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The divisors of integers II
by
E. R, Harr (Heslington)

Introduction. This paper is concemed with the (1151:111)111,1011 (mod 1)
of the numbers logd, where 4 runs through the divisors of an integer =.
This was the fopie of my previous paper [4], also of BErdss and Hall [31.

We may think of thiy distribution in terms of the points

dziﬂ: (d]w)

lying on the unit circle — I proved in [4] that as s tends to Infinity

through a sunitable sequence of asymptotic density 1, these points are
ayymptotically uniformly distributed; an estimate for the discrepamcy
was given.

We can ask about the maximum and minimuni spacing between the _
points. Theorem 3 [3] applies to the first question: if f{(#)—co arbitrarily
slowly as n—+oce then for almost all n,

sup inf flogd, —logd,|| < 2-lstoEn+7(yioglogn -
dyln dain
hFdy

where ||z] denotes the distance from 2 to the nearest integer. I will prove
the following result concerning the minimum sp&cmg

TurorEM. Let
g(n) = inf|logd, —logdyll, dy,dsln, dl # dy.
Then fm every fiwed &> 0 and almost all »,
g=~{t+eloglogn - g(n) < g—(1—<)loglogn
This is related to a result of Brdos [17]: if
¢1(n) = inf|logd, —logds|, di,dsln, dy #dy
the same conelusion. holds for ¢, (n) flogn in place of g(n).

"Proof of the theorem. We begin with the right-hand inequality, and
we need the following result: '
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TevmA. Let § and u be any fived positive numbers and r be o prime
number. Then for all but possibly

()

exceptional choices of the © distinet residue classes fy, Ry ...,
the number of solutions N (b) of the congruence

hy (mod. r)

gl 7= b (mod 1), ewch & = 0 or -1,

Py Y P S
sotisfies
3. R
(1~n) M < N{b) << (L) o
for évery dnteger b, provided tlog3 Z (1 d)logr.

We shall only use the fact. that provided » <1, this implies N(b)
is always positive, and I think a similar argument o that of Hrdss and
Rényi [2] would give this; the result which I have stated may be deduced

_from a theorem of K. ‘Wild [6].

The argument now follows [3] in some respects, and I will be able
-to suppress several detaily. For each 2 > 3, let I'{z) be the interval

(exﬁ({logIOgm)a) ml](loglgngJ

and suppose that the integer n <L« has ¥ prime factors py, ..., p; lying
in Ix). For all but o(x) such », these primes will be distinet, moreover
the familiar variance method of Turdn [5] for estimating the normal
order of an additive function shows that ¢ will satisfy

loglogm—(log;log7})2;'3 < t<< 2loglogs.

© We restrict our attention to these n, neglectmg a gequence of %ero dOI]HIfV
Now let 7 be prime satistying

%.3(1 af2)loglog x < 7 :;: 3(1—3/2)10g[ngw

so that for » = a{e} we have

tlog3 = (1 - 5«) log3-logloga 2= (1 + - )Iorm
and suppose that for 1441, '
' [rlogp;] = h; (modr).

We ret 6 =e/4, = 1/2 and note that ¢ and ¢ sabisty the requirements
of the lemma. Asyume for the moment that the residue clagses &, defined
above are distinet and unexeeptional in the sense of the lemma. Then
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N(1)> 0, that is, theve exist 64, e5,..., 5 each equal to 0 or L1 {and
plainly not all zero) such that

ahy kst .+ ghy =1 (mod r)
and so

r{s1l0gp; +salogpy + ... + glogp,) = = o (mod 7)
where - '
l—t<<a<lt.

Nowlet d; be the product of those p, for which & = +1, and d, the product
of the primes p; with ¢ = —1. Empty products are taken to be 1 — in
view of the iact that the ¢'s are not all zero not both 4, and d, equal 1,
in fact they are distinet divisors of = satisfying '

2t 8logloga
o= 3{l—=2jlogTogs *

logd; —logds| <

It & > 2,(e}) and » < x, this implies that

g(n) < [logdy —logdy| < 37U~ Nowloen,

To complete the proof that this inequality holds for- almost all =,
it is sufficient to show that from the set of # -+ ¢(m) integers # < & under
congideration, we can find a sub-set, again with cardinality @ 4 ¢(») such
that the residue classes h; corresponding to » are distinct and unexcep- -
tional in the sense of the lemma. This part of the proof is very gimilar to
the argument following Lemma 2 [3] and need not be repeated here.

- It remains to show that for fixed &> 0 and almost all =,

g (%) = 3—(1+e)loglng—n .

Evidently it will be sutficient to show that if we define

,u({.ﬂ) — 3——(1-{4ej2}luglog'z

then the number of integers n < & with g(n)< w(w) is o(z). We define

T(y) = inf|logd; —logd,|, (11 LY, A <Y, dy 7 dy;

sinece ¢ is trangcendental, T'(y) > 0 although T'{y)—0 a8 ¥ co. We suppose
that ¢ tends to infinity as a funetion of 2, in such & way that T (y) > u(x).
Let 2{u) denote the set of integers with no prime factor exceeding u; we
begin by estimating the number of integers » < # with distinct dwmors
d,, d, satisfying '

dieD(u), doeD(u), |logd;, —logds]< u(m).
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Thege conditions will still be satistied if we remove any comunon factor
of d, and d,, or transpose them, so we may assume that (dy, ds) =1
and d; < dy. Sinee p(x) < T'(y), we have dy > max(dy, y) = dy(y) say.
Now (dq,d,) =1 implies that d,d,|», hence the number of mtegmg
n <« with such divisors does not exceed

1
v DT

the summation conditions imposed on d., d, being all those above, except
that for the purpose of- estimating thiz sum from above, we drop the
condition {d,, d,) = 1. We set

w = exp((logloga)’), H = exp({loglogx)")

and show firgt that the contribution to the sum ahove from those dy > H
is negligible. For

L < 2 1 - 1
EIPTIE R A L H(l_}.) P
d,  logH &4 i, logH 1 P p—1

Roed{u) dgeZ{n} Pz neEy
oI
log*
- 0( 2 “),
logH |
and. so ' '
o v 1 1 f logdw
o Yar g =oloreg) = lisies)
amt M aemnn 2 og oglogm®
(12>TT
Therefore
: 1 1 1 ¢ 1
W e Nggee Sk 3 g
L deByy g n<dgsH
where 2 denotes that d, satisfies
@ — (@) < logdy — (log &) < m-+ (o)

~ for some integer m; (logd,) is the fractional part of logd, and we drop

the condition d,e%(u).
The sum of the reciprocals of the integers d, in such a range is

< plw) e
and m must lie in the range

logds(y) +0(1) < m < logH + O(1)
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in view of {2). Hence

’

1
5 < w@logh 4 —— s

ayj<dysm b _ (g/)
and
1 r 1 logy
Z — Z 5 < mlo)(log H)logut — L.
rlle.@(u)

b aqoiadger 0

Substituting this in (1}, and comparing x, H and «, we have

1
wZ PN = 0 (%)

a8 oo with #. We therefore have to estimate next the number of integers
n = @ with a pair of coprime divisors d, and d,, at least one of which has
a prime factor exceeding #, and satisfying

[ogd, —logd,|| < u(w). o
For convenience we refer to such integers as belonging to Class 1. 'We
may assume that # has a prime factor exceeding

w = 1iluglog:c

the number of exceptional 1n1:egels n < & being o( ) by Selberg’s method,

" . also that = has at most

=1+ i_loglogm

prime factors, counted according to multiplicity. We can write n = mp,
p > w, and we say that » belongs to Class 2 if m itself belongs to Class 1.
We begin by estimating the cardinality of Class 2. This is at most

DGR

Z _
logw m
mLmfre

where Y refers to summation over Class 1 — we have to show th&t the
sum on the right is o(logw}.

We muay write m = ¢p,P, ... Py Where p,, ..., p; are the prime factors
of m exceeding u, in increasing order We ma,y agsume they are distinct,
the contribution of the excepiional m’s being

logx logx
® <2 g <—g*—l

2>

o{logw).
Next if dy, dzlm,

dl/da s (fy [fa)pips ... 0F, & =0 or 41,
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where f; and f, are divisors of ¢, of which there are z*(g) pairs. The &
. are not alfl zero, if ’
(8) - o logdy —logdal << p(a},

by the definition of Olass 1. Suppose & = =1 for gome j, 1< j < . Then

(logp;) is determuined by (3) to lie in the union of 3-172(q) sub-intervals

of [0, 1), each of length 2;&(‘03) By Lemma 2 [3], the snm of the reciprocals
of such p;/’s is

* 1
2 € 37 e (g) ple)loglog .

4]

Next, ¢ ¢,. Thus

ST o (logw) 4

where Y denotes that the primes p, are distinet, and do not exceed .
Plainly ‘

1 1
2 <
_ Pi--PyaPigr---De

21logloge. Therefore

yIySy_L g

geacu) ¢\ S, =t Py PimaPisr - Py ad Dy

(logloga)—*
(t-—1)!

(loglogs + 0 (1))
1)

" gingee T <<

= (g) Z t(logloga)*

1
Z - go(logw)+3"’#(m) Z (t—~1)!

ge(u) 2=

.o S ~ 4. -1
< o(logw) -+ 3 u () (log log w)2(log ) (14— ——)
(logw)+3°0p (10—

D

. Sogloge . .
< o(logw)+3 O 0H(]ogm) (loglog 2y = o(logw).

- This deals with the Class 2 integers. It remaing to deal with the integers
n< @ in Class 1 but not Class 2; such an » must have divisors d, = fi,
ds = fap, where fi and f, arve relatively prime divisors of m, satistying

Ilog (fy/fa) —logp| < uiz).

If the prime factors of m have multiplicities «y, a,, .
of choices of f, and f; is

H (142e) <
fwal

Moreover, (logp) is determined by the above to lie in the uuio:ﬁ of thig
number of sub-intervals of [0, 1) each of length 2u(w), and w < p < 2/m.

..y @y; the number

f](+m%<?° ’
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Referring to the corollary to Lemma 3 [3], we find that the number of
such primes is

. Fou(n)e
- mlogw

The sum of this expression over the possible m’s is

-2 loglog &

< 3% 4 () og; €871

wloglogs = o{w)

and so the whole of Class 1 has cardinality o{x); and this completes the
proof that for almost all n, g(n) satisties the left-hand inequality stated
in the theorem.
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A purely algebraic proof
of special cases of Tchebotarev’s theorem

by

J. Worcix (Warszawa)

‘T have given in [7] a purely algebraic proof of the following

TuroreM. Leb Gy J be subgroups of the multiplicative group of residues
mod m and J be a proper subgroup of G. Then there exist imfinilely many
primes belonging mod m fo G—J. '

The aim of the present paper is to prove on similar lines some special
cases of Tehebotarev’s density theorem in its gualitative form which
comprise the above resuli. The proof is based on the upper estimate for
the number of genera in a eyelic field of prime degree.

Notation. Terminology and notation are taken from [4]. In par-
ticalar & denotes a fixed algebraic nwmber field, all considered fields are
extension of & unless stated to the contrary and all prime ideals are defined
in k. For instance, an inclusion £ < K means that k< Q< K. ¢ is the
rational field, Z,, is a primitive mth root of unity, |2| = (£2:Q). For a finite
set S, |8| ig its cardinality. We say that the extension K/ is non-trivial
it K # 0. A prime ideal of degree one means a prime ideal of -degree
one over Q. . ) .

TaeporeM 1. Let K be ¢ normal non-trivial extension of k. There ewist

K .
infanitely many prime ideals p of degree one such that (»i-a—v) 5 1.

Remarlk 1. Tor X heing abelian a similar statement proved again
in a purely algebraic way oceurs in [1] as Corollary 8.8. However we
assert in contrast to [1] that p is of degree one.

Lemma 1. Let K be a oyclic field of prime degree and b be its relative
diseriminant, For every positive integer M there ewists a prime ideal p of

. ¥ .
k prime to bM such that (?) = 1.

Proof. Let 1= (K :k), where 1 ig a prime. It is well known that
b = f'!, where f is an ideal of k. Let 4 be the group of all classes of ideals



