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Ang (2) folgt mit (23) und (24)
(25) §H(2e, %) > 5t
Mit (25) erhdlt man aus (22) und (21) die Ungleichung:;.

£ ge(6)-

2

cﬁl—f—gcﬁﬂogslz fir - &< el d).

Setzt man fiir 4, gemaB (6) ein, so gelangt man zu der Ungleichung:

(26) f=on  fir &< eyy(d).

Wahlt man 8 = ez’ und ), (8) go Klein, dal fiir & < sy5(0) gilt:
l/_|10g£ < ten,

dann erhilt man einen Widerspruch zu (26). Deshalb kann die Annahme (6)
nicht gelten, und der angekiindigte Satz ist bewiesen.

Zum SchluB sei noch bemerks, daB die bestechende Einfachheit des
Beweises von FErdos und Fuchs deswegen teilweise verlorengeht, weil
die Reihen G(s, s’) und T'(s, s'), welche man als Verallgemeinerung der
geometrischen Reihe bzw. deren Ableitung im Korper K anzusehen hat,
picht 80 elementar zu handhaben sind wie in Q.
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A new upper bound for Waring’s problem (modp)
by
J. D. Bovey (Cardiff)

1. Introduction. Let p be a prime and let d and ¢ be positive inte-
gers with. p —1 == di. The number y(d, p) is defined to be the least posi-
tive integer s sueh that the congrmence

284 ... +2f = N (mod p)

has a solution for all integers N. It can be verified readily from the Work
of Ha:rdy and Littlewood [3] thai

yd,py<d

for all d and p. When t = 1 or 2 equality holds, but if we restrict d and p,
better bounds can be found. Let £ be any fixed positive number. Tt ig
not hard to show, using exponential sum arguments (see 1] or [3]), that
for all d,p with d< p¥*-*

(1) v(d, p) = O(1).
Dodson [3] has shown that when d < p'?
7{d; p) = O(logd).
Heﬂbrqml [6] has conjectured that for ¢ > i,(z)
y(d, p) = O(&)

or at least that y(d, p) = 0(a"*) for t> 2. The best result so far is due.
to Dodson and Tietdviinen [4] who have proved that

(2) . y(d, p) = 0@/

for t> 2.

. In this paper we obtain an upper bound for y(d, p) which iy about
a8 good as is possible in its dependence on 4, but is spoilt by the factor p(t)
{where ¢ is Buler’s funefion), We then ure this upper bound to obtain
a new proof of the result of Dodson and Tietdviinen (2).
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TaeoreM 1. Let ¢ be any positive integer. Then there emist positive
numbers elg) and i,(q) such that if p is a prime with p—1 = dt we have

e(Qe(H) @ when 1> 14

y{dy p) <
and

y(d, p) < e(@d'™  when 1<t

Tt is evident that fhese estimates are more effective than an unpub-
lished estimate of Heilbronn’s ([6], Theorem 8) which asserts that for
+> 2 there exists a constant o such thab

y(d, p) < ap?.

The method used in this paper works better on the “Easier” Waring’s
problem. We denote by 8(d, p) the least s such that the congruence

. +52¢ = N{mod p),

a
sy + ..

where each coefficient &, i =1,..., ¢ can assume the values -1 ‘or
—1, has a solution for all integers . Clearly dé(d, p) <'y( ,p) for all d
and p. In § 2 we show that ‘

7(d, p) < logdé(d, p)
and then in §3 we prove the main results.

2. Let m be any positive integer and A a subset of Z,,, the additive
group of residues modulo m. We write

A—A ={a;—ay| a1, 0,¢4}

and
A =Aay+ ... +ay aqged,i=1,...,k}.

The following lemma is due to Jackson and Rehman [7] but we include
a simple proof here.

Lemwma 1. Tet m be any positive integer and let A be a subsel of Z,,
such that A —A =2Z,,. Then

{([logmlog2] +1)A =

Proof. We prove by induction on # that if 4 —4 = Z,, then (n)4
has at least 2" consecutive residue classes. Plainly if 4 -4 == Z, then
(1)A has 2 consecutive residue classes. Suppose inductively that {(n)4d
contains 2" consecutive residue classes r--1,...,r+2" for some reZ,,.
As 2" ig contained in A —A, a+2%4 for some aed. Hence (r--1)4
contains the 2°*! consecutive residue classes

G741,y Gpr 28, 6420 +L, oy G b 20 2
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which establishes the desired induction. The lemma now follows on putting.
5 = [Jogm[log2]+1.
Levma 2. For oll p and d

yid, p) <€ logdd(d, p).

Proof. Let 4 be the set of residue classes (mod p) that can be writfen
ag the sum of 8(d, p) dth powers. Clearly 4 —4 = Z, and Lemma 1 gives

y{d, p) < ([logpflog2]+1)é(d
By {1) we can assume that @ > p*? say, and the result follows.
3. The main result. Tet B be a primitive tth Toob of 1{modp) and
let r — @(f) where ¢ is Buler’s function. The r-tuples of integers (a4, ..., &,)
which satisfy '

dy + o, B4 ... +a, R =0 (modp)

form an additive subgroup of Z" with index p. They form hence a lattice
(in the “Geometry of Numbers” sense) which we call A. Tf & ~ (ml, ey )

- ig @ vector in B then we use the standard nofation

*

el = >l

fr=l

We need the following elementary lemma.

LuvMa 3. Let A be defined as above and let by; ...,
independent vectors contained in A. Then

(d, p) < Z‘ub

=1

b, be r linearly

Prootf. Let ¥ be any integer. Clearly we can solve

(N, 0,...,0) = eyby+ ... +¢,b, (mod A)

where the ¢; are real numbers with e < 4 for i =1,...,7. If we write

Gy ener Op) = @ =60+ ... o,

then the a; are integers . _
a;+a R+ ... +a, R = N (modp)
and

. Jayl+ oo e < Fbyll A - +110,1)

by the triangle mequahty As the R are all dth powers {mod p) the result
is proved.



icm

160 J. D. Bovey

Let ¢ be a primitive t6h root of 1 and let Z[p] be the ring of cyclo-
fomic integers of order t. Let f: Z"—+Z[p] be given by '

flay, ooy ) = artaso+ ... +a0m

LemmaA 4. f(A) ds an ideal of Z[p).

Proof. As » =1(mod ¢} the prime p splits completely in % fel.
The kernel of the homomorphism ¢: Z[p]-+Z, which sends a;+ Gy -+ .-,
oo +a,0"" to the residuc class a;+a,R+-... -a,R" (mod p) is Flad
which proves the lemma.

Let @,{x) be the cyclotomie polynomial of order # and let A.(¢) be the
least upper bound of the absolute values of the coefficients of P, (). We
can prove the following wpper bound for 4(d, p).

LeMMA 5. If % is a positive integer with n < p(t) then

8(d, p) < n{A (5)+1)"p () p".
Proof. Consider the ([p"]+1)" numbers

al‘]“azR‘-I— wee +a;n_Rn'—1’ 0\<‘ @, < [pll’ﬂ];

2

i=1,...,n.

As there are more than p of them at least two must be congruent (mod p)
and we can golve

Gt Bt ... 4, B =0(modp) with g < p¥®, i=1,...,0

I we write € = (¢, ..., 6,,0, ..., 0) then ecA and [el; < np"™ We now
define .

b; =~ o* ' f(e)), ,
Clearly the b, are linearly independent and by Lemma 4 they are con-

tained in 4. For 1< i< »—n, b, is just ¢ shiffed § —1 places to the right,
Le.

t=1,...,7.

€ ="by =(0,..., 0,0, ey 0,
by =1(0,0,...,6,.4,0,,0,..., 0},
_ b,._n=(0,...,0,c,_,...,@n)
and we have
(3) Ml + . +iibpally = (7 —n) el << (7 —n) mptin.
We now write
Bz) = G+ o x4 ... fa_ @t ot

and define a ='(au, ey ). I = (@, ..., 2,) is any element of Z"
we use the standard definition '

llell, = sup ;).
Iiy
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It is eagily verified that

f_l(Qf(m)) = (0, 2y eeny Bpog) '.‘mrﬂ

and so
17~ (e ()] oo < Illo - 1] B8R << {4 (8) +1) el

Applying this to b, for ¢ =1,...,n we get

By psilbe < (A LB, ol < (AW F 12", i=1,..4n

and so

Zn,‘ 1B, ppily < rpt™ D (A (0} 41) < rnp {4 B+ 1),

=1 i=1

as A{1) = 1. Adding this estimate Yo (3) we get

NIl < 2rnl4 @)+ 1),

[

and combining this with Lemma 3 we get the required result.

Proof of Theorem 1. We choose #, to be large enough to ensure
that, if ¢ > #, then t has a factor, ¢’ say, such that ¥’ > .?-g and A(f). = 1.
We can do this by choosing ¢’ to be, say, the largest prime power divisor
of 1. If we write d’ = (p —1)/t’ then, as every d’th power is also a dth power,
-we have :

o(d, p) < B(', p).
When t> 1, putting # = 3¢ in Lemma 4 gives
8(d, p) < 8(d', p) < g2 (1) ™™
which with Lemma 2 gives
¥(d, p) < ¢8%p(t)logpp

Combining this with (1) gives the first inequality.
' If we put n = () in Lemma 5 we geb

1/3q

8(d, p) < 20(02 (4 (5) + 1) e gHelh),
Since —1 = R+R*+ ... + R (mod p), it follows that y(d, p) < ((—1) X
x 8(d, p). The second inequality of the theorem will therefore hold if
we choose c¢{g) to satisfy

o(g) 3= sup (1 — 1)p (1} A (5) +1)7Ort0).
t<ity .
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Finally we prove the estimate (2). First we assume that ¢ d'%
Let g > £* be a fixed positive integer. The condition ¢ > 2 implies ¢(2) > 2
~and so if §<C 4(g) the theorem gives

y(d,p) £ d}/w(t) <& 2L

Xf £ > 4, then y(d, p) < p(£)d¥% € @+ as required.
Tietédvdinen [8] has shown that if 24 different residne classes can be
represented as the sum of w dth powers, then

y(d,p) € wlogd.

It follows easily from the Cauchy-Davenport Theorem ([2] or [8]) that
we can represent 2d residue clagses as the sum of 24/t dth powers and thus

y(d, p) € dt'logd.

This proves the result at once for ¢ .
T am grateful to Dr. Maurice Dodson for suggesting a number of
improvements in the presentation of this paper.
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Elementary methods in the theory of I-functions, V
The theorems of Landan and Page

by
J. PINTZ (Budapest)

1. Landaun [4] proved in 1918 that if the L-functions belonging to
real primitive eharacters y, (mod D) and y, (mod D) (g = ya) Tespect-
ively, have 1—48; and 1 —8, real zeros, respectively, then

4

d _
(L.1) max (dy, §;) > log D, D, '

where ¢ is an absolute constant. This fact was nsed by Landau only to
prove that the negative fundamental discriminants for which the class
number k{—D) of the imaginary quadratic field belonging to the diseri-

minant —D
VD )
log.D

are very rare. Namely combining Hecke’s theorem (see also Landau [4])
with (1.1) one has immediately the inequality

W=D, R{— 2))> ¢
vD, ' VD, /| logD.D,

Page [6] proved (1.1) for the case g, = y,, i.e. he showed that an
I-fanction belonging to a real non-prineipal character x(mod D) has
at most one, simple zero in the interval

0”
a4 [1 logD’ 1]
where ¢’ is an absohite constant.

The mentioned results of Page and Landan concerning the real
zeros of real L-functions together with the results -— concerning the zeros
of complex I-functions and the ecomplex zeros of real L-functions — of
Gronwall [3] and Titchmarsh [9] were used by Page [6] to get Dbetter
results for the distribution of primes in arithmetic progressions.

(1.2) h{—D) = o(

r

(1.3) max (



