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Cyclie decomposition of polynomials
lhy

M. BHASKARAN (Girrawheen, W. Australia)

1. Iptroduction. In (1], Fried defined a polynomial h(x)e Q[#] to
be a cyclic polymomial if h(x) = a(z—b"+e¢ for some a, b, cc Q. The ter-
minology it suggested by the fact that the Galois group of the splitting
field of h(z) —A over Q(1) (where J is an indeterminate) is eyclic. He also
defined that h(z) = 31(92(...(31(93)))) is a prime decomposition of h(z) if
each of the s,’s cannof, be written as a composite of polynomials of strietly
sinaller degree. These definitions are equally applicable when the ground
field is any algebraic number tield %. Let us say that an irreducible poly-
nomial h{z)ek{z] has a eyclic decomposition of degree r for v > 1 if h(m)
= g(s(w)) where s(#) is & cyclic polynomial over % of degree 7. If no such
7 > 1 exists, we say that k() has no eyclic decomposition. If an irredue-
ible polynomial has a cyclic decomposition of degree m and no other
cyelic decomposition of depree a multiple of m, then the cychc decompos
sition iz said to be mazimal.

Heveafter, b represents an element in & (noé necessarily an integer)
and ¢, represents an element in & which may vary as ¢ varies thromgh
f-primes. 7 is a natural number > 1. [my, m,] denotes the Le.m. of m,
and mg.

The object of this mote is to prove the - following

TanorEd. Let h(w) be an irreducible polynomial over a number field k..
Then if it has a cyclic decomposition, it has a unigue mozimal eyclic de-
composition of the form f((m—b)’“) for some polynomial f(y) over k. hiz) =
gl{z—bY) for some polynomial g(y) over T if and only if hia) has wrreduc-
ible cyclie factors of the formn

o
(@ — b) ”i"f‘q n;InOdQ:iw

where gy runs through an  infinite number of k-primes for each j and
{

% s . .
=[] pf, Dy, Psy ..., 1y distinet rational primes.
F=1
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I thank the referee for some valnable criticisms in the preparation
of this note.

2. Preliminaries. We prove the theorem for any monic irreducible
polynomial in § 3. The proof for any irreducible polynomial over & is
then got from the observations (a) and (b) below.

(a) Buppose

B() = 0, 8"+t 0T Lty
be an irreducible polynomial over k. Then
H{g) = al hioja,) = 0™+ ap_ 8" 4 oo Fapap "

ig a monic irreducible polynomial. If k(x) has a cyclic factor (z—b)" 4-¢,
mod g for o E-prime ¢ with a sufficiently great norm, then it is- eagy o
see that H (£) has a eyelie tactor (@ — o, 0)" - o), ¢ mod g. Hence, by Lenuna
{stated below),

H(w) = g ((@—a,bY)

for some irredneible polynomial g{y). Then

(@) = g{la,@ —a,b))jen = G((w—Db)}

for some irreducible polynomial G (y) over k with a, as the coeificient of
the term in the highest degree.

(b) Conversely, if 7(#) hag a cyelic decomposition of ldegree 7, then
H(z) has & cyclic decomposition of degrtee y and this implies that H (x)

4
P,
has cyclic factors of the form (mmanb) 1 —i—c’qﬁ mod gy;.
Now the proof of the non-trivial part of the theorem (second as-

gertion) depends on the following two lemmas.

TLemya 1. Let kix)ek[n] be o monic irreducible polynomial. Then
h(z) = g{(z—Db)") for some polynomial g(y) over % if and only if h(x) has
cyclic (not necessarily drreducible) factors of the form (w—b)Y +e,mod ¢
where q runs through an infinite number of k-primes.

Proof. Put ¢ —b = X. Let h(z) = h(X) for zome polynomial &, (y)
over & Let 8 be a zero of hy(X) and let 6 = 6™, 69 .., 6" (n being
the degree of k) be the conjugates of § over k. Then h,(X) = g(X) f‘Eor
some polynomial g(y) over % if and only if there exist o, a, ..., o, which
‘are distinet natural numbers lying between 1 and » such that

r
] (x—t6d) = X" q

f=1

where o = (—1)roe glea | glas),

On the other hand, such a set of numbers oy, az, ..., a, exigty if aI_ld 0n¥y
it for some choice of ay, gy, ..., a, the first r —1 symmetric funetions in
60, 6%, | ., 60 are zero. And this happens if and only if 2(X)mod g

icm
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has & factor (not necessarily irreducible) of form X*-- ¢, Tor infinitely
many k-primes ¢ by the following argument: There are infinite number
of k(a)-primes @ of degree 1 so that a = a k-integer ¢, modulo @ and
consequently A(X) has a factor X"4-¢, mod ¢ where g is the restriction
of Q‘ to k. Conversely, if #(X) has a factor X"+ 6, mod ¢, then

X' }o, = [](x—6) mod ¢

=1

for a suitable choice of matural nymbers Oyy Oy «.ey @, Iying befween 1
and n (g being considered as a k(6@ ..., 6 _ ideal). Then the first
r—1 symmetric functions in 92, 6@, ..., 6 are divisible by ¢. If
the norm of ¢ is suificiently large, this can happen only if each one of

these symmetric funetions is zero. Finally, substituting #—& for X, we
get the lemma. -

LeMmA 2. Let L be a finite normal extension of K (any number field)

and let A* be the sat of all K-primes of degree 1 which split completely in L.
Then A™ has the Dirichlet density 1L : K.

This result, when A* is replaced by the set 4 congigting of all K-primes

- (without the restriction aboui the degree) which. split completely in I,

is proved in [2] (p. 324, Cor. 4). The proof for the set 4* is substantially
the same.

3. Proof of the theorem. (A) Suppose A(x) of degree # has a cyclice
decompogition g((ar-b)*). We prove that b and ¢ are unique in the above
decomposition of degree r. If not, suppose h(z) =g, {(@ —b,)7). Then,
considering the coefficients of "' in the expansion of g and g, we get
b, = b. Hence g, = g.

(B) Suppose fy, ((# —b,)™) and Fug (@ —0,,,)™%) be two decomposi- -
tions of h(z) of degrees m, and m, respectively. Then we can prove that
by, = by, = b by considering the coefficients of "' in these expressions.
Hence, k(@) is a polynomial in (¢ —b)™, as well as in (@ —b)™, and thus
& polynomial in (g — b)mwme] '

From (B), if follows that the degree of a maximal cyclic decompo-
sition iy unique and from (A), it follows that there iy 4 unigue maximal _
cyclic decomposition of the form f{(z—5)™), thus proving the first asser-
tion of the theorem.

The sufficiency condition of the second assertion follows from Lemma 1.

- and the fact that 4(w) is & polynomial in (# —b)™, as well ag in (p—b)"2,

implies 4(w) is a polynomial in (#—b)™ml 8o, to conclude the proof
of the theorem, it is enough.to show that an irreducible polynomial with
a eyclic decomposition of degree r has drreducible oyelic factors modulo

gy of degree p/ for each j, g and p{ being as stated i the theorem.
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(0} First, we cobserve that a monic irreducible polynomial of the
form g(X?) over k has irreducible cyclic factors of the form XP-4-¢, mod ¢
for infinite number of primes g as follows. g(X*) has an irreducible factor

icm

X¥4-a in k(o) where @ is some algebraic number, Let £, be a primitive

pth root of unity. Taking K == k(a, {,) and L = K and K (0) successively
in Lemma 2, we find that infinite number of }-primes of degree 1 do not
split in K (§). Then, it easily follows that infinite number of k(e)-primes
of degree 1 do not split in &(z, ). For any sueh k{e)-prime ¢ (lying above
a k-prime g with snfficiently great norm), a = ¢, mod @ for some k-in-
teger ¢,. Since ¢ does noti split in &(e, 6), X* 4« iy irreducible modulo @
{by Eummer’s theorem). As there are k-integral representatives for the
residue clasges modulo ¢, this means that —e, is not a pth power residue
of ¢. Thus X%+ ¢, is irreducible modulo ¢ and we get the desived result.
(D) If 2 (x) has a cyclic decompogition of degree pj-j, then

)

h@) = g{@—b)")

: . £;—1

‘for gome monic irreducible polynomial g over k. Put (mmb)p—"' =X.
Then k(z) = g(X%). Now from (C), we get that g(X*) has irreducible
cyelic factors X"+ ¢, mod g; for infinite number of g;;. These —¢,
arve not pyth powers modulo gy. From the well known result that an
irreducible polynomial " 4-¢ over & splits modulo ¢ (k¥ —prime not div-
iding ») only if —c‘jis a dth power modulo g for some divigor d of «, it

follows that (m—b)pf—l-cqﬁ is 1i1°re(1uci‘rtyle1 modulo g;; a8 ¢, 18 not a p;th
A ;’i— ‘ )
power modulo gj;. Putting X = (z— b)pf’ e get that k() has irreducible

“
cyclic factors mod g; of the form (x—b)p’

[ +cgﬁ. This completes the gec-
ond, asgertion of the jthe_orem. :

4. Some comments, One may ask whether the necessary condition

in the theorem could be sirengthened as the existence of irreducible

cyclic factors of the formn (#—3)"+¢, mod ¢ for infinite number of k-
primes ¢. This seems to be a delicate problem to solve. Another question is
whether the existence of irreducible cyclic factors of the form (x—b,)" +
.+ ¢, mod ¢, where b, also depend on g, r > 1 and divides the degree of
h{w) and g runs through infinite number of k-primes, will guarantee cyclic
decomposition for A{x) in general. The answer it no as is illustrated by
the following exsinple (supplied to me by the referee):

We construct an irreducible monic polynomial A{z)e Z[2] of degrees 4
such that for infinitely many primes g, h(2) mod ¢ has a cyclic factor of
degree 2, but h(z) is indecomposable and riot @ cyelic polynomial..

Choose %(») of degree 4 such that the splitting field, K, of h{x)

Oyelio decomposition of polynomials - B

over Q satisfies: ¢(K;/Q) (Galois group of K, over @) is 8, (the symmetric
group on 4 letters). By Cebotarev density theorem, thers exists an infinite
set of primes ¢ for whieh the Frobenius symbol of a prime of K, over g
is-(12) (84)e8,. By Kummer’s theorem, for these g, hi(z) mod ¢ is @
product of two irreducible factors of degree 2 (cyclic factors). On the
other hand, let K,_, be the splitting field of A(z)—y over Q(y). Then
G(K,L_H/Q(y)) is also 8,. Since 8, is a doubly transitive group, there are no
fields between Q (%) and Q(y), where # is a zero of It(2) —y. Therefore
h(m) is indecomposable.

References

(1] M. Fried, drithmetic properiies of value sets of polynomials, Acta Arith, 15 (1969.),

pp. 91-115.

[2] W.Narkiewicz, Elementory and analytic theory of algebraic numbers, Warazawa
1974. '

Reooived on 13. 9, 1974

and in revised form en 11, 7, 1975 {618)



