,)de = o(WeX),

1
for increasing functions 2 = h, which satisfy

h,<w, h,flog’s—>oo.

J. H. Mueller and the author have recently shown [4] that the Rie-
mann hypothesis together with Montgomery’s conjecture [5] on the
pair density of zeros implies that O may be replaced by o in (1).

(6) p(@) =o— > = 1+0(log*X),
Iyl€X

valid for X < < X. Here the sum is over the complex zeros o = 4y
of the Riemann zeta function. We will use the fact that the number of
terms with 1 <y <t+1is <log? for ¢ > 2. It follows from this that the
contribution of the terms with |y <logX is < X"*(loglog X)
For T < X, we have
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In fact, Lemma 1 of [3] shows that the integral is

du < f‘( > _[%)sczz,

=1 “{<y<i+l

1+log X

siyn 2

e

logX l'r<lyj<X
and the bound in (7) now follows from the fact mentioned ‘above.

It follows from (7) that the logarithmic measure of the set of @ in
[X, eX] for which
2

> a'*(loglogw)?

I'<ly|=X
is
log®*T 1
< Tlloglog Xy ~ Tlog’T

for T =logX.

Choosing X = ¢” with T =2,3,..., we see that (2) holds except on
& set whose total logarithmic measure is finite.
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2. From (6) and (7) with T = 2, we get
eX i
(8) f (w(m)—w)z—w; <1,
x
from which (3) follows easily by a splitting-up argument.
To get (4), we observe first that for each fixed 7, and X-»oco,
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where the dash indicates that the sum is over distinet zeros, and m(p)
is the multiplicity of the zero at the point p. It follows that
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where T = T'y is a suitable function such that 7 — oo and logT =
o(logX) as X — co. From (7) we get that, for such 7,
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It follows that
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a8 X—>oco, for such 7. Combining this with
T
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which follows from (8), we get (4).

< log? = o(logX),

3. To prove (5), we use (6) to express p(z-+h)—yp(x)—h as
z+h
x® (2 +h)*
— e—1 i A 2
J(Sras 3 £ 5 &0 o,
z Iyl<2 T'<|yj=X I'<|y|lsX
for ¥ <@ <eX, h< X, and T < X. Putting

sw =, sm= > L,

71T T<ly|=X @
this may be written as
‘z+h

- [ sk

+ 28, (@) — (@ -+ h)"8, (0 + k) + O (log®X).
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A simple argument shows that

26X A
do <M f[sl(ynz—yi.
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The same method as in § 1 shows that the integral on the right is

< fT( D) 1) at < Tloger.
—(T41)  t<p=t+1

Also,
eX eX
l -1
[ o8, < 22 [ 18y < xp 8L
¢ P w T

by (7); similarly,
eX eX
[ No+1)28y(0+h) 1w < X [ |8y (@+b)Pde,
.4 X

and since kb is increasing and < @, this is also

]_ 2
<X f y)edy < X222 °g -
It follows that for T < X,
f (p(@+h) —p(0) — B)'dn < KixTlog*T+ X218 | ¥logix
.4

For T' = X|h,y, this is o(Xhly), provided &x/logiX—>co, A simple
splitting-up argument completes the proof of (D).
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