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Without essential restriction, let p = 5. Then
(7'17)10(4 —1/2)(1) 1)“<1‘.

Further, by (7), where now n =p—1, m =p, 4 = O we have the

estimates
3 < y < expexp(2®(p— 1)1"(1“‘1))‘*"""’“1)2 < exp exp (2p™y#,
By virtue of estimates given by the author [4] it follows that
w>pP7h Y >4

since ply(y+1). Recalling that Fermat’s conjecture has been proved
for. p < 26000, the magnitude of each of these bounds ix fairly large.
Towever, the differences between the above upper bound and these
lower bounds are enormous.
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01} the representation of a number in the form
@'y +p*+q" where p,q are odd primes
by
G. Gruaves (Cardiff)

L. Introduction. This paper shows that every sufficiently large
natural nwmber N that satisfies the necessary condition of incongruence,
modulo 8, to 0, 1 or 5 is representable in the form stated in the title.
The interest of this result lies partially in the fact that {so far as the author
is aowiee) there is no imunediste prospect of any solution of the correspond-
ing “Waring—Goldbach” problemn in which the numbers x, ¥ would
also be restricted to prime values,

The preof depends on a combination of the mean value theorem of
Barban {11 (as re-discovered shortly afterwards by Davenport and Hal-
berstam [37) with the {-residne sieve method developed by Rosser (wnpub-
lighed). An necounnt of this method appears in Iwaniec’s paper [7]. Barban’s
theorem is used. in the way described in the author’s paper [5] o estimate,
with sufficient accuracy for our purposes, the number of pairs of primes
P, ¢ that satisty

'132+g8 = Nmodl, p<Z, 9<%

for & odulus 7 not exceeding Z/log%. Such an estimate is the essential
starting point for applications of the sieve method to binary problems
involving primes. In this paper the }-residue sieve method is used in
obtnining o 1)0&1!1% lower estimate of how often N —p®—g? i free of.
primme fetors @ 2 3mod4, and hence is of the form #2442 '

16 iy, ]_3(51'115,1.]9,5, worthy of comment that the 3-residue sieve is suf-
ficlently powerful to establish the exigtence of nnmbers that are sums
of two squares and lie in a. suitable sequence, whereas the 1-residue sieve
Lag ot yeb been successfully used ho esmbhsh the exigtence of pnmes
m amy sequence at all.

Twanice used his vesults in his treatment of the number of primes p
not ‘exceeding % that are representable in the form #*+g*+ A {where,
indeed, #3--y* wag replaced by an arbitrary quadratic form, positive if
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definite) but the method applies also to the “conjugate” Pproblem of
representing a large number N as

{1.1) N =s24+9y2+p.

The ool from prime namber theory relevant bere is Bombieri’s theoren,
and owe would obtain & lower estimate > N Jlog#2 N for the number
of primes p for which such » representation is possible. On the other
hand Bombieri’s theorern was also used by Llliott and Halberstain [4]
o remove the dependence on a Riemann hypothesis of Hooley’s estimate
[67 for the total mumber of representations of N in the form (1.1). Tt
appears, however, that an attempt to adapt Hooley’s method to the
problem considered in this paper is likely to involve serious difficalties.

- Accordingly we use the sieve-theoretic method to establish the following -

resulb.
THROREM. Suppose N =0, 1,5mod8. Let S(N) be the number of
pairs of primes p, q such tha

1<p<VN[2, 1<q<V¥j2

and N —p®—g® is represemtable as w*+y?. Then there 4s an inequality of

the type
' i loglog ¥
S0 > A e [1+0 (g )|

where A > 0 is as deseribéd in (6.1) below.

Buery sufficiently large such N is represeniehle as o+ g2+ p2+ ¢~

The proof assigns an explicit numerical value to the counstant 4,
but not to the constant implied by the O-symbol. This is becanse Barban’s
result rests on Siegel’s theorem. Thus it is not possible to deduce how
large. ¥ mmst be to guarantee representability.

A very brief outline of the details of our treatment may porhaps
be helpful. We restriet p, ¢ to lie within certain residue classes, mod 288,
whose choice will ensure that the number N —p®—g2 considered are of
the form 29(dn 1), Let B be the number of these N —p*—q* that are
not divisible by any prime & for which & < # and @& == 3modd. Ieve
z = NY% i to be specified but will satisfy (1.2) below. The }-residue
sieve is then used to give & positive lower bound for Z. The method does
not permit the choice # = VN that we might wish; when &> N, how-
ever, the numbers ¥ — p2- g2 counted by F are cither sums of two squares

- or are of the alternative form mg, g, where
(i) @|m implies & = 3mod4 and & <3,
(i) ‘v, g, ave prime, z < g, < ¢, and ¢; = 3mod4,
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The number B of these unwanted survivors of the first sifting pro-
cess iy bounded above (in Lemma 10) by the well known methods of
Selberg (Brun’s would sutfice, as the value of the constant ¢ in Lemma 10
is not important). To achieve this, estimates for exponential sums “along
a circle” are deduced from well known results on the Kloosterman guin.
With an appropriate 2 the. desired result B < B is achieved with &
comfortable margin to spare: the result of owr theorem follows from
the inequality '

SN =851,
For convenience in exposition, the parameter # will satisfy

(1.2) 2> N,

~ ag the methods used becotne ineffective as 2 approaches Y. Thus

(L3) N < g < g,
and accordingly
(1.4) m< N,

It will not be necessary for the reader to have these restrictions constantly
in mind. ‘ ‘

Muliiplicative fonctions v, o, o are defined when their relevance to the
problem becomes clear; y on the other hand denotes a varviable multi-
plicative function having different meanings at various points of the
aceount. Consbants, implied by the O and < symbols are “absolute”:
that is to say they may depend at most on the residue of ¥Nmod8. Other
notations ure explained a4 they are introdueced.

2. Results from sieve theory. In a popular notation, the symbol 7
denotes a set of infegers with u property

o Xyl A
(2.1) Z 1=--7~£(—)~—+E(X,Z),
ftea :)“1{;51#(;(1 1

whore for ench 4 > ¢ theve is o g such that

(AL) . 2

tXWorh X
and the multiplientive function ¢ satisfies, for some 4, > 0,

X

PEOYFAE SR ﬁc-,"‘Tqﬂu

. : 1, .
(A2) 0 < (@) ﬁé'(lm————-)i» i Ge,
Ay -
i L logd )
(A3) ~~L<%y(w) 3 kloge < 4,
dielz

4 — Acta Arvitametien KXLES
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# being a set of “sifting” primes. The constant & is the “dimension”
of the sieve under consideration. Here the constants a, 4, are “absolute”
but L may depend on X = X (). ‘

The }-regidue sieve. k =4 The results we- :ue(,d are obtained
by the method described, in a somewh_at restricted context, in Iwaniec’s
paper [7]. There is however no additional difficulty in prineiple in ob-
taining the following. : .

LevMA 1. Denote by (&7, P,) the number of members of o divisible
by no prime & such that ® < 2, deP. Suppose(Al), (A2), (A3) arc satisfied
with & = . Then there is a f(u) > 0 when w > 1 for which

msts 20> x\[T (-2 e+ g |

we@’
L4

There is a corresponding upper bound in which f is replaced by I':
here the functions f, I, continuous in (0, oo}, satisfy

2¢
F{u) =—]/T, fluy =0 if O0<su<l,
- Va
1 .
l/u (#)} =—+= F %1 i ow>1
I/MJ Flu—1 i uw>1
. { 2]/"‘ ) ?

where ¢ = l/e_*'ﬂ /m, 7, being Buler’s constant. In particular

12

(2.2) - Vuf) mof l/tzmt it

In our application the set &, of sifting pi?i.mes @ is
{2.3) P, ={@: d<r, & =3modd}.

In this ease Lemma 1 gives the more convenient Lemma- 2 below, as
follows. The well known elementary results

[Tl - ol

a<s
D 4 1
[16=28) = 2+ lagz)
| i1 @ 0gz
where y is the non-principal character, modd, give
1 1-1/e e 0 1\
2 4L 141/ 4dehlogy log®z.}
&= mod 4

icm
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Consequently the product featuring in. Lemma 1. satisfies

D [1—w(d)/d 1
L2 - 0 ol
,Q ‘ l/logz - 1—1/6 | logalz ’
where '
‘ 1 1A
(2.4) D o= : (l——) >0
! 1/2 d)eﬂlmzd-i (:az ,

the required sstimates ior the contmbutwm from primes & > @ followmg
from (AS3).

In the light of these remarks the case of Lemma 1 that we aetually
use iy a8 follows.

Limmma 2. Under the hypotheses of Lemma 1 we have
@==fmpd 4

v L RN o )
<u<2

]/log X°
There is a similar upper bound in which the integral is replaced
by 2. This upper bound is thus best possible in the sense that it yields
the seme main term as features in Landau’s result [9} (or see [10]; for
example)

(s, %)

- M
1=2D 0 .
/}" 1/ log M + (IOEMM)

@|me @3 mod 4

A, partial snmmation on this yields the weaker result

= 4D Vlog M + 0 (log/*M).
m M '
= Pa3mod 4

‘We use this in the proof of the following lemma.

LmvmA 3. Suppose that for some 8> 0 a multv,plwatwe fummon ¥
satisfies

—y (@)

Iy (et o
(;)Mtl—ﬁl = O(l) !
&1»‘;&';#30 : : )
D

where # 48 ahe set of primes & 2 3mod 4. Then

Z’ r{m) 4]:)1/10gz ]Y{( _,__) ”Hﬂ

WML
where the infinite product is cowargem.

10gll4 )

G Bed
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Proof. In thig proof the symbols I, m, n denote produets of pxlmes
in &, Set

I(n) = > p(By(m),

m=y

so that
p(n) = Y I'().
HES
The hypotheses of the lemma are needlessly strong (but comfortably
satistied in our application) to show

(2.5) : Z | ()] =O( 1 )

_— 7 logz
Thus .
o opim) Y o1
Z ho 2 1 21 m
=z i<z mgzﬂ
- 41)2‘ {1% (#/1) + O{log™™ (2 1) )]
l=lz

and the result follows by partial summation. The infinite product is that
for 3 I'(n)/n, convergent because of (2.5).

The next lemma is the ease b = 3 of Selberg’s well known upper
bound.

Lmanca 4. If (A1) and the left sides of (A2),
then

(A3) hold with k =3

<35 () [ 22 o 2

' e
a<g

2. Thus

9331 X 1—»(®)/6 F A
Z,) < < F. R
EAS {n A—1/a) }{”O(Iogxn ’

where the infinite product is convergent.

where Py(u) = 316y’ if 0 < u <

(s,

3. The applications of the sieve metbod: preliminaries. The appli-
cations of the sieve method made in this paper arve to sets

) . N“PZ_QQ ’ .
(31) o m{%f—= ¥, g4 prime; 3<p,q~€z, <z¢,q>e~’%‘x}f
e (N —p2 — 352
(3.2) o, :{ ( Kﬁ ): 1243 = NmodHn; {r, 8D efy;

(rs, Bn) = 1; 1<+ ss;Z}.
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Here
(3.3) . Z=VN]2

and K is an absolute congtans, being a certain divisor of 72 whoge identity
depends only on the residue of Nimod72. The set %, that is to contain
the ordered pairs {p, g», {r,s> is a corresponding collection of residue
classes to o similarly constant modulus that has the same distinet prithe
faetors 2, 3 ag hag K. The choice of #5 will ensure that the members of
o are integers. Deferring until later the consideration of most of those
properties of =/ and &7, that depend on the choice of %%, we establish
in this section the properties (A3) with appropriate values of a.
Case I. The set 7. Let u, v cover the Ky (K, ) solutions of

(3.4) 1su,v< Ky (wo, KI) =1; %*+0* = NmodKl, {(u,v)edg.

Express w ag

{3.5) P, 1) = p(K. 1) e(l),

go that ¢ is a multiplicative funetion. :
To estimate the sum (A1) a purely formal application of the Prime
Number Theovem would give .

=303 3 )

amomodl . we 1‘!!!1?1110&11(1 gzvgriaﬁ)zdﬂt
e Ty, 1)1o0 )+n(Z 1) —X-’ill +E(X, ),
P* (K1)
say. Here ¢ is Euler’s function,
Hyp(d,1
(3.6) = __::z(‘( 5 \i27 = Blaz,
and y(I) = 7(l); where (fox:- fature reference) We. define
(3.7) (1) = lo(Ng*(K) [p*{K1).
Thus the function y is mult:phezmve. The choice of #5 will engure
(3.8) p(E,1) > 0.

If &> 3 (so that & does mot divide K or the modulus of any @x)
then @o(d”) is just the number of solutions {u, v> of
' Curbe? = Nmodd®, (wr,d) = 1.
Note before preceeding that in this cage

(3.9) o(@) =ol@) H vl I
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This is eagily verified by induction on »: for each solution u, v of

u?+4v% = Nmoda”, (uv,d) =1

the coiresponding solutions ', v ‘moda”™™? sabisfy

i’ _u+mw, @ == v4-a"y,

where
2 2
“ MHJ»——— + 2 (e -+ y) = Omodd,
CD
which has & roots @, ¥ because (2'wu w) = 1.
Note also that
(3.10) of@) = L+0(1ja) if &tN

becauge of the old result of Jacobsthal [8]
N —a® '
> (Y3 = o

vmed &

on a sum of Legendre gyrobols. Algo, from (3.4),
p(d) # 0=>p(®) =1 when o&|N.

Hence

(3.11) o(n) 5= 0=-g(n) » 1.

Observe algo from (3.9) and (3.10)
(312)  o(&) =1+0(1j8) i »>21,6>3, TN,
Returning to the “errér term” B observe |
X, D) < Kne(2, 1,

where 5, is as discussed in the author’s paper [3]. Since the polynomial
Sf(rys) = N —r%—s® gatisties the relevant hypotheses {being irreducible
over the integers, having no fixed prime divisor amd being not indepen-
dent of either » or s) we m&y use the result

, *yY |
Z .;M()i’h(ls )|\ﬁ6“g“w;

1< Tlogfy
which was deduced in [8] (for the special cagse § = 2, but the method. is
sufficient here) from Barban’s Mean Value Theovem ([1], [3]) for the
sguare of the error term in the prime number theorem for arithmetic
. Progressions. Appropriate choice of ¥ establishes (AL) with
(3.13) «=%. '

~ Oage II. The sets =,. It is necess&ry' for our purposes to establish
the properties (A1), (A2), (A3) for certain » > Z. This rules out any com-
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pletely elementary approach. We quote results on the Kloosterman sum
due to Weil, although earlier estimates due to Davenport [2] would also
be more than sufficient for our purposes.

" Let w, v cover the Enls (K, n, 1) solutions of

(3.14) Uy v Bl (we, Kn) = 15 (ut, 00 ePg;

W4-9*— N = 0mod En; uv(u?-+v2—N) = 0mod.Hin.
Express & as

(3.15) E(K,m, ) = E(K,1,)em)on, ),

where o(n; 1) = 1, so that ¢ is multiplicative. So too is o in the sense

(3.16) o(n,y = [] al&, cai).

In, a1

Observe that ¢ is a8 has already appefmred in (3.5), and that
{3.17) (X, 1 1) = (K, 1),

where v was also defined in {3.5).

Note that if g{n) = 0 then «, would be empty and the desired
result (Lemma 9 below) would follow tnvmllv Consequently we need
only consider the case when

(3.18) e(n) 52 0.
Hence, by (3.11),
(3.19) e{n) » 1.

To estimate the sum (2.1) commence by noting

EPREED A PN (P

ey, (X7 vsumodﬁnz s=pmod Knl
as0mod]

where %, v cover the solutions of (3.14). Thus

- 1 T u g(?!:-—'l")—i—h(’t)—-—&')
@20) D) 1= m 22 Z"( il ")

ey, 1<lr,8 S frohmod Kond w,e
a0 inod !
_PEE, ) O(zs(fc . ))
< Inl
1 - AN —gr—"hs \ 1 (gu—i—h'v_)
(Enl)® Z s ”("’""ffnz )Ze Enl
whmod Knl 1<r,842 %,

Ll (0,00

o) {1+O(,§_)}+En(xm1), |
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say, where

(3.21) | X, =Z'EE, 1, 1)o(n)/En

" with ¢, &, o as in (3.18), and e(x) = exp(2ndw). Thus (3.17) shows that,

in the notation of (3.6},
Y _/ZB( (K) )2 Q(M’)

AN

(3.22) -

We estimate the sum

g = A
Sig, h; K, n, 1) zze(gmﬂ )

Uy

(3.23)

that features in (3.20) via its multiplicative property

2. oK g A
- 8g, by & & &)
IR, ¥ ln. 5

(3.24) S(g, h; K, m, 1) =

LzMmA 5. Let

ot 2|1 i i,
0 if not.
Then
(i) Stg, B) € & (g)aﬁ(h —Hf" if 31oN,
(i) (9' B) < @95(g) d5(h)+ (9202, &) if DN, & 2,

i sl

(1) S(yg, h, , & &%) < ﬁ”*‘“s’-‘(di", @', @). |
Proof. (i) The non-trivial case is when &4{gh. Observe

e % - ho
. 8(g,h; L,1,8) = ‘ Z 3(9(5 )

%,
wo(ud 4ol Nm0mod & .

— :
-3 3¢ 3 <o
: a0 v W22 Nl
Using well known properties of Gauss and Kloosterman swg we have

E U—HZeﬂ{w uﬁ—Mﬁ
AWy VW

u4v? e NamQ)

N) -+ g -+ o}

) .
) % e5( — Nuw) ;‘ 8 (10u® - gu) 2 e <4 ho)

U]
&1

. =
eg{ gu 4 ho) —}-326‘5{—1\7'@04—&%(9“«}-1&”)} X

U, iE w=]

1

x[ 2 9,3(00“)]2 <Va

amod &
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when @125 and g,k are not both Omodd. IIere 2% =1mod& and
@ = 1 —2,

(ii) This follows by an argament differing from that for (i) only at
the last sbep.

(iii) This is the “trivial” estimate that follows from e(m) = O(1).

The nexi lemnna uses the structure of % ay n = mg;, where g, iz a
“arge” prime.

LmMa 6. Suppose g®-1? 54 0. Define 4 = 2mN (g, h) (g + h?), where
the h.eX. (g, k) satisfies (0, 2) = &, (g, 0} = g. et | = 1,1, where &I, >4
and (ly, A) = 1. Then 4f L < g, q, i prime and &> 0 we have

u#(1)

(i) =D =180, b mgy, 1) < EmIV (ALY,
L

(i) Ly = > wr()I8(g, by K, mgy, )] € EmI* (ALY
Il

The implied constanis may depend on e

Remark, In the apphcatmn of this lemma, it w111 be cruecial that
the bounds obtained do not depend on g,.

Proof. The given conditions imply & = ¢, when &|l and I < . Conses
quently use of Lemma b (the “trivial” part (iii) when &]4) gives
> K, m, 1) il

111261} ]/
11-‘(111 =1

<

where d is a constant implied in Lemma 5§ by the use of the € symbol.

Thus
2 < Y EmE(E,m, ) > dw“ﬂn/i;« EmI*(AL)
fyld 21(251'4
p¥ ()=l

because &(d%, ol’;", @) = O(1). Thig proves part (i) of the lemma; part (ii).
follows becauge X, L.

Losmaa 7. Let H(X,, 1) be as defined in (3.20). Suppose n = mqgy
a8 in Lemma 6, where (ag in the inlroduction) m and the prime ¢, satisfy
(8.25) m < 2,
and N = 22% a3 in (3.8). Then the properiy (Al) holds for the set o, wilh
a = 1/[8. .

Proof. Use the inequality

2 (1{ z)<m{z’%}’

Lyl

7 < gy,
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valid when |g|< $Enl. This shows

—~
B(X,, 1) < 75l I8{g; By XK, n, )|+
0<|g|, th| S Xnl g
Z X1 Y
——— e S (g, O3 Ty 0y )] - .
T nd > 7 y' (g5 05 Fey 2, D)l AZ
O< gl tiinl 10}=0

The hypotheses of the lemma give
(3.26) oz < X
while a trivial esfimation of the number of solutiong of (3.14) shows
| Eng(E,1,1)o(n) < (Kn),
g0 that (3.21) gives X, < Z% Thus (3.26) and (3.25) give
L2 < g,

Aecordingly Lemmsa 6 applies and shows

© D @B,

I<h .
1 <
< Y Tﬂz KIS (g, b; K, 0, 1)+
o< o, | b 54 Enl [ .
Z il A
+"1c_n > ngzmww 9,0, K, m, )+
<|f|<tEKnl [
+2
o Il ge=0
€ KEmIM N 1+//Im ) @ N* L (m - Zlg,) .
By (3.21), (3,11) (3.25) we have ‘ ' '

X, > ﬂ/mgj > 7% and  #g L € s < X,
 Also by (3.8) " < 7 < X, Thus by (3.26)

2""" ) B(X,, i< Y}/10+1zc/5

<L
and the result of the lemma follows. ‘
The reader will observe that the value 1 /3 of could, after womo

eff:;lt, be 1ep1aeed by Some relabwely eomplwa,ted fonction - of m
and g,.
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4. The application of the %-resulue SIeve. The set o to be sifted is
of the type

2

— — 2

N—p*—g .
{4.1) s = {_a =g 4 odd primes; 9, gL VN2

N p?oe g = 2% mod2¥; N—pi-gt = Omod'Sh}.

Thus in (3.1) we have taken K = 293% and #, a certain set of residue
classes modulo 278", The choice made below of g, ¢, 6, H will ensure
{inter alie)

(i) all members a of o/ satisty

%2) 4 = 1mod 4;

(ii) the parameter X appearing in (3.6) satisfies

(4.3) - X—oo ag N-»oo;

(iii) the function 7 appearing in (3.7) satisties

(4.4} (@) < & for all primes &
and ‘ :
(4.5) _ {2} = 0 for all exponents @ = 1.

To achieve this, specify

=p=0=0 . i N =3modd,
g=1, g=0G=0 if N =4mods,

G =4 it XN =6modS,
| , @ =6 if N =2mod8
and

0 if N =2mod3,
12 ¢ ¥ =2mod3.

Thug we have congidered all five residue classes, mod 8, that, in the enun-
ciation of our theorem, may contain ¥, and the implicit condition N —p2 —

. —¢® =2 0mod2” ix & consequence of the others.

Condition (i) i# now immediate from the fact p? = ¢* = 1mod8
and. that & is even. Condition (il) follows since our choices ensure that
the agsociated congruences (3.4) do in fact have solutions when I =1;
thus in the notation of (3.6) we have

(4.6) B> 0.



270 G. Greaves

On the other hand (8.4) now has no solutions when ! = 2 (this is a corollary
£ (1)); thus
(4.7) T(2) = ¢{2") = 0,

where ¢ ig a8 in (3.7). Lastly, to show 1(&) < @ we have to establish that
in the eongruences (5.4) with I = @ it is not the case that the condifion

(48) Blf(u-+ vt — W)/}

tollows from the others. If @ >3 (so &{K) this relation would imply
@|(u2 -+ % — N) whenever (wv, &) = 1, henee d&|(uj —ui) whenever (4, u,, &)
=1, 80 & would divide ome of B?w-l2 = 24 ond T3—1% == 48, o contra-
diction. I & == 8 then the identity w*-4-22—XN = 2--Nmod3 shows
7{3) =0 if ¥ % 2mod3, while if ¥ = 2mod3 then (4.8) would require
9/(u2--v*—N) whenever (wv,3) = 1, hence 9](42—12), also @ ocontra-
diction. :

Property (Al), with o = }, was established in Section 3. To establish
(A2), (AS) observe that (3.10) implies

(4.9) CB(B) = 140(EY)  # BEN.

Also 7(¢) = 0 if ¥ and & = 3mod4. With (iii) above this ostablishes
(A2), (A3), with # as stated in {2.3), a = 4 and L = ()(loglogX) becanse

(4.10) lc?b_\ Z loga

LNV Bglog N

y logw = 0(10{,10@;1\7)

logN

From Lemma 2 we accordingly have
LeMumA 8. Let o be as in (4.1), and suppose # = X with o = 3,
l<u <2and X = BUAVN[2) as in (3.6). Tet IT( o7, P,) be the number
of pairs of odd primes p, ¢ < I/N_/2 such that the corrésponding member
= (N—p*— )& of o is divisible by no prime & with & = 3mod4,

& < 2. Then
X . o loglog X
ot P)> — - DI, { stz o
(380> e Py = = +of, logxw“)}
tohere .
41y 1, = l‘:ﬁi( @)/
w=imod 4 1_"1/66

with = as in (3. 7)

It iy important to observe that because of (4.4) and property (A3)
established above the infinite produet defining I7, converges, and that

(4.12) | . I,>o.
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Tn practice it iz slightly more convenient to express this result in
terms of I, and to set & = N, Since X = Bl (VF|2) from (3.8), (3.6),
so that logX = log¥ - O(loglogN Y, we obtain under the conditions
of Liemmma & that .

pBil, N lool
(4.13)  IT(t, ) > o - oglog ¥ )}

Ve (logNp U iy Y ((logN)“m
Qbserve that in the notation of the introduction
(d14) o(et, ) = H.

5. The application of the upper bound sieve. The sets 7, to be sifted
are

#§ (N —p2 — g8 —_—

(6.1) &y = {'—‘i"z‘f‘;gﬁ?—) 1<r, s<VN[2; N—#2s? = 27mod 2¢;
Nor?s? = 0m0q3’”%; (rg, 6n) = 1}',

where n == mq, a8 in Lemmas 6 and 7. These sets are as in (3.2), where the

choices of Z, % are as alrendy made in previous sections. Thus from

Lemma 7 Lhe properfy (Al) holds for &, with « =13 and X = X,

(&) = (@, ®) s given in (3.20). Recall from (3. 16) that v is defined

by &"}in and that we muy suppose as in (3.18) that

(5.2) o) #0,

a# the result of Lemma 9 below holds trivially i ¢(n) = 0 because the set

«#, iy then empty. : :
Comparison of the congruences in (3.4) and (3.14) shows

1 . . -
(5.8) tr(l,cﬁ)=2-—w:j+9(cﬁ) if @>3,.

(5.4) o (@, @) o(&) = (@) i 6>3 and »>0
hacaniye arl K when & > 3. Betause of (8.12) and (5.2) thm implies
y(@) = 3-}«0(""1) it atmNg,
p(@) =0 for all &.
Note algo '
(b.5) o(1,2) =0

because the choice of By in (4.1) satisties (4.2).
Returning to ¢ we infer

T y{@)logd - ( lo
St Bloga - O |1
§ 5 0gz- [ E

C g amN

-

2 ) = 3logz+0(loglog N}

g

21



272 G Greaves

by the argument nsed at (£.10) and the fact that mg, < N from (1.4).
‘ These remarks establish the conditions of Lemma 4 for the set «7,.
The corresponding copelusion gives the following result. y
Luva 9. Suppose g, is prime and g, > N2 Let P(m, q,) denote
the number of pairs of primes p, q such that the corresponding member a of
the set o/ defined in (4.1) 48 of the form a = mg,q, where ¢, > ¢, and ¢,
18 pwﬁme. Then - ‘

. o 0(7) @' Cﬁlw
Blm, ¢ <258 ( K )log”Nl[] -«J/ }X

Ioglog_N
logN /|’

X{l—l O(

where the imfinite product 48 convergent.
. Ariging from the result of Lemma 9 15 will be neceggary to estimate

- YT L

Y Luf‘ ez

where the summation iy over m divigible by no prime @ == 31no0d4. First
note an important property of the function o: from (5.3) and (3.7) we
have for primes & >3 (for which &4 K)

e R[S
& ~ ~ ?

@ & ] @

(56) 11—

with 7 as in (3.7). Thus ¢(1; @) < @ because of (4

(5.7) ' L—a(d,

4), and (4.9) gives |
@) /@)™ = 0(1).

Returning to 2Z(y) observe

Z'(y)‘m H l—o(1, m/wzy

Bsad mod4 1 1/00

where now the mmultiplicative function y is given by

0(@*) —o(a**) &
1—o(1, &)/

@) =

Thus because of (3.12) and (5.7

) the conditions of Lemma 3 are satisfied
and we infer '

1 vi{m —
Z y'(m', L= gD Viogy + 0(logi*y),

mLy .

icm
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where
T 1 (6" 1—o(a¥, &)/
- J] o3 g e o
S=3mod s w 0 w —o(l, @)/e
Congequently .
(5.8) Z(y) = HVlogy + 0 (log**y)
‘where
- 1 xel o
== 1] {( 11/ Z "F‘“(l-cr(w , w)/m)l.
Ardmodt

Becange of (3.12), (5.3) and (5.4) the contribution to H from odd primes &

is
1 a1, @)\ e(@)] _ .
FREYES {(1 7 )F 5]
Thus (5.5) and (4.7) show
(5.9) . H =2

Lemma 9 and this estimate for £(y) now yield the following result.

Tamma 10, Let o be as in (4.1), and suppose N°" < 5 < N'*. Let E'
be the number of @ in of that are of the form ¢, q,m, where '

(i} @ implies @ =2 3modd and & < 2,

(n) oy o Gre primes, &< q1< fa, and ¢; = 3mod4. Then

N Y ( og N ){ (loglogN )}
Do l O P,
Togi ¥ log'* (N (") log Tloge 4 log ]

where D, Iy are as in Lemma 8 and O = 2°3*Bp(K)/K).
Proof ‘With P(m, ¢;) as in Lemma 9 we have

- \ !
B D Pimg)
! i\l~ z(”-:L{]/N

g -
o n)lw; (]r(fL) R - ,.N
K ]og“N

B < DI,

con 5 49410 27)

ey < VE

But g(g,) == O(1) (by {3.10}, or trivially it ¢;|¥ beeause ¢, = 3mod4),
The result now follows by (5.8), (5.9).

6. Conclusion. Ii merely remaing to observe that in the notation of
the Tntroduction we hove fivstly, by (4.13), (4.14),

0( loglog N )}
(log )™ Jf’

ﬂ>_l7:;ﬂf3ﬂ (1 gN U Vet
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gecondly (Lemma 10)

. ) N _i[ : loglog N 1
L) [ ((l.ogN)”“’)l '

Here o is defined by the relation z = ¥ ag in (4.13). Choose v in the
range 1 < # < 6/5 permitted in Lemma 10 80 as to maximise

w0k ]/" Y
=l Ak

this maximum value & is positive because for v > 1

(v) = 2Vo— L4 Of(v—1)"%).
This gives the theorem stated in the Introduction, with
G . A = DBGIT, V2.

Here B is as in (4.13) and D is given by (2.4). The product IJ, was defined
in (4.11). Because of (4.12) we have A > 0 as required.

It ig possible to replace the constant 4 of our theoreny Ly a larger
number, for example by following up the consequences of the remark
made at the end of Section 3. '
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m“ AOTA ARITHMETICA

XXIX (1976)

Lower bounds for discriminants of number fields
by
A, M. Opnryzxo (Cambridge, Mass.)

1. Introduction. Let K be an algebraic number field of degree n = #y,
with r; real conjugate fields and 27, complex conjugate fields, and let
D = Dy be the absolute value of the discriminant of K. In 1882 Kronecker
[6] conjectured that

(1.1) . D=1 for w>1.

Thig very important result was first proved in 1891 by Minkowski [10]
as one of the earliest applieations of geometry of numbers. Subsequently,
by refining his methods, Minkowski [11] showed that in fact

2rg 0 2\ Mol
(1_2) Dlha = (_}) ,nz(m)-zm " (ez)rﬂn (%) +0(1)

= {7.380...)" (5.803..."2"" 4 6(1)

© a8 #-+ oo, which it the estimate nsually presented in books [8], [13]. Due
- to the efforts of many mathematicians, today there exists an extensive
. literature devoted to lower bounds for direriminants (for complete ref-

erences, see [13], pp. 80-81 and [16]). Of those papers which do not uge

* geomatry of numbers methods, most prove only (1.1). Of the few which

obtain lower bounds for I which are exponential in n, the best until very
recently was Siegoel’s emtimate [18], which states that for K totally real
(Lo, 7y ==m, ry=0), _

DV 7,402 ... Fe(l)

&% 7-~00, which is glightly better than (1.2). Considerably better esti-
mates bave obtained through geometry of numbeyrs. The Dest publishefl
bound for totally real K is due to Rogers [16], who showed that in this
case

" pins 282 ) = 39561 .. o()

il
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