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Elementary methods in the theory of L-functions, VII
Upper bound for Z(1,y)

by

J, Ptz (Budapest)

1. I y is a real nonprincipal character (mod D), then the upper
bound which one can give for {1, ) iz clozely connected with the upper
bound of:

.
11 : S, = max wY[- .
-1 o Se= e | Y]
Uking the trivial §,< D one can easily prove L(1, ) <logD40(1);
by means of the Pélya—Vinogradov inequality 8,< ¢ l/ﬁlogl)

(1-2) L{1, ) < (34 0(1))log D

(see Pdlya [T]) can bhe proved. _
I D —=p ig a prime, x a real nonprincipal character (mod p), then
making use of Burgess’s inequality [1]
N+E

(1.3) | D xmn|<eH for  H>p'p>pye),

n=N+1

8. Chowla [4] in 1964 proved the inequality
(1.4) L(1, ) < {+o(L))logp.

Burgess [2] showed in 1966 that
(1.5) _ L(1, x,) < 0.2456 ... logp.

Wirging (unpublished) improved it to
(1.6) L(1, 2,) < 3{(V2—1+0(1))logp ~ 0.207logp. |
P. J. Stephens [8] showed in 1972 using & method of Wirsing that

(1.7) LA, )< % (1 - rj—_ + 0(1)) logp ~ 0.19710gi).
A p
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Kow we give an elementary proof of Stephens's result (using Bur-
gess’s inequality) generalizing it for real primitive characters, whose
modnlus is not nessecarily prime, and improve (1.2) for real non-prin-

cipal characters. Our result will follow from the following general theorem,

TororEM 1. If 0 is o completsly m'wltipliccmve function, which takes
only the values +1, 0, —1, = a real number for which

(1.8) ‘ D 0w < e
n<
then
o(d) 1
(1.9) g—d—g2(l—~‘7;—+6)logw

where § = 8(s, 3)—0 if #->00 and &->0.
Theorem 1 is the best possible, because if we choose

1 - for Ve,

—1 for

P

Ve

P> {p iz & prime)

then it 13 easy to see that (1.8) is true with «
equality holds with § = o(1).

But Burgess [3] proved that if y is a nonprincipal character (mod Dy,
then

= o(1) and that in (1.9)

N+H

X x(n)[ LeH for  Hx=D#, D> D,(s)
n=N+1

(1.10)

where if y I8 a primitive character then.r-x =1/4 and for an arbitrary
%) T, = 3(8. Thus using (1.10) we have by partial summation

d
S A<

P AP )

{1.11)

and using the trivial estimation 8,
we geb

g}) by means of Abel’s inequality

1) !
d>D

So using Theorem 1 with @ = D**+* we have from. (1.11) and (1.12)
THEOREM 2. If x‘is a real primitive character (mod D), then

(1.12)

(1.18) L, n< ! (1—i +o(1)) log D

=
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if y is a real nonprincipal choracter (mod D), then

(1.14) L{l, 5 < 3 (1—-]!5_»%( )) logD.

€
(1.13) is in the following sense the best possible for D = p: If the
least quadratic non-residue (mod p),

2o
N(p)=p*"®

then it is easy to see thaf in (1.13) the equality is valid. Thus any improv-
ement of {1.13) is only possible if we improve Burgess’s theorem [1]
concerning the least guadratic non-residue (mod p) to

(1.13) N(p) = 0(p")

1
with an.n<4}/;. ‘
The upper bound of L(l, x) is in eonnection with the elass number
and fundamental unit of quadratic fields. Using (1.4) 8. Chowla ([4], [B])
proved that if p is a prime = 1 (4}, thenrfor the class number h(p}), and

fandamental unit & > 1 of Q(l@) one has

(1.16) < (3+o(1)logp
and

T olve
(1.17) el

He also proved [3] that if p is a prime = 3 (4), then for the class

namber k(—p) of Q(l/ —p)

1
(118) h(~p) < (4_,: +o(1))1/§logp
holds. T¢ D or — D, respectively is not a prime but a fundanmental diserim_i-
nant the best known upper bounds for class numbers of quadratic
fields belonging to. the diseriminant D or —D respectively, are due to
Landauw [6], who proved the inequalities

(1.19) <Bto@WpD  (D>0)
and _
(1.20) B(—D) < (-2-“1‘;:—-+o(1))_;/1_310g1) (—D < 0).
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Taking into account the well-known class number formulae

(L.21) Sh(Mloge =VDL{l,5) (z(n) = (%), D>0),

D —-D
(122)  R(-D)= gL(l,x) (x(n) = (T)’ —D< —4)

and the inequality

(1.23) %(1/5 +1),

Theorem 2 gives the following 1mprovements of the results of 8. Chowla
and Lapdau ((1.16)-(1.20)):

TEEOREM 3. For the class number h(D) and for the fundamental real
unit & > 1 of the real quadratic field belonging to the fundamental discrimi-
nant D >0 the inequalities :

) .
2 ; fadl £ PR

(1.24) D)< 5 (1 o +o(1))1/_

andd

(1.25) | : 's< Bl‘(l—?%+o(1))l/ﬁlogb

hold.

TeEROREM 4. For the class number h(— D) of the imaginary quadratic
Jield belonging to ihe fundamental discriminant — D < 0 the inequality

: 1 1
(1.26) h(—D) g—(l-.—-—m——{—o(l)) VDlogD
T R .
holds.
2. To prove Theorem 1 first we note that if
(2.1) gin) = > 0(d)

T odln
then as 8{d) = 0(1), we get

62 - Se[7] - 22_@1+0u

nLe [i g dé:u
Let P, @, T denote the sefis of those primes, < », for which
(2.3). P ={p;8(p) = ~1}, @ ={g;0(g) = 0}, T = {t; 6(t) = 1},

Let d(n) denote the number of divisors of .
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Then we shall prove i
Lemva 1. With the notations (2.1)~(2.8) we have

(2.4) 29 2d(n)—222 ( );25’2 (“).

2 A g 2 2 g g 2

Proof. Let e(n)d(n) be the sum of those terms on the right side
which belong to the number » (ie. the sum of those terms which have
the form d{n/fs)).

We can write n in the form n = abm,

b= gh... g,

where p;eP, _q,eQ t;¢I'. Then we have

(2.5) m =pi‘1 oo DT, a =i, i

u aa
2.6
(2.6) —i—l 2 > aiTl) a—f—l)
— i a9
;ﬁj+ v 22 (8;+ ai—]—l
=1+4+B=0C+B
where
L r
1 aj
2.7 = -
(2.7) 4 22 ‘1( Zaj+1 1)
and’
2 r
B; ( a4 )
. B = — T e — 1),
(2.8) ;ﬁjﬂ 2;ai+1

Now let us regard the following cases:
LIty =0,ie m =1, then

8 ﬁj
=1—
o{n} _ g )

Ii r > 1 then from (2.7) B
II. If r = 1, then

L L g1 amy

=0 and 50 ¢(n) = C.

2 al—"l

Gwl_ - o1

= 0).
— (> 0)
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TIL. I # =2, and &, =1 or a, =1, say ¢ =1, then

¢ =_1—~2(——“|"

3 el 9 Ll agl

IV.Er =2, and a,/z for ¢ = 1,2 or > 3, then for an albltraly

g

&y
) =1
a,Z o +1

and s0 4 =0, 0>1
On the other hand, one has

(2.9) g(n) = =[]+ (D).

d'“ ¥l

d(a) £ m =12
g(n) = g(a)g(b)g(m) =

0 it om FIP
8o in the following cases we have:
an
I g(n) = d(a) = d((bi < e(n)d(n);

IL. if @, is odd, then 0 = g(n)< < e(n) < e(n)d(n),

a{n)

if a, i even, then g(n) = d{a) <

oy
I 0 = g(n) < 0 < e(n) < o(n)d(n);
IV. g(n) < d(a) < d(n) < 0d(n) < e(n)d(n).

Thus in all eages g(n) < ¢(n)d(n) which proves Lemma 1.

Now let § = Pu@, and for s 8, let

10 8 if Se.P,
2. ==

( . ) 2s it seQ.

Then using the well-known relations

P : px P
pprime . - pprimé p'prime

Ha,—
i 1 )—i‘ .2 1 ty {2g 1)>0

7 < 0d(n) € e{n)d{n);
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if we add to the right side of (2.4)
L3S S,

then we have with the notation (2.10) the following
CoroLrarY. We have

(2.11) Zg_(n) < glogw (1-«- —laz-g—rm;[-"w}o(l))

nan

where

(2.12) U= Z-—log——Z \" ! log-E.

88 g5 & :S
s§'si

" Thus we have to estimate T from below.

Here we shall use the supposition ») 6(d) < » from which

agr

o(1)m>2 8(d) = [#]—2 2 1-21’

d=Cr d<<z a<a
B =—1 B{d)=0

2Z-~2*—~ mas(l—.?;%)—l

) pEP qe
follows. Hence

11 X
(2.13) | ,;E;E —o(1).
Let
8 ={s <8 <..<8
_and
i+1 I
(2.14) § = {sl<sz< e 11 %;Z;—}

Iml

Ime —Jlthen let 8 = 8.%

8¢S
with
Bip) = —1 it pePnd,
#g =0 i gQnf,
0 (f) =1 it feTU(8NSY.
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Now we define a &§(n) completely multiplicative function for = éw
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Thus we have from (2.9) for an arbitrary #

(2.15) NGRS = > '(d)

din dln

So we shall use the Corollary for 6'(») and we shall estimate the correspond-
ing U, i.e. we shall prove
Levva 2. We have

. 1 & 1 % ' 1.
(2.16) U —Z—s—log;-—zsj ; pye 1g-—;—>(—~]/—;~—-—+o(1))logw

where the summation in Lemma 2 runs alwoys through s, 8’ <8’
Proof. If in the definition of 8§ in (2.14) s, <logw, and s # &

51 1

then as ZJ—; > e we get
, 1

U ;Zglogw(l—

1
MIOngZ‘;{
1\ 1\ {1 5
> (1—0(1))10gm(2;) (1— Z s,) > (E' %uo(l))logm

&

which implies {2.16).
I 8, > logae, or s =5’ leb

1 1
a = E——, E——.
s §

sy Yz<s<e

(2.17)

Then as 1/8;,, =e(1), we have
I—o(l)<atf<t
With these notations the following formulae hold

D= et 3 > gt

<Vz sYz &'y

> Sih-32)

8%11_ s'<Vz

-1 —a)logm a—(l-—-a)Z
<V

(2.18)

(2.19)

logs

icm

Hlemeontary methods in the theory of L-functions, VIT 405

(2.20) Em2§ Z s_10g__< E ;Z‘imgl?

Ve | Yo<s <ol Ya<s' <z s<Vw

1 ' logs -
- L ptogoacp 3L,

s<vVa

1. @ 3 logs
F = —log— = flogw— .
= 2l s D) =

s>V Vz<sge

—2E+ ¥, from formulae (2.18)~({2.21) we get

(2.21)

Here as U' = D

. logs logs
9 —a— —a— _
(2.92) U zlogala(l—a—f+fl—(1—a—2p) Y = D X
s<Vz Va<esz
{1 e . logs logs
#(E—w—z-»—l—o(l))logm—~(a+o(.l)]2 = - 2 =
s<iz Va<sxs

On the other hand, it iz easy to show that if 8 is a set of primes
sy {y =0(1)), 8 =¢ or 25 and

1
(2.23) M= —proy (<D)
3e8’ § .
{y a given number) then the sum
1
s

eS8’

is maximal if the set S’ containg all primes in an interval [z, ] and no
primes less than z and for all primes 5, $ = 5. So if we use the formulae

2 logp _ loga+ 0(1), 2 = =loglogs+C--o(l)

P psm
pprime porime

where € iz an absolute constant, easy computation shows that if (2.23)
holds then

logs

(2.24) < [1—e7+o(1))logy.

8e8”

Thus from (2.22) and (2.24) we have

(2.25) U = logm(—;———g—w‘g(l L (1'_- e~fy—o({1}| = G-logsw.
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Here using § = $—a—+o0(1), we get with some.computation that for
0 e i+o(l) '

(2.26) G =6(a, p) = Fla) > 6(0) =———>—o(1),

which proves Lemmzu :
Thus we have fmm formulae (2.2), (2.15), (2.11), (2.12) and (2.16)

7]
o2 3L 2 N o o< o N +oq)

d<<z nE nLr

< 1 1 QU" V<l 1 1 1
<ooei o) 2] o)

o [
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The factorization of Q(L(a), ..., L(wy)
over a finite field where Q= ..., )
is of first degree and L{z) is linear

by
L. Carrrrz (Durham, N. C.) and A. ¥. LoN@, Jr. (Greensboro, N. C.)

1. Introduction. Let GF(q) denote the finite field of order g = p"
where p is prime and n = 1. Let I'{p) denote the algebraic closure of
GF({p). A polynomial QeGIP{g; @y, ..., @] Is absolulely irreducible if Q
has no nontrivial factors over I'(p). Throughout this paper, the ferm
irreducible will mean absolutely irreducible.

A polynomial with coefficients in GF{g) of the form

r +
"
- E et

]
is called a linear polynomial. The requirement; that the coefficients be
in GF(q) insures that the operation of mapping composition for linear
polynomials is commutative. Corresponding to the linear polynomial
L(%) we have the ordinary polynomial

= 2 ;5"
=0 _
We shall agsume in the following that ¢, = 0; this aveids multiple factors
in L(x) and insures that there is a smallest integer r such that I{z) divides
¢"—1. We say that [{x) has eaponent r.

Let Q(2y,..., %) = gg@y-+ ... + a2, +1 where [flegal, ey degag]
= s (if aeGF(g®) but a¢GF(¢), 1 <t < s, we say that the degree of a rela-
tive 10 GT(g) 18 s and write dega = 5). We shall assume that {a;, ..., &}
are linearly independent over GF(g); otherwise @(®y, ..., %) can be
reduced at once to a polynomial in m variables by suitable first degree
transformations, where m is the number of elements in & maximal linearly
independent subset of a1, ..., 0. :

In this paper we descrlbe the factorization of Q(L(ml ,L(a:k)).
{We note that it is possible to have Q(L(w,), ..., L(w)) reduce to-& poly-

nomial in fewer than k variables even though {a,, ..., a;} are linearly



