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if"E #(0,0,...,0,1) is a solukion to (&) =1, from (3.13) and {3.16)
we find that ' _ .

¢, s odd,

T 4+7g" M e(a) = @~ 7g® I, 5 even,
where e{a) = —1 ([3], p. 199). Therefore, from (3.3), we obtain

(¢ —1)g"?, s odd,
(gs_l_'tq(s—g}lg) (QS“Z;TQ(S_E)Iz)y § even,

which is the number of solutions to (4.1).

43)  Ny(s5a,1) ml

(44)  N{(s;1,a,1) = [
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Some results on p-extensions of local and global fields
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1. Introduction. Let K be a local or a global field, p a prime, and A
the maximal p-extension of K; ie., K is the compositom of all Galeis
extensions of K of p-power degree. Let Qe (p) be the Galois group of £ .
over K. The structure of G (p) is well-known in the loeal cage and is studied.
in some detail in the global case by Koch [3] and Héchsmann 21

In this paper we consider the following question: what information
about K is contained in Gy(p) considered as an abstract pro-p-group
A similar question was answered by Neukirch in the case where X is a finite
normal extension of the rationals. He shows in [4] that K is debermined
completely by the Galois group of the maximal solvable extensions of K
over K. It K i3 a global field of non-zero characteristic, the effect of the
Galois group of the separable closure of K over K is considered in [1].

Let K be a local field with residue class field % of characteristic p, = p.
We prove that Gg(p) determines &*(p), the p-primary part of the mulbi-
plicative group &* = &k —{0}. In the global case we show that G (p) deter-
mines whether or not K has a primitive pth root of unify. We then restrict
owr atbention to function fields with fintte constant field & and show
that @x(p) determines %*(p), p = charK; more explicitly, if X and K’
are two funetior fields of char p, #= p with constant fields % and &’ respect-
tvely and if Gg(p) and Gg(p) are isomorphic algebraically and topo- -
logically as pro-p-groups, then ¥*(p) ~ E™*(p).

‘We then consider continuous awtomorphisms of G{p) where K is
& function field containing & primitive pth root of unity. We prove that
H L iz a constant field extensions of K of p-power degree, then & (p)
is a characteristic subgroup of Gg(p). 1

First some notation. If X is a field, X will denote the maximal p-exten-
sion' of K and Gg(p) or G(E/EK) the Galois group of K over K. G, wil
denote the Galoiz group of the separable closure of K over K. H“(G.K (»)
will be the nth cohomology group H" (@« (1), Z[pZ). If v is a valuation of K
we let K, be the completion of K with respect to v. We will write $(K) =1
or 0 depending on whether or not K has a primitive pth root of unity:
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Finally, if « is a positive integer, p & prime, we call m > 0 the p-emponent
of nif p™ divides n but p™*" does not.

Tn addition, we recall that the pth cohomological dimension od,,(6x (1))
< cdy(Gr) and that H"Gx(p), 4] ~ H"(Gg, 4) for all a1 if 4 is
& torsion, p-primary Gg{p)-module. (See Serve, [7], 1-4.)

- 2. Local results. Iet K be a loeal field with residue class field & and
let p be a prime, p 7 chark. Tn this section, we will show that Gr(p)
determines £*(p).

The following result is well—known and can be found in [5] for the
characheristic zero case. The proof for char K =% 0 is the same. See also [3].

ProposrrioN 1. Let I be o separable extension of K.

Q) If p*t[L:K] and 8(L) =1, then Gr(p) is a Poincaré group of
dimension 2 and rank 2.

(2) If p°t[L:K] and S(L) = 0, then Gr{(p) is a free pro-p-group of
rank < 1.

3) If p™|[L: K], then GL(p) is a free pro-p-group of rank <1

DEFINTTION. Let G be a profinite group and p a prime. We define:

1
(@) = sup{-—-—n HY &, Z/p"‘Z)|}.
n=0 | P

PROPOSITION 2. x,(Gx(p)} = IK°(p)].

Proof. IHI(GK(p),Z,fp"ZH — p"|p u| Where g, is the group of p"th
roots of w:uty in K. It is easily shown that if » is the p-exponent of |E*|,
then thop B k¥ {p).

GOROLLARY Let E and K’ be two local fields with residue class fields &k
and %' respectively. Assume that p = chark and p # chark’. If Gg(p)
~ G (p), then E*(p) ~ ¥ (p). .

3. Some lemmas. Assume char K = p in this section.

TEvMA 1. Lei K be  field such that (K) = 1. Let v be o valuation of K
and w an estension of v to K. Then K, is the mazimal p-extension of K,.

Proof. Suppose not. Then K, has a cyclic extension L of degree p.
Then I = K, (a) where ¢ is aroot of x* —a;a e K. We can write ¢ = lima;
where oach a; € K. By Krasner’s lemma, if we choose ¢ sufficiently large,
I = & (B) where § is & oot of X7 a,. Then K (B) is a Galois p-extension
of ¥ and hence 8 & K. Therefore, I, = K,,, a contradiction.

Liewwma 2. Let K be a Hensel field with respect fo o valuation v. Suppose
that 6(K,) = 1. Then Gg(p) mGKﬁ(p)

Proof. By a theorem of Ostrowski, K is separably closed in K,.
Hence §(E) =1. Let w be the extension of o to K Then G{K /K)
~ G(K, /K, since v extends uniquely to. K. But G(XK w/_K‘,) = GK {p)
by Lemmsa 1.~
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Levua 3. If 6(K) =1 and K = K, then K has ot most one oalu-
ation which is undecomposed in K.

Proof. Except for some obvions modifications, the proof is identical
1o the proof of Lemma 8 in [4].

LEMMA 4. Letb g be a positive integer relatively prime 1o p. Let m and n
be positive integers such that ¢™—1 and ¢ —1 have the same positive p-ex-
ponent. Then m and n have the same p-exponent.

Proof. Elementary.

4. Global results. In what follows, K, is a global field of characteristic
Py 0; o = p. We let K be a separable, possibly infinite, p-extension
of K, such that K = K,.

ProposITION 3. Let v run through oll valuations of K,. Then there is
a monomorphism ;
@t H (g, (p)) -~ DH* G, (1))

If 8(K,) = 0, p is an isomorphism. If 6{K,) = 1, coker ¢ has order p.
Proof. Thig result is due to Hichsmann [2].
If [H: K] = oo, We can deﬁne

p: H (Gg(p)) > HP GKH(P))

where v runs through all valua,mons of K. But note that here the image of p
is in the direct produet.

PrOPOSIITON 4. ¢: H'{Gg(p)) ~ [TH* (G (p)) 45 & monomorphism.
v
Proof. This proof is similar to Neukirch’s proof of Satz II in [6].
We write K = | K; where each K, is a finite separable p-extension

i=0

of K,. Let v be a valuation of K such that 8(K,) = 1. (We have only to

congider such valuations for if 5(1‘( ) = 0, HE[GKQ' {p)) =0 by Prop-
osition 1.) Let v; = v [&; and K — UK c K,. Then K is a Hensel field

ﬂ?{

whose completion at v is K,. 8o by Lemma 2, H*(Gg(p)) ~ H {fg (P))-
Hence the following diagram is commutative:

B (G, (p)) ——— E*|Gx(0))

oy,

v Tedy, ¥
. H (g, () —— (G2 (p)
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Let @ ¢ H* (G (p)} and assume g(x) = (w,) = 0. Then g,(z) = 0 for
all v. Now ¢ =res;{z,) for all ¢>= 4, for some &y; =, < H” (GK (p)). Let
By, = oy, {m;) e A Gy, (p)} Then 0 = p,(1) = res,, g, (%) = res,,(,).

Let ¥, be the set of valuations v; of K; such that #,, # 0. Then each ¥,
iz a finite gef since in the finite global field case the 1m0e of @ is in the
direct sum. The ¥,'s form an inverse systeni. Let V =Um7V,. Then ¥

—
is the empty set since g (e} = 0 for all ¢. Therefore V, iz empty for ¢
sufficlently large. Thiz implies that #y, = 0 for all valuations v; of K,
and hence #; = 0 since

B (Gx(p) > @ H* (B, (7))

is one-to-one. Therefore z = 0.

PROPOSITION 5. Suppose that Gg(p) ~ Gp(p) where F is a local fe,el{i
of charp, and 3(F) = 1. Then K has o valuation v such that:

(1) v €5 discrete with finite residue class field,

() 6(K,) =1, ) ' 3

(i) If v estends to & on K, then Ky is the mozimal p-extension of K,
(iv) The decomposition field of § over K is a finile extension of K.
Proof. For each valuation v of K, let § be an extension to K and D,

the decomposition field of ¢ over K. Let G, = GK (p) and H, = G(K; |K,).
Then H, ~ G(K[D,). The map ¢ of Proposltmn 4 can be factored as:

)= [[BE) & | [ e,

Since ¢ is one-to-one, so is a. Now Gg(p) ~ Gp(p) and §(F) = 1,
0 H“‘(Gz(p)) # (0). Therefore, there exists a valuation » of K such that
H'(H,) # (0). _ '
Claim. &, =
Let 2, be the ma,x:lmal p-extension of X,. Let B, = G(2,/K;) and
vy = 0| K,. Then p™ divides [E;: H oy} (Otherwise, @ (K/D,) ~ H, would
be a finite closed subgroup of Gx( ) contra:dmtmg the fact that ed (GK (p)}
= 2.) So by Proposition 1, B, is a free pro-p-group of rank < 1. Tf R, hag
rank 1, then ¢d, (¢,) = cd,(B,) +cd,(H,). (See Serre [7], 1-32.) Butb ed,(H,)
= 2 and ed,( ”)<9 SOR = {1} and &, =
Since H*(G,) # (0), §(K,} = 1 and K, is a fm.lte extension of K, .
Henee » is discrete with finite residue class field.
' Since Gg(p) ~ Gg(p), (K/D) ~ Gy, (p) where F, is a p-extension
. of F. Then [F,:F]< oo since G(K/D,) mG and od, (6,
[Dy: K] < o0, .

?HGK
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PROPOSITION 6. Suppose §(K) = 1. Then the Jollowing are equivaleni:
(1) K has a discreie valuation v with finite residue class Sfield such thai v

% undecomposed in K.

(2) Grlp) ~ Gplp) where Fis a local field of charp, and §(F) = 1.

Proof. (1) = {2) follows easily by taking F = £, Conversely, suppose
(2) holds. Let » be the valuation of K satisiying the 4 properties of Prop-
osition 5. It suffices to show that D, = K. Let ¥ be the normal closure
of D, over K. Then [N:K]< oo since [D,:Kl< co. Hence ¥ = K.
If D, # K, then » extends to another valuation w on Z. Let D, be the
decomposition field of w over K. Since D, is conjugate to D, D,c ¥
which implies that ¥ has two valuations which are nndecomposed in K.
This contradicts Lemma 3. Therefore D, =K.

TEROREM 1. Let I, cmd K be two global fields of charp, = 0; p, # p.
Suppose that O, (D) ~ G {p). Then 8(H,) = 1 iff S(Kg) = 1.

Proof. Assume a(Kg) =1 and let i: Gx,(p) G (p) be the i80-

morphism. Let » be a valuation of K, extending to % on K Let K be the
decomposition field of § over E,. Denote 5|K by v alse. Then K, = K,
80 by Proposition 6, Gx(p) ~ Fp(p) where ¥ is a local field of charp,
and 4(F) = 1. (Note: F = K,,.)

Then i(Gg(p)) = Gy (p) for some p-extension K of Kj; K < K.
By Propogition 5, there exists a valuation v° of X' such that

{i) »" is dlscrete with finite residue class field,

(i) 8(E,) =1, |

{iif) Tf ¢" extends to #' on K, then K}z is the maximal p-extenmon
of K.,

" (iv) The decomposition field D, of ¢’ over K' is a f}.mte extension

of K.

Now let B be the deeomposmon field of ¢’ over K and denote §|K,
by v’ alzo. Clearly & < D,,.

ClaimsF = D,

Let H, = G’E.(p) ~GE (_p) and let

H, =i"Y(H,) = KB for some subfield % of X,.

Since H, ~ GK:] (p) and 8(Kyy) =1, by Pfoposiﬁbn 6, & hag a discrete
v . - -

veluation w» which is undecomposed in ;. Let A7 G (Ky/D,)) = G(H,/D).
Then B < D. Extend w fo v, on I. Then by Lemma 3, w = ¢|#&. This
implies that X < E and hence K < E Therefore, D, = E and henee
D, =F.

Let &, _GK(p) and G, = g (19). Then, to summarize the a.'bwe
AlG,) =G, and @, has a closed subgroup H, of -
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finite index in @, such that A(H,) = H, ~ GK, (p). We can do this for
each valuation v of K. b’

Let 8" be the set of valuations » of K obtained in this way. Now
consider the following eommutative diagram:

B, (p) -2 @ H (@)D H*(H,)

31 a i ]

£

(a ;@) © B (G © B (H,)
2

The maps 4, 4,4, are somorphisms induced by 4 as described
above. a and y are induced by the restriction maps. By Proposition 3, ¢
i one-to-one but not onto, since §(K,) = 1.

Agsume 8{Kj) = 0. Then, again by Proposition 3, yf is onto.

Claim. X &, # H,, then rex: H2(@,) - H2(H,) is the zero map.

We know that [¢,: H,] = 9™ for some m = 0. We have isemorphisms
invy: HA(G,) = ZpZ and inv,: H*(H,)— ZjpZ induced by the invariant
maps of the corresponding Bramer groups. Furthermore, inv,ores
= [¢,: H,] inv; which implies that res is the zero map if m > 0.

Cage 1. Suppose there iy a valuation »; of K such that G'n q&H,,l.

We have a commutafive éfia.gmm'

B (G, ()| H (G ) H (H,,)

R R =

B G, (P))——*'H'{G )—>H° (H,.)

The maps are obtained ﬁ-om the previous diagram by prc)]eetmg onto the
vy-factor.
_ By the abhove claim, a; = 0; hence v, = 0. But y,§, iy onto since pf
is onto. This implies that H* (H, ) = {0, a contradiction.

Case 2. Suppose G, = H, for all ».

In this cage, e and y are the identity maps. Hence g is onto Whmh,

implies that ¢ is also onto, again o contradietion.

Therefore, 6(K;) = 1. &

We will now restrict onr attention to the function field case; i.e.,
we will assume p, > 0. ' -

THEOREM 2. L&t K,, Ky be two function fields of charp, > 0, p, # P,
- with finite fields of constants &, end k, respectively. Assume 8(EK,) = 1.
If Gry(p) ~ G, (), them Kj(p) ~ K" (p).

Proof. By Theorem 1, we know that §(&;) = 1. Also, by the steps
described in the proof of Theorern 1, given & valuation v of K, there is
a valuation v’ of K, such that if K is the decomposition field of 4 over K,
then A(GK( )) = Gg-(p) Where K" i the decomposmmn tield of &' over K.
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Let P and P’ be the prime divisors associated to 4 and o’ respectively
and let d, 4’ he their degrees. Let & and k' be the corresponding residne
class ﬁelds Assuming that (k) = 9§ = ¢ and (k| = p! = ¢/, we have
Bl = ¢* and ] = ¢'%. :

Now Gy, (p) MGK(_’p) ~ Gg.(p) ~ Gg, . (p), so by the corollary
o Proposmon » E'(p) ~ ™ (p); ie., ¢f— 1 and 7% —1 have the same
p-exponent.

Let D = PP} ... P[" be adivisor of K, of degree 1. Then Smd, = 1
where d; = degP;. For each 4, let P; be the corresponding prime of K,,
& = deg ; and let &y, k] be the respective residue class fields, So ¢%—1

and ¢ ——1 have the same p-exponent. Call it m,. Let m and m’ be the
p-exponents of 4 —1 and ¢ —1 respectively. Clearly m << m, and m’ << my
for all 4.

g% —1 = {(g—1){L+g+¢*+ ... +457)

and ¢ = I1{mod p) since 8(K,)} = 1. Hence Hme<m, dy = O{mod ). Buk

this cannot happen for oll 4 since the d.s are relatively prime. So there
is at least one 4 such that m; = m. Therefore, m' < m and by gymmetry
m' =m. Hence ki(p)~ k' (p).

CorOLLARY 1. Suppose 3(Ky) =1, k| = pf and |ky| = p}. If Gx, (9}
s @ (p), then f and 7 have the same p-eopoment.

Pro of. This follows immediately from Theorem 2 and Iemma 4.

COROLLARY 2. Suppose §(H,) =1 and i: Gg, () -+ Gx (D) 15 an is0-
morphism. Let T be a finite Galois p-extension of K, and 1’ ths Jiwed field
of MG, (p)). Let E and E be the constant fields of L and L' respectively.
Then [H:k,] = [B':%].

Proof. Let [E:k] =p" and [E':%] = p™ Then by Theorem 2,
p—1 and pf#™ —1 have the same p-exponent. Applying Lemma 4
and Corollary 1 we get that m = n.

TEEOREM 3. If 8(I) =1 and L iz o constant field extension of K,
of p-power degree, then Gr(p) is a characteristic subgroup of Gg(p)
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Brauer’s class number relation ' :
by

C. D. Warrer (Dublin)]

The main part of this paper proves R. Braner’s clags number re-
lation [1] in a ghorter and more natural way. Consequently it iz possible
to obtain Stark’s meneralization [8] with no extra effort and to obgerve
that the theorem may be applied using only the units of the oceurring
fields. Nehrkorn’s conjecture [61 that there exists a corresponding elass
group isomorphism iz also shown o be correct. .

I should like to thank Professors Cassels and Frohlich for many helpinl
suggestions, and Trinity College, Cambridge, for financial support.

1. Relation theorems. In this first section are derived some general
results fo describe relations in torsion modules and in torsion-free modules.
All the modules concerned will be finitely generated. |

Let D be a Dedekind domain contained in a field K of characteristic
zero and write D, = {ojfc K| aeD, feD —p} for its localisation at the
prime ideal p. Then a T-lattice M i a finitely generated torsion-free
D-module. M will be identified with its natural embeddingin KM = K Q.M
and M, will be written for D, Ry M.

If M and ¥ ave two D-lattices of KM = KN then the index [M:N]
may be defined through the local indices [, pi N, ] for the free D -modules
M, and N,. Let 6, be the determinant of a matriz which describes 2 basia
of ¥, in terms of onefor . Then [ M,: ¥ »] = Dpd, s well-defined and non-
zero. By taking free D-submodules of 3 and N with the same rank ag M -
and N it i8 clear that the 8, can be chosen equal for almost all p and that
the ratio of two 4, is always in the field of fractions % of D. Hence the
intergection over all primes p which defines the index; viz.

[M:NT] = O [M,:N,]

is the product of an ideal in D and an element of K. If M and N are iso-
morphie then [M: ¥] = D4 for the determinant § = K of the corresponding
automorphism of KM. Thus for D = Z and K = € this coincides with
the usual definition of the index viewed as an ideal, and when K — %
the definition coincides with that of Frihlich [2} It X[k is a. number
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