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1. Introduction and resulis. Let p, P, denote respectively a prime
and an almosb prime with at most & factors. We are inferested here in
counting solutiong of the equation P, +2 = p, attaching suitable weights -
depending on the prime factors of Py. ‘

Let Ay == A,(n) be the generalized von Mangoldt function

(1) - Ay = prLF,

% integral > 1, where u denotes the Mobius fanction, L dauoté_s the ari-
thmetical function logn, and * denotes the Dirichlet convolution. Clearly
A; = A, the von Mangoldt funetion, and it is easily shown that ‘

(1.2) - Ay = A DAy %4,

therefore - . :
742 = AL+ A%,

Ay = AL +3ALw A 4 Asd A,

and so on. An easy induction on % now shows that

Ay(n) = 0 if n has more than k prime factors and thus 4, can be
taken as a weighting function for k-almost primes. Thus the natural sum
to study is :

(1.3) D) d(n+2) 4y n),

) . : NEE :
and our purpose in this paper is to show that for large k the sum (1.3)
is gquite near to the expected asympbotic value. We shall also obtain the
asymptotic behaviour of (1.3) for & > 2, but assuming the still unproved
Halberstam~Richert conjecture on the d.‘tstrlbutlon of primes in arithmetic
progressiona.
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Our résults are ag follows.
TomorEM 1. Let k= 1. For o> w,(k) we have

(L4)

D A +2) dy(n) = 2H {l+ 0 (5P 27} 5( logw 1
ns
" where H = n (1———1—-) and where the constant implied in 0(...) is
yi =% (19 _1)2
absolute.

Remark. Since one conjectures the asymptotic formula

D) Aln4-2) 4, (n) ~2Hka (log )P~
ngt
‘for k> 1, the inequality (1.4) shows that for large & the value of the
sum. i very near the expected a.sympto‘mc value.

For the proof of Theorem 1 we need a result on distribution of primes
in arithmetic progressions:

(1.5)

y
<
= plq) | ~ (loga)*
q<g ) .
for every fixed &> 0 and every large A. The Bombieri-Vinogradov

Theorem: shows that (1.6) holds with ¢ = §, and Theorem 1 depends
on. this. If we assume:

HALBERSTAM—RIOIHJRT Conyeorure: The 1nequa11ty (1.8) holds with
6 = 1,
then we shall prove

TuROREM 2. If the Halberstam—Richert: Oonjectwe holds we have for
k=2 the asympiotie formula

max max
(2, @)=1 y<<z

(L6) Wy 5 0)

D) A(n+2) 44(n) ~2HEka (log aye—

s
However, our proof of (1.7) for k= 2 fails in the most interesting
cage . k =1, and it is unlikely to get a mnon-trivial lower bound for
Z‘ A{n+2) A(n) without using some new idea.

(1.7)

In the last section of this paper we shall point out some consequences '

of Theorem 2 and some generalizations.
Finally I want to thank Professor A. Selberg of the Institute for
Advanced Study for some unseful conversations on this subject.

2. The aunhary sum. The main idea in the proof 13 to evaluate not
. the original gum (1.3) but the modified sum

(2.1) 3 Al 42) dy(n) (Zad)‘&
nEE . din
t_1_<z

icm
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where the A; are parameters to be chosen according to the general rules
of Selberg's sieve. In particular, we put the following restrictions on
the coefficients Az: 4, = 1, |14 <1, 43 = 0 if d is not- square-free, Jtd =0
if d=e.
The following estimate shows that the sum (2.1) iz near to the sum
(1.3) if # is sufficiently small.

TmvMA 1. If 2 < 2% we have the tnequality

| > Aln+2) Ay(n) [14;
ne n

d<z

(2.2) 2)*]| <€ #o(logay? logz),

where the constant implied in <€ 18 absoluie. _
Proof. Let 4y, j =0,1,..., & be the set of integers #» <w with
exactly j prime factors =< . 'We have then :

(S =1 i ety

(M af<# i ‘-
i

therefore the left-hand side of (2.2) iy ni‘ajorized by

W/E-/V-j,"

k
(2.3) 2&24 n+2) A ().
=1 4

From the definition (1.1) of A,G we find that if (m,, mz) =1 then

Ayl my) = Zk(ﬁ):ﬁh(ml) e ama)..

h=0

(2.4)

Now every integer meA’; is written uniquély in the form n == dm, where
(d,m) =1 and @& =p{t ... p¥ with p; <2 a;>1 and m has Do prime
factor <{ 2. Since Ay{d) = O if h< j, using (2. 4) we deduce the inequality

25) > An+2) dy(n T(,,)Z Ay D' 4
.A"

(dm +2) Ay.p(m),
7 =g d< mald )
where > is restricted to integers 4 = pf1...pf with 2 < p; <2, 6,2 1.

The next step iz to give a rough estimate of the sum

D A(dm+2m,.., a(m),
mesgd

Vahd umformly in 4 for 4

ad<a
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. Let
' ‘ 1
(2.6) o =] L=
p—2
ald
»>2

'We shall prove that for odd & we have

D Adim+2) Ay (m) < 0,k (d) £ (log & + e, log (£ +2)
m<F

(2.7)

where ) denotes a sum over odd integers and e,, ¢, areabsolute constants.
" A gimple application of Selberg’s sieve shows that (2.7) holds if
%k =1. Also using the identity ., = AL+ A,+A one checks easily

that (2.7) holds in. cage b = 2. Buppose (2.7) proved for k. 'We have
(2.8) ) A(@m+2) Ay (m)
msf
2 Aldm+2) d,(m)(log &)+ X A(8) Y A(@bm+2) Ay(m).

L MmSE

If we denote by 4, a constant such that (2.7) holds with 4, in place

of ¢1 %, the right-hand side of (2.8) 1s majorized by

(2.9) A4, P(@) E(log &+ 6,) log §log(§d +-2)+

h:'—:!..l
A, D(d )Elog(5d+2)2 (9 )@(a)(log ¢ +c2)

sf

A simyple a,rgument by partial smmmation shows that if &322 we

have

;-_,1(5) £ B2 1
S A% a0 (logm ‘ol <o

LA

7 (logé+6) ™" +10(log & + o)),
whenee comblmng thls mequa.hty Wlth (2. 9) we get assumlng oy == 10,
the bound '

ko
Ay < 4y )

and finally

S : Apa < Agk,
and (2.7) follows. _ ,
By (2.7) and (2.5) we obtain

2A<"+2)Ak(n)
< kZ(ia)Z 4(d) @ d)__ 10gm+ﬂ e

h=j | d=ax d<i

4@ A(@+2).

icm
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An easy estimate shows that

DS

[ et

G(d) €] (logz)ﬂ )

sinee d iy Testricted to integers pf ... pJ with 2 < p, < @, 4, 1. Hence .
k=1
2 A(n4-2) 4p(n) <€ Lo Z (;i) (jloge)t(loga + ¢g) "1
i Rw=j
ka Tc) . q ot
= .| (jlogz)? (log® - ¢4 -+ log #)
< fogz 1f) (0B toga-+e,

and finally the expression (2.3) is majorized by

k
(@. #(%) (jloge) (loga -+ oy flogaf.

1
Using the inegualify logz < S0k logw, and

k ‘ J b= 320
(j)jf< (k)4 (1+ 2%) <e
we obtain '
.4
(2.3) < Ko(loga)*~*( 1ogz)2l 3(
=1

Q.E.D.
Now we have

(2.10) 2 A(n+2) Ay (n) (2 la)z

4:321',20

) < Kz (logm)~*(log#),

n<a djn
d<<z .
2
. "“ZA(?H_Z)Z wid (log ) (Z Rd) +
& o |
+ M Amr2) D) (-—) (log &)F ( S d) = %)+ 2y
e p g;'n.[y gg;

The sum X, is estimabed wsing (1.6), provided y=*<C P The sum’
Z, instead i3 estimated trivially by

e g(log %)i Dl Am+2) ( > ) (Z’ ?u;i)ﬂ

: dn ajn
e . d<miy d<z

and the last gum is estimated using Selberg’s sieve.

(2.11)
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3. Estimation of Z,. In this section we prove the estimate:

Lemma 2. We have for 2 < ™% and y2? < «°°, y > 222", the inequality
(3.1) |X, —2Hkx (logw)* Y < ka(logs)—*(logz).

Proof. A standard application of (1.8) shows thatb

I )

=0 t i<y V1.¥a<e

@ ki
" Aﬂlﬂﬂgﬂ_(d) (]'Og?i)
w([dy vyy 957)

where 3}’ denotes & sum over odd integers and [a, B,
least common multiple of 4,5, ...

(3.2)
., *] denotes the
» #. The asymptotic relation (8.2) is
understood with an error term < .

Let @u{r) =

@
———— for every fizxed positive A.
(logz)* P

H (p—2) and note that for square-free r we have

p‘l‘
‘P("‘") *2‘}’72

dlr

(8.3)

The inner double sum in the rlght-h&nd side of (3.2) is

T Y
R S T /‘(d) ( m)
lo a, [»
2 ;I_”;, QD([’.U” ’pg] W(d) g d (p(( ! [?1’ yﬂ]))
and by (3.3) it is easﬂy transformed into ' \
. ' _ A A ' (d)’ z\?
(3.4) 5‘—% pa(r) —M———(log—)-
&l 1) ,{2 D e 9@\ 0
Now
' s eV ar) v @) ard
(3.5) )Y (1og—) _ ) XY pld) mam_)
aninary P14 a P(7) (g;,,- eld)\ " d
)} mal

and, since y/r = y/e* > a° it is eamily seen that

1 u{d) ( - m/'r) N1 a(d) ( w/ ) _

3.6 . gy

o0 Sl y) = 2 Sl o
(&r)=1 (ct, =1

for every fixed pOSlthG A, uwniformly for » << 22 Tf we define

w(d)
()

(8.7) o fr) = (-1

. den,
{@,1)=1

(logay*

icm
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we obtain »
' : k!

(3.8) X~z Y (-1 x
A ; f

T vy Aey () Z 992(7') ( —
X e (7] |log —
Z: [vuv])z " T

It is easily shown that
(3.9 Cy(r) =0,
and we shall prove that

LU @l (1 i)a
12: @ ([¥1, 1) ”g]#(i’) s onlr) |log —

= 0. Using (3.9}, (3.10) the asymptotic formuls (3.8) becomnes
ﬂ.vl 21!2
([Vl; v5])

The double sum on the right-hand side of {3.11) is equal to
(3.12)

(log &)1 +2 (k— )

he=1 LTy <5

< (logz)*

for every a, h =

5, = 2Hka \_’

¥, v«,<z

o\
2 ul(r) (log ?) + O (logx)*~?).
i1 ¥p]

Boydoy
(["1: 3])

(Zaf<e

Lt )

K1l
v, “"n}) '

A ([vyy a]) (103

Sinece

if # has not more than & prime factors, we see that

\ Y Zvlﬂ.vi ‘ o] E-1-h
2 oD, Ty (02D [wﬂ)

P, ¥p<iE .
Ay(m) { @ \FR
ey 2 __1‘;_____1 o .
< D S5 e )
C o mee® )

(3.13)

‘We have a,lso

M 1 (m) |
= 2’ '"f};(m) Ay (m)logm -

e maé

A Aya(m) ()
) A(8
D a%m 5 A

M E
< (log§+10) ' %((w%)—ﬂh_l (m)

maé
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bhecause
2(45
f‘—(—ai‘/i(a) <log—= 110,
i ¥ ) m
therefore
(3.14) ” Ah(m) < (log & 1-10)*

maE

for all £, k. Using now (3.13) and (3.14) we deduce that the sum in (‘3 12}
iz majorized by

k-1

Z (k;l) 4"(2loge +10)* (loga)*—*="
=l . : :
', = (logz - 8logz -+ 40)*~! — (log & )" < E(log»)*~%(log#)

provided 2 << #M*%;

complete the proof of Lemma 2 we have to prove (3.10).
In the sum (3.10) we replace loo—f— by 1ogw~+log . where

% = {v, v,] and note again that

. < am).

[1:79]=n

Henece in order to‘prove {3.10) it is sufficient to prove that

ropt(n) @a(r) . n\*
(3.15) é a0 Z w0 s ) (log?)

#ln
for every @, h = 0.
We define the arithmetical function by(r) by

< (loga)®

Do :
b =(—0h)*ﬂ
" e
- 80 that

(3.16) ﬂl@* ep(#) ==

Replacing r by os and n by om we see that the left-hand side of (3.15) is

> Lk am 2 th(em(r)(log%)a

n< i elr -

J”’ S" :""z(m) , ﬂa
;; () [Bu(o)] 2 %‘ﬂ(s)(log s)

; ineguality (3.1) follows from thiz. Thus in order to -

icm
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= ' EL s D) 0 am a,om
P " n=wle 7 (m) :
< (loga) Z e dﬂ( )l

e

by (3.14). B0 it remaing o prove that

(3.17) Z ia) {0} iba(e)l < + 0.
i
'We have
pld) 1 ‘
(3. Lo d - F(s)P,
(3.18) L o) O, {s) P (s}

where F(s) is given by an a.bsolutely convergent Dlrlchlet geries for
¢ > —% and where

- 1 s -1 , M
(3.19) 2o = [ (1= o527 - |

It follows that

3.2 L, (8) )
(5-20) - %) ( ) ( £(841) fezo
)
= P,.(0)-polynomial in (—f;l«) (0), w»<<h.
_ But now
e(7)
P(0) ==
0=
and,
() @ = >
P, ‘;jT' p—2
where '

a,(p) < (logp)t.
Using (8.20) we deduce that

Bl ) = 3 20

3.21
(8.21) (7) <

where .
(3.22) - o oa(d)y €&
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. for every fixed &> 0. But clearly Mobius’ inversion formmia gives
ah.(d) ’

. Po(d)

and (8.17) follows from (3.22), Q.RB.D.

by(d) =

4. Estimation of 2. In this seetion we prove the egtimate:

Lavya 3. We have for y > 222"t®, nly > 220", 0 < a< 1, and & suit-
able choice of the eoefficients 24, the imequality

@ @ k41
5 € a o (log—
2l < (logz)‘*(ogy) ’

(4.1)

where the constant implied in <€ is absolule,
Proof. In view of (2.11) it is sufficient to show .
-1, log(@/y)
An+2) A € o lp RN
S ( 31 af 2

i (logz)
dﬁth d<z

(4.2)

I‘ollowmg the general ideas of Selberg’s sieve, we shall replace A(n +2)
in (4.2) by (loga) ( 2 i3f* where as usmal

a=1, {/"L;] <1, 2X=0 ifdis not square-free,
M0 it dmc '
Then we shall prove that for y> (20)22°, oly > 2?a° we have
log (/y)
(4.3) A PM __oslelyy
;( & )(2 ‘3) (2 ) 10gc)(10gz}z

m)drl asmliy d<5

for a suitable choice of 1}, ;.
Let us write

(4.4) ' @5 ==

£

l"l A"'.'

[d,vl,v3]=d

where 3 is vestricted to odd d, »,, v, satisfying d <y, v,, 7, < z. The.

left-hand side of {4.4) becormes

(4.5) Doa ¥ Rfs
D e din--2
v nodd d<{
. nexl{mod &)
‘We choose
2 (rd)
d
(4.6) Y x#(d)dﬂf(r_}
#2(r)

ooy S @(r)

icm
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and write for simplicity
) 2(p
(4.7) 5= Y20
~ (7
With this choice of 1} we have
’ <1 2 % A ,
8 2 (2] =55 X o o,
20 {71, 7,]
RESL dln--2 ”1”2<
nodd a<{ 25)_=1
fvem 0{10il8)

and by our choice of 17 the usual manipulations of the sum involving
the A* ghow that _ ‘

W

. Z /'1 2 3 2
-7 9 r O Y
(4.9) Z -___[y = (Zy)~ 2 ﬂ((r)) ( H (( ))) .
) R L <t 7 n<¢.’r Pin
{7 26)=1 (r. 2d)=1 n{2d
Since 2, ~log{ and
Jlale < St ¢ o
by our agsumption on y, we deduce from (4.5), (4.8), (4.9) that
- {*' T pA(m)
~ 2 —_—
(4.10)  (4.3)~w(log?) Z Gy E Z o
9 n<lir
. da = z (.,.,25)=1 n|2d )

We Wllte thc rlght ~hand blde of (4. 10) in the form

1 uP(r) pt ) .“‘2(’”'2) 1
(411) 2(10g§ ZZ ?2 p(r) ¢ln) olng) & 3
where
_ P L, My, Ny < C/r, 7 is odd,
(4.12) % R '
< El—zﬂ 2§ =0 (mod[n;, ny]), (4,2¢) = 1.

Now alittle thought diseloges thab Z‘a,, / d is apositive definite quadratic form

- in the 4,. In fact, we have

VA
amd 8 [d, vy, vs)
and writing L, == 3 A gy 0 = (@, [11; %))y [v1, %] =ne, @ =g,
the previous sum be(rzycluﬁg;:l since [w, ng is sghare-free:
L Ling
Tesm
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where the inner sum ranges over

¥
{tyn) =1, (n,0) =1, mg—y—zﬂjg,

2otn = 0 (mod. {1y, #y]), = f(oln,r) =1.

Collecting together terms with a given #n = N, the sum becomes a linear
corbination with positive coefficients, of sums of the type

Z Ly = ( 2 Zarf)z.
TLIN ¥ Ny
( —-)=1 (1)l

(ry0)=1

w

where N, i3 the square-free part of N.,
But this means that the expression (4.11) can only increage if we
increase the range for 4, 7, in (4.12). Henece in the right-hand side of

(4.10) 'we can omit the condition # << {/r in the summation over », and

gtill' get an upper bound. Using now

pim) 29
%“tp(%) @(26)

we conclude that

o ® a; 26 !
{4.18) (4.3) < [L+o0{1)] (TogC)? ;‘ 2(8) 9(20) %4

<
e (v 98)=1

Now we have the asymptotic formula

wir logp
(4.14) PR 2 -———wlogC+Ao+A12p

p|248

HO(5
(r, 2&):-1

* uniformly in 8 for two absolute constants 4,, 4,. Hence the right-hand
side of (4.13) is majorized by

o A al a,,, Y logp
[1-+o(L)] logt i g(8) + ( 1og(:)a > (8) Z p—-l) '
: da=g?
¥

pj2¢ =

provided { > &, which we may suppose. ‘
For the main term in (4.15) we use the identity (see [1] for a proof)

N TNY #m N
4.16 = v — > mr
{ ,) zqw(é) m;: =, valim )‘P(d) (“Tf (ml)
§<yz" . {mt, @Yo ragim

icm
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where 3 is'a sum over odd numbers and where Z, is expressed by means
of the 1, by the formulas

Y Ay
(4.17) b = p(r)my(r) % s
£.18 2 = v )
(418) (g _”),2,, o~ ) -

For » odd and square-free we define

(4.19) ]Y( b= —1)
»ln

{(p—1)

(4.20) Winy = | L

- s PPl

1
and let g, = gxpu, 80 that g,(n) :! I( 4+ __2).
1 1 1 r 19

© Din
‘We have
(4.21) (Z B0 o)
d<:cf1/
{d, 'm)r:l r<z,lm

Y
= z o (’1'1) 123 ("“2) ’:mrl Cm'rg
Ty <am

{rgsm)e=l

o1
d;y ;(—)

(@, m)=1
d=0(mod[ry,rs])

and o standard caleulation shows that if {(n,
then for certain constantys .4,, 4,:

m) == 1 and » is squarc-free,

(4.22) )‘" m
) d;ff °
d:%(xg?)zvlz) .
¥ (m) ( g 2% ) ( 1 (a )“")
== log — -} Ay - ) + O l—— (ma)* | —
" g(n) i ”ﬁ;{affﬁﬁp | 9(%)( ) E
where
o pElogp i _ logyp
T TR TR i
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We gubstitute (4.22) in the right-hand side of (4.21), taking n = [», #,].
Since we assume @y > 222°, the contribution of fhe error term in (4.22)
is negligible, and we remain with

! Qnrl émrz

#lra) p(ra) g([re, 721}

.{"g[l, ] 1+24““ > b

(4.23) A P (m) %

rigaim
{ry, my=1

nlm ;vr[rl,rz]
Now we choose
’ Y MRy
(4.24) ‘ 6 =47l 3L (W))
: ' wzfr 4
where the constant A is taken in such a way that
‘ r A (r
(4.25) = Y EO Ly
_ powd @2 (7)
Note that
{4.26) A ~0,(loga)®
for some constant ¢,, and that the conditions on 4, are verified.
xfy

In the evaluation of (4.23) the main term comes from log AR
17 2

the contribution given by the other terms in {...} being in fact of a lower
order of magnitude:
We follow here & method of Selberg [51], pp. 50-57. Define

(4.217) g'in) = D uldyg (%) log =,
" 80 that " .
(4.28) g(m)logn = >'g'(d)

din

We perform. the same transformations as in [B], pp. 56-B7, except for
having g, in place of ¢, and get

: 4 ':-p e Cmr 50/
ul . nry Smrg Y
4,29 (s lo
(w30) D) mleoutr) s log o
Ty Ta<#m
(7"1:»'"'*)=1_ N . .
- #(m) o NY )y pA(n)

=A 2M2(m)£,~___ {10 —_ + ’ ’i")}.

Aom) % 24,,,1 o) 2 g C

) (r, m)=1 (r, m)mel

icm
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We have also for square-free »

logp
4.30 g (r) = g(7) {logH- ——w}
(450 ’ Z 7:(D)
Plr
whence it follows that
V) v u2(r)
(4.31) Z g ()~ Z LR
r<z{m gl() r<afm gl("')
(r, M)l (r,m)=1

and in any case

(4.32)

sty (o0 ) oes)
gy \ g %"

A similar estimate, which need not be given here in detail, shows

that the contribution to (4.23) of the terms involving 3’ g, is of alower
Dllryral
order of magnitude.

Thus we have proved, using (4.16), (4.21) and (4.32) that

.- r

' - log—
s @ N7 R gi(m) ( -y)

2,;2 o <[oe ) (“’g’“) % palm) gilm) ™ S (logey

§ g
v

) term in (4.15)
ig of lower order of magnitude than the main term. This proves (4.3),
with 24, J; determined by the equations (4.6), (4.18), (4.24), (4.25), Q.E.D.,

5. Proofs of Theorems 1 and 2, By Lemmas 1, 2, 3 we obtain for

(51) y - zz u+s yz < m@—ws 2 mliZDk
the result ’ |

| 3 a(n-+2) 4, (n) - 2B ko(log )~

nET :

g\
log —
(o5
{logz)r

If & = 4, we can choose y = 2" "2~% a = %, # = 4" with §<1/20k
The error term is then, after division by wm(loga)**:

€ Eallogn)(loge) + o

1AM, 2 ks
<70,3+(-§-*|-m*) <k p-2708

6 — Acta Arithmetica XXVIIL2
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and we can choose
8 ,—
| =K 2)
this proves Theorem 1.
It 6 = 1, we can choose

1—a 2
K

Yy =a % z=a, B<1/20k

, e =%,
and get the error term
< [k 8+ (28) k‘llw(logw)’““ .

Bince § > 0 is at onr dizposal, we get Theorem 2.

The technique worked out here can obviously be gener alized to many
other similar situations. In particular, one can work with functions diffe-
rent from A,, but with a similar structure. A pmtlcula.ﬂy interesting
-choice is :

(5.2) A9 = AT+ (1) (V] P (ATR £ (AT

which leads to an é.symptotic formula

(5.3) 3T A(n+2) 4B () ~4Ho (log )+

3 !

on the assumption of the Halberstam—Richert conjecture. It is éasy‘ to
see that (5.3) determines asymptotically the number of solutions of the
equation

: P—2 = pips,
counted with the weight

logp, \*+* (logp, \**
(logw) (10g=m) .

in terms of the number of solutions of the equation p—2 = p,, p <
Since we can approximate a function f(& %) by polynomials in £ g, 11?
is easy to see that (5.3) for all A, & = 0 determines asympiotically the
number of solutions of p—2 == p,p,, 1< p, < 2f, @< py< 2Py
p<w for every @y, Gy By By With 0 <oy < By <L, 0 <C oy << B <,
g + 0y << L=< By 4y, in terms of an agymptotic part and the distribution
of twin-primes up to . '

Ome can then show that assoming the Halberstam-Richert conjecture

p<s,

< o has only o(

the following holds: if the equation p —2 = p,, (10—-:@;)

golutions, then the equa,tioﬁ
P=2 =Pty B>, P<0

' o
has. only a(m) solutions for every s> 0 and every fixed odd k.
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Instead, if & is even, the previous equation will have about twice the
expected number of solutions. This situation is unlikely to be true for
large %, thus giving support to the twin-primes conjesture.

It “WO'Illd be of interest to see how well this technique could be used
to prove the existence of golutions of P—2 =p;...p, with & not too
large. The work of Buchfitab [3], Halberstam, Jnrkat and. Richert [4]
Uchiyama {6] shows that k< 3, A self-contained simple proof with k< 4
can be found in [1].

References .

[11 E. Bombieri, Le grand orible dans la théorie analquus deg nombres, to appear.

[2] ~ On the large sieve, Mathematika 12 (1965), pp. 201-225.

[8] A. A Buchitab, New resulls in the investigation of the Goldbach—Huler problem
and the problem of prime pairs, Dokl. Akad. Nauk BSSR 162 (1865), pp. 736~
7388 = Boviet Math. Dokl. 6 (1965), pp. 720-732.

[4] H.Halberstam, W. B. Jurkat, H-E. Richert, Un noveau résuliat de Ia mé-
thode du crible, C. R. Acad. Sci. Paris 8ér. A.B. 264 (1067), pp. A920-A933.

[61 A.Selberg, On the eeros of Riemanw'a sela-function, Skrifter Norske Vid. Akad.
Oslo, I Mat. Nat, Klasse 1942, n°10, pp. 1-59, ]

[6] 8. Uchiyama, On the representation of large even integers as sums of a prime and
an almost prime, II, Proc. Japan Acad. 43 (1987), pp. 567-871.

{71 A. I Vinogradev, The densily hypothesie for Dirichlet L-series, Izv. Akad.
Nauk S33R Ser. Mat. 20 (1065), pp. 908-834; corrigendum 30 {1966}, pp. 710-
720 = Amer. Math. Soc. Translations (2) 82 (1969), pp. 9-486.

ISTITUTO MATEMATICO UNIVERSITA
Fisn, Thaly

THE INSTITUTE FOR ADVANCED STUDY
Princeton, NJ, USA

Received on 6.4.1974 (856)



