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A conjecture of Irdos on continued fractions
by

Warrsw Prriare (Urbana, II1)

L. For 0 < # =<1 let [oy(®), ay(®), ...] be the continned fraction ex-
pansion of » Write

Ly(w) = max a,(z).
| lEnsN

About ten years ago Professor Hrdos [4] eonjectured that for almost all a ‘

Limint ¥ Ly (z)loglog ¥ = 1.
N

Apart from the value of the constant I shall give a proof of Erdds’ con-

jecture. :
Trrwonrem 1. For almost oll o
liminf N1 Ly (#)loglog N == 1/log2.
N-roo ’ .

By modifying methods developed by Barndorff-Nielsen [17] for simi-
lar problems eoncerning independent identically distributed random vari-
ables we get the following refinement of Theorem 1.

TrrorEM 2. Let yy be nonincreasing sueh that wy N is nondecreasing.
Then

Ly(m) < N log2
Jinitely often or infinitely often for almost all @ according as
_ E_uxp ( —Ljy,)n " oglogn
converges or diverges,
JOROTLARY. Let-k 2 2 be integer. Then the ineguality
N7 Ly () (logg N +210g, N - .. + (1 + 8)log, V) < 1 /log?2

has finitely many or infinitely mamy solutions for almost all @ aéeord'ifn.g a8
00 0r 60, If k == 8 then 1+ 8 is to be replaced by 2 6. Here log,

denoles the k-fold iterated logarithm.

Theorem 1, follows from the cordllary it we put % = 2.
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: There is no analogous result to Theorem 1 with a finite nonzero limes
- gnperior. This follows from the well-known

THROREM 3. Let p(n) be a positive nondecreasing sequence. Then for
almost all o the ineguality

(1) Lyy(w) = ¢(N).

has: finitely many or infinitely many solutions in integers N according as
the series

) S 1ip(n)

converges or diverges.
CoROLLARY. Let ¢(n) be as in Theorem 3. Then for almost a,u m

(3) ‘ © limsup Lp{@) fp (N)
N-»g0
is either 0 or oo.

Theorem 3 is an easy consequence of Bernstein's theorem on con-

tinned fractions. Indeed, if supe(n) << oo, then (2) diverges and hence by
Bel;nstem 8 theorem wn(m) = ¢(») holds infinitely often for almost all o
If, however, @(n)} oo then, as is easy to see, (1) holds finitely often or
mf,mltely often according as the inequality a,(#) > ¢(n) holds finitely
often or infinitely often which, in turn, by Bernstein’s theorem holds almost
everywhere according as the series (2) converges or divergos.
_ For the proof of the corollary we distinguish the cases where the
series (2) converges or diverges. If (2) converges we choose & monotone
sequence z(n) tending to co but so slowly that still ' z{n)/p(n) < oco. Then
according to Theorem: 3 the inequality Liy() = ¢(N)/v(&) holds only
a finite number of times for almost all . Hence (3) vanishes almost every-
where. If, on the other hand, (2) diverges we pick 2 monotone sequence »(»n)
tending to 0 such that Y v(n)fp(n) = oo Then Ly (%) 2 ¢(N)/v(N) has
infinitely many solutions for almost all # and thus (3) is infinite almost
everywhere.

Theorems 1,2,3 and their corolla.neq itnprove upon results of
Galambos [6], [7]. I‘or the proof of Theorem 1 we use Theorem 4 helow
which also strengthens z result of Galambos [6]. Exeept for the appli-
cation of Theorem 4 the proof of Theorem 1 is different from the one
given in [T].

In dealing with continued. fractions it is wore convenient to wse the
Ganssian measure P instead of the Lebesgue measure A. P is defined on
the Lebesgne measurable Rets E by

P(B) =

10g2 1 —}-m
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TUROREM 4. For any 6 << 1 and y > 0
Plw: Ly(o) < Ny/log2} = exp(—1/y)+ Oexp{- (log. ¥))

where the constant implied by O depends only, perhaps, on 6.

With an error term of the form o(1) Theorem 4 is due to Galambos
(6] who subsequently [6] showed that his result remains valid i P is
replaced by any probability measure on [0, 1] abrolutely continuous
with respect to A. (In particular for 2 itself.) If we replace P by probability
meakures having o “smooth” density then Theorem 4 itself remains valid;
in particular, Theovem 4 continues to hold if we replace P by i Since we
shall not need these facts we omit their proof.

As already indicated above I shall give a direct proof of Theorem 1. -
The proof of Theorem 2 will only be sketched in order to avoid lengthy
repetitions of parts of Barndortf-Nielsen’s paper [1]. The proof of Theorem
4 also will be only sketched since it consists only of a modification of Ga-
laxbos® paper [b].

We remark in passing that Ba.rndoﬂf-lesen’s Theorems 1 and 2
of [1] remain valid for sequences of random variables satisfying a nniform
mixing condition

WP(AB)—P(4)F(B)| < ¢(k)P(4) P (B)

for all A M} and Be Mp,. Here M? denotes the o-field generated by the
random variables X, (& < n < b) and ¢{k)}0.

2. Lemmas on continued fractioms. The shift transformation 7T asso-
ciated with the continued fraction expansion is defined by Te = 1/wmodl.
T'is called & shift since a, ., () = a,{T2) = a,(T"») for all positive integers
n. T maps the unit interval onto itself and preserves the Gaussian meagure
P, ie, P(TT'B) = P(B) for any L-measurable set B. This explains the
importance of P in investigations dealing with continned fractions. Lemma
1 just proves this point.

Losmwa 1. For all positive integers n and w

.P{w.: Gy (0) 2w} = P{o: a,(w) 2 w} = log(1-+1/w)/log? = p(w) (say).

The functions (@), ay(®),... congidered as random variables on.
[0, 1] are not independent. However, they satisfy the following mixi.ng;
condition.

LioMMA 2. Let M, be the smallest o-algebra with respect to whiech a, (@),
W n< v, are measurable. Then for any sets Ae My and Be My, we
hawe _
(4) , [P(AB)—P{A)P(B)| < of"P(4)P(B)

where 0 << g<< ) and 02> 1 are numerical constants.
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In-other words if A is a set defined only in lerms of A (Y, oy (@)
and B is o set defined only in terms of og (@), dy o), . then (4 ) holds.
Lemmas 1 and 2 are well-known (see e.g. [2], pp. 40-50, or [9]).
We also need |
Lemma 3 ([8]). Let (B, n= 1) be o sequence of measurable sets in
o probability space. Denote by A(N, x) the number of dntegors no N suah
that 3¢ B, i.e. AN, ) = %h%(m). Pt
LN .
p(N) = 3 (B
' Wil IV
(1B denotes the measure of B). Suppose that there ewisls a convergent series -
Do, with ¢, = 0 swuch that for all integers m > 1 we have

{B) By By | < By | | By |+ By | -
Then for any & >0
(6) A(F, @) = ¢(N)+ O (g2 (N))og"* " ()

for almost all a. )

Remark, If p{o0)< oo then (6) holds even without assuwming ().
Thig iy just the convergence parl of the Borel Cantelli lewa.

3. Proof of Theorem 4. We change the proof given by Galambos [5]
only insofar that we judiciously choose the parameters Z and m occurring
there. The details are as follows. First we may assume that 1/y < (log ¥V ¥
since the other case is easily reduced to this one. We choose

, Z = [log ¥ [loglog N1.
Then rel&tlon (10) in [a] becomes,
ew«/) exp (dofy) < N~

f

(7) Zﬁk

2 .
for some @ >0 using Stirling’s formula. Next we choose m = [log? X,
We observe that the nuwmber of terms in B, does not exceed ZmN®
< N 'og* N since each term in B, containg ot lenst one pair of indices
iyy 45, satisfying 4,,; —4; < m. Conseguently the momber of termns, in 87

eqaals (lj) + 0 (N ogtN). Henee for k< Z

[ I
{8) Ry, < N og® Np®{w)- (.&c)’ < N Mogs N (mfffif') <N

and
o s=(f)

:%_%-O(N““)- where |0] = 1.

(_Z\T’“‘llogaN))(l+O (FYE (Y)Y (L Gegle Ny
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The inequalities (7), (8) and (9) replace [5] (10), (13) and (14). The
remaining changes are only minor. ‘

4. Proof of Theorem 1. Since A(F)/logd < P(E) < A(E)/log2 the
measures P and 4 are equivalent, i.e. they have the same sets of measure
0. Hence we are to show Theorem 1 for all o axcept a set of P-measure 0.

 Forintegers M, N 3= 0 we pub

LM, N,2) = max a,(%)
Man M- N
and
pin) = n/(loglognlog2).
Bince the transformation T preserves P we have by Theorem 4 for

any integer &= ky
(]0) _P(_Elk) — P{w. L(]cﬂic L2+ ’I‘) < w(]cz(?c+1) }

= Piz: L(0, BV, gy « o(RP¥H0))

> Lexp( —loglogB®+Y) = L(klogk) .

Now B, depends only on a,n(m) with % < n < B 42 Hence by

Lemma 2 we have for any pair & < I of integers
P (BB — P () P ()| < o ™ P(B) P(Hy)

gince (% --1)2E+D . g2e+l) _ 2% o 1 Oonsequently,  Lemma 3 implies thatb
for almost all # the events E, oceur infinitely often since ¢(N) » loglog N
by (210}. On the other hand, by Lemma 1

P(Fy): = Pla: L0, B, 2) 2 p(B*N < Y Plo: a,(2) =
1ok

— ]ﬂﬂﬁ:p([vj(]cz(lc+].))}) < kmlogl()gkz(k'l'§ i 3(F+1) & ka[Z

p(BHD))

Thug by the convergence part of Lemma 3 (which in fact is the convergence
vart of the Borel-Cantelll lemma) for almost all # the events ¥, occur
1 i

ounly & finite numbers of times. Hence the eventis

By— T, = {w: L(0, B 4+ B0 gy < (50
oceur infinitely offen for almost all 2. But this lnplies that the events
L0, B0 gy o (BP0
ocenr infinitely often for almost all a. Clonsequently,

(11) : lminf ¥V 1Ly (@) loglog Nlog2 <1 a.c.
N
This proves half of Theorewn 1. ‘ :
We now prove the opposite inequality. Tiet 7 > 1. Again-by Theorem 4

P(Gy): = Plo: L{0, [*], 0) < v p([*7]) < exp(—rloglogr) < I~
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Bince > k™" < oo the convergence part of Lemma 3 implies that the events
@, oceur only afinite number of times for almost all o, or

L(0, %], @) > r~2p([F*H])
for all k2 ko(z, v). Now let N> Ny(x,7) be given. Define & by [r*]
<N < ¥+, Sinee L(0, [7*], #) < Ly (@) and p(N) < w([**"]) we eonclude
that for almost all # and all ¥ = N,
_ Lig(w) > r~*p(N).
Since 7 > 1 was arbitrary we obtain
liminf N Ly (w)loglog Nlog2 =1 a.e.

N-so0

This together with (11) proves Theorem 1.

5. Proof of Theorem 2. The following lemma corresponds to [1],
Lemma 4.

Levma 4. Without loss of generality we may assume that
(12) (2loglogn) ™' < y, < 2/loglogn.

Proof. Suppose that Theorem 2 has been proved for sequences w,
satisfying (12). T¢ any nonincreasing sequence w, such that sy, is non-
decreaging we define a sequence

it w, > 3floglogn,
T i (2loglogn)™ < y, < 2loglogn,
(2loglogn)y™' if y, < (2loglogn)™ .

2/loglogn

Then the series

(13) 2011)(_ —1/ywlyn"oglogn
and
(14) Zexp( —1/yp,)n"loglogn_

converge or diverge simultaneously. Indeed if y, >y, for infinitely many
Ty SAY My, Tosy <oy Byy. .. hen the n-th partial sumy of (18) and (14) are not
less than :

Ty
exp( —4loglogmn,,) Z w00,

faaBl
On the other hand, since

Z exp( —2loglogn)n'loglogm < oo
n=s

the terms with y, < 4, cannot influence the simultaneous GONVergence
of (13) and (14). :
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The remainder of the proof is the same ag in [1].

As became evident from the proof of Lemma 4 our situation, is some-
what simipler than the one considered in [1], at least in one respect, becanse
the distribution function F{#) of the partial quotients &, is explicitly known
F(t) =1—p([t]). On the other hand, since in [1] the random variables
are assumed to be independent, the distribution funection of the maximum
of the first N random variables is simply (F(1)/”. But we already have
proved Theorem 4 which gives an estimate of the distribution function of
L. By Theorem 4 :

PlLy(®) < Nyyflog2) = exp(—1/py) + 0(exp(—(logl\7)"))
= oxp (~1/py)(L+0(1))

in view of Lemma 4. Consequently, we can replace the factorg (F(A,))"
in [1], pp. 388-392 simply by exp ( —1 /v,) without affecting the convergence
properties of the series under consideration. The proof of Theorem 2 is
entirely parallel to the proof of [1], Theorem 1, pp. 388-392. We only
have to take precautions at these steps where the independence of the
random variables i3 used. In most cagses Temma 2 will take care of that.
For example Kolmogorov’s zero-one law continuss to hold for mixing
sequences of random variables (see [3]). The only place which reguires
& slight modification is the estimate of §,; defined in [1], . 388. Choose
% 80 that 1 - og" < ¢'/® where ¢ and g are the constants occurring in Lemma
2. Using the notation of [1] we have for n 3 n,

8, = P(B,, N, . )
<P {Emnn(ar'(m) < Yy M1 1082, My, + 5 < v <))
P (B ) Pl@: L0, Mgy ==y —To, @) < g, My l0g 2) (L -+ o)
< P(B,, e

by Lemma 2 and Theorem 4. The other modifications ave only of a routine
nature. '
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On composite » for which ¢(x)|n—1

by

Akl PomerANCE (Athens, Ga.)

§ 1. Introduction. Im {4], D. H. Lehmer asked if there are any com-
posite natural numbers # for which ¢(n)|#n —1L, where ¢ is Buler’s funetion.
Thig is gtill an unanswered question, many people feeling it is as difficult
a8 the odd perfect number problem. There have been partial results how-
ever, such as: If such an n exists then n is divigible by at least 11 distinet
primes, and if 3|4, then n > 5.5-10°" and » is divisible by at least 212
distinet primes (Lieuwens [57).

It A is an avbitrary set of positive integers, then we deno’re by N{d, x)
the number of members of A which do not exceed . Let F denote the set
of composite n for which g{n}|n —~1. In [6] we proved

(1) N(F, ) = O[wexp(— ¢, (logwloglogx)?)]

Tor some ¢, > 0. If ne F, then o' = 1(modn) for every a with (a, n)
=1, that is, # i% a Carmichael number (also called an absolute pseudo-
prime), Henee o result of Knddel 3] dealing with Carmichael numbers also
implies (1). However, a result of Erdos [1], also dealing with Carmichael
numbers, gives the better estimate

N{F, @) = Olwexp( —eylogaloglogloga/logloga)]

for some ¢, = 0. Tn the prosent note, borrowing somewhat the methods

of Knodel and Erdds, we prove
(2 N(B, @) = 0 (5 {loglogm)’?).

In faet wo prove & more general theorem for which (2) is a special case.
Indeed, in [4] we congiderved the sobs

Jf‘(a = {n: n = a{modep(n))},

F (@) = {ne Fl{a): n # pa for each prime pta},
where ¢ i3 an m‘bitmry integer, We prove that for any a,

(3) N{F'(a), 2) = O (loglogm)"?).



