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Some additive and multiplicative problems
in number theory

by

8. L. G. CrOI (Vancouver, B. (.), P. ErDos and B. SzemerEDI (Budapest)

Introduction. In thig paper we consider varions additive and mulii-
plicative problems concerning sefs of integers. The major adm of our investi-
gation 18 in exhibiting the relationship between the number of elements
in a given seb of positive integers not exceeding » and the nurber of inte-
gers that can always be chosen (with or without the restriction that these
should He in the given set} so that their sums (or products), taken two at
& time, should all lie in the given set. We shall only once conzider the
analogous question relating to sums formed with a variable number of
surnmands. ’ ‘

Notation. The letters ¢, ¢, ... denote positive absolute constants,
unless otherwise indicated. A sum or product in this paper will mean, un-
less otherwise indicated, one formed with distinet infegers. A seguence
will always mean a strictly increasing sequence of positive intiegers.

1. Let A denote a set of o +1 integers not exceeding 2#. It is clear that
if t = 1 then in general one eannot choose three infegers from 1, 2, ..., 2n
whose sums, taken two at a time, all appear in A4; for ingbance we may
let A consist of 2 and all the odd integers not exceeding 2n. It turns out,
however (as Theorems 1-4 below show), that corresponding to ¢ = 2,
¢1y Calogm, e,n*? Tespectively, we can always choose three, four, five,
or six integers respectively so that in each case all sums, taken two ab a
time, will appear in the given sequence 4 ; further, these results are essen-
tially best possible, Theorems b and. 6 below give us some idea of the rate
of growth of the smallest integer ¢, (% = 3) such that for any sequence of
% -1, integers not exceeding 2n, we can always choose & integers all whose
sums, taken two at a time, appear in the sequence.

TuworzM 1. Suppose n 2= 4 and let A denote a sequence of w12 positive
wntegers not ewceeding 2n. Then there are integers by, by, by such that b+ by
(1<i<<f<3) are all in A. :
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Proof. We asswme the theorem false and proceed to deduce a con-
tradiction. Accordingly, suppose there exists » = 4 and 5 sequence 4 of
n+2 integers not exceeding 2n such that one can never choose by, by, b,
with ;b (1<<i<<j<3) in 4.

Let 2m +1 be the smallest odd integer = 3in 4. Then 3 < 2m +1 < 2q.
Since the sum of m 4 1 and m is 2m -1, for each integer j = m+2, ..., 9n—
— (m--1), at most one of the sums m -+ 5, m+1 44 belongs to 4. In other
words, no two consecufive integers from 2m +2, ..., 2n can belong to 4. In
view of the choice of 2m 1, there are at most m -1 integers (i.e. consisting
of 1 and the even integers) from 1, 2,..., 2m belong to A, which implies
that at least n —m of the Integers 2m +2, ..., 2n belong to 4. As 'we have
already shown that no two congecutive integers from 2m 42, ..., 2»n can
belong to 4, the last sentence implies that there are precisely n—m inte-
gers from 2m4-2, ..., 2n belonging to A and that these are simply the
even integers from 2m+ 2, ..., 2#; further all the even integers from 1,
2, ..., 2n alzo belong to 4. Consequently all the even integersfrom 1, 2, ...
-v.y 20 belong to A and these include the numbers 4, 6, 8 since n = 4
But then the number b, =1, b, =3, b, =5 have all sums b,+5;
(1<é<j<<3) belonging to 4. This gives the desired contradiction.

We remark that # > 4 in the above theorem is best possible gince we
cannot choose Dy, by, by all whose sums b;-+b; (1 €47« 3) appear in
1,2, 3, 4, 6. :

The proofs of Theorems 2—4 below depend on the following lemma
{cf. [3], Lemma p(8,1)) and its corollary.

Lmmma A, Suppose B denoles a sequence of positive infegers wnot cx-
ceeding 2n '

Y Wy

. L ek . i f e N
then, provided t = 2°a' 7", there emist positive integer ®, and distine posi-
tive integers @y, ..., %, such that B contains the subset:

{1) ' oo {me {0, w0,

Proof. The proof is by induction on k. Clearly the theorsm is true for.

k=1 or 2. Let now % 2 and assume theorem holds for & We proceed
to prove that the theorem holds also for & 1. Accordingly let B denote a se-
quence (1) of integers not exceeding 2n, where 3 28+ ' =" ™ Since there
are §(f—1}¢ differences y,—vy; (1§ <4 <7) there exists some infeger
m such that there are 3, > {£(t—1)}/(8n) = t2/(16n) distinct pairs ¥} < 4}*
(i =1,...,1%) such that '

yf*"yf=m (i=1,2,...,4).
It is elear that y; (i =1, ..., %) are distinct and

3 —a—k —_1 . . 1_a—k
8 2 2T (16n) T 2 2R
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Additive and wultiplicative problems in wumber theory 34

But then by the indueﬁion hypothesis there exists a subset of form
{gt+ ... +1{0, 2}

in the seb {yf; i =1,...,t) Since for each y;,y!+m =y; i3 also
in B we conclude, by taking @, = m, that the sel

{#} +{0, 2} 4+ .0 H {0, @y}
is also a subset of B. .
As a consequence of Lemma A, we prove the followin

COROLLARY. Suppose n = ny(k) and th A denote a sequence of § even
integers mot exceeding 2, where t = 250~ Then there ewist inlegers by, ...
vony by, such that all b,+b; (00 << < k) appear in A.

Proof. By the lemria, A possesses a subset of type

{ag) +{0, @} + ... +{0, z}-
We take by = 4%y, by = %mo-l-:cl,'..., b, = Ly +u,. Since x, is an even
integer, by, by, ..., by, are integers whose sums d;+b; (0< i< j<t k) are
all in 4.

THROREM 2, There exists a positive integer oy such that if n = ny(e,) and
A denotes a sequence of 1+ o, positive integers not exceeding 2n, then there
are by, by, by, by so that all sums b+b; (L<i<<j<<4) are in A.

Proof. Leb ¢, be a sufficiently large integer. Let ¢ denote the number
of even integers in A. Then

' ' 6 << 10™n,
the latter inequality holding in view of the corollary to Lemma A, if i
chosen large enough. By the same corollary, provided ¢ is chosen large
enough, we may assert that there exists an even integer 2m in [20%, 20—
—20t]. Let b, and b, be even integers defined by
by+by = 2m,
2 if w is odd,
by~ bl = . .
4 it m iy even.
Tf o it any integer in [m —10¢, m --10t] then certainly
0< a-by< 20,
0< a-+by << 20,
Now there ave 5t pairs of odd integers , y in [m—10f, m +101] su.ch thatb
@4y = 2m, For each ¢ = 1, 2, there are at most ¢ odd integers « In [*m.m—
~10¢, m - 10¢] such that b,+a is not an integer in 4. Thus there exist
at least 3¢ pairs of odd integers 2, y in [m —10¢, m +-10¢] with z -y = 2m a.r'ld |
such that b, -, by -+, b+ ¥y, b, +y are ajll‘in A. Let by, b, be one such pair.
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Then by, by, b;, b, arve integers such that all the sums b, -+ b; (1
are in A4. ,

TrrorEm 3. There evists an absolute constant ¢, > 0 such that if n

2 Mo{Cy) and A is o sequence of n -+ positive integers not exceeding 2n,

where m > ¢,logn, then there are integers by, by, by, b,, by such that b, + b
I<i< _? < B) are all in A. Further, the result no longer holds if ey 18 rep-
laced by c,, wheve ¢ is sufficiently small.

Proot. Let { denote the number of even integers in A. Then, prcmde(l
# 13 sufficiently large, we WAy assuie

SI<j<4)

eologn < 5 10 %,

the right-hand gide inequality holding since otherwise an application of
the corollary to Lemma A (with & = 4) gives the theoremn. In view of the
corollary again, provided ¢, > 0 is sufficiently large, and > ny{e,), thers
are ab least 2log,elogn even integers from onr sequence 4 falling into the
interval [40¢, 2% — 40{]. Therefore thele exists a subinterval [a,, 2n,]
containing three even integers aj < ay < ai from A. Let the integers
by < by << by be determined by

bytby = aj,
bl'f'ba :la‘;t:
by+by =al.
We thus obtain
by = §(d) +a7 — ”‘t):
by = J?(a’l a +a3),
by = Yoy —al +a3).

It is clear that by, by, by are either all odd or all even. Suppose they are
all odd (the case when, b1, b2, by are all even can he treated similarly). There
are 10¢ padirs of aven mtegers by< by in [(ay/2) —201, (ay/2) +20t] gieh
. thati b+ = a]. We note that for any e in [(ar/2) —20t, (a)/2 )+20ﬂ,
a0, 2n (4 =1, 2, 3). We choose a pair b, < b such that b, +b,, b, --b,

by + by, B+ by, bﬁ bz, s--by, are all in 4. This is possible .smee
‘ for each 4 =1, 2,8 t"here are at most ¢ even integers a in [(ay/2)—20,

(a) /2) +201] suuh tha.t, b;+ @ ig mot in 4. This proves the main part of the
theorem.
I‘ma.lly, if 4 consists of all the odd integers and the integers 2,
2%, ...,in [1, 2n] then one cannot chooge byy .-y by such that b, bj(
4 < 3 <L B) ara all in 4. Thiy completes the ploojz of Theorem 3.
. TEROREM 4. There exisis ¢y > 0 such that if n = > foles)y, and A is a

sequence of m -+ positive integers not exceeding 2n, where m > e, 2, then
one con find siz iniegers by, ..., by whose sums b, - by (1 <4< f<£6) are
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all in A. Further, the results becomes false if e, is replaced by a sufficient-
Iy small constant cj. |

Proof. Let ¢ denote the number of even integers in A. Then we can
assume, in view of the corollary to Lemma A, that

<1070

and that there are at least ;;t > 120" even integers of 4 falling into the
interval [40¢, 2n —40t]. Thus, if ¢, is sufficienfly large, there exists a sub-
interval [#,, 2n,] containing at least 3nl% even integers of 4. Since
the sum of any two integers in [#,, 2n,] lies between 2n, and 4n,, there
exist even integers #, 2, #;, 4, &, #; of A such that

Bty =22 =gt g
and
%1“/-:35< gL & L2y <2 < zﬁ§\2731.

‘We determine integers by, by, b, b, such that

by by =2,

by+by = 2a,

by-+by = 2,

by+b, =2
and thus also

by+b, =2z,

by+-by = %,

It is clear ’r,hat by << by < by < b, and that they are all odd or aJl ever.
Solving for by, by, ba, ‘b, gives

bi = $(2;—2),

by = 3281 — 2+ 2 —2),

by =z +2—2),

by = §(re—2 %)
Since clearly b =0 'we have b, >0, b, > 0, b, >0 as well.

If by, ..., b, are all odd (even) then we determine even (odd) integers
b, b in [%zs -20¢, 42, +20¢] such that #

by+ by =2

and such that b+ b, (+ =1,2,3, 4} and b, 4-b; (7 = 1,'2, 3,4) are @11 in
A. This is possible since for each ¢ = 1,.2,3, 4 there exist ab mogt t‘even
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(odd) integers a in [z, —20¢, 42, +20t] such that ;4 ¢ does not belong
to 4 ; buf there are initially 10¢ possible ehoices for &;, b; such that b, -3
= 2.

To prove the last parti of the theorem we let A consist of all the odd
integers < 2n and ¢;n'* even integers = 2(4) so that the sums taken two
at a time of these even integers are distinet. Suppoze in fact there exist
by .os by such that b;4-b; (1 <4< j<6) are all in 4. We shall deduce
a contradiction. Clearly al most two of the integers b; can be even for
otherwise we have a sumn == 0 (4). Thus there are four odd b, say by, b,,
by, by The sums b, by, by +b,, b, +Dby, by+b, are in A. But then

(By ) - (By - by) = (51‘]‘1)3) +{ba+by), .

violating our choice of the even numbers in 4.

We summarize the results contained in Theorems 14 ag follows. We
first recall the definition of #, in the opening paragraph of this seetion.
For large n, Theorems 1-4 reveal that the order of magnitude of #, (k
= 3,4, 5,6) is konown. More precisely

6

t, =2, R

clogn < i < glogn,  an'® <t < egn'?,

WHLEr® 1, Cay Gy Oy, Gy, G, € 4TG positive absolute constants. It might be
of interest fo determine these constants precisely. For k= 7, the order
of magnitude of f; is not known, but Theorems b and 6 below give some
indication of the possible rate of growth of £,. We mention that-a slightly
more precise form of ’l‘heorem below is possible; but as there is no indi-
cation that Theorem 5 is alnywhere near the best possible we shall not
aim at precision here.

THEOREM 5. Let & be a positive mtegea and n 3 ny(k), and siuppose A
is @ sequence of n+1t positive integers not emceeding 2n, where t 3= 2eni=* ",
Then there ewist integors by, ..., b, all whose sums b;+b; (0 <<i<<j<h).
are in A. :

Proof. Since there are at least 26n'2"" even integers-in 4, the the-
orem followy from the corollary of Lemmsa A. '

JOROLLARY. If A is @ sequence of n--1 positive integers not exceeding
2ny where £z on, and 5= ny(8), then we can find integers by, ..., by where

I < loglogn, with the implied constant depending on 8, such that all sums
bbb (L€ i< k) are dn A
Prooif. By Theorem 5 we can always choose by, ..., by if
, .

PR

nE Ak o 8

which i valid if % < logloga.
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Before stating our next theorem, we prove a result concerning the
frequeney of occurrence of sequences with few distinet sums (taken two
al o time).

Levma B. Suppese oy is given. Then there ewist k, = k() and oy
depending only on oy, such that, if k= &y and n 2 (%, ay), the number of
choices. of sequences A

Gy < o <y SR

each with < a.k distinct sums {foken two af.a time), does not emeceed. n™.
We deduce the lemina from the following theorsm of Freiman (see [2],
p. 134) reworded to snit our present purposes.

TrrorEM A. Suppose the sequence A

Ay << oo < g

is such that there are at most ek distinet sums o+ a; (L <2< j < k), then
there exist &, ¢* depending only on ¢, and an integer m << 6—1, such that,
if k= k", there ave arithmetic progressions By, By, ..., B, each of length
at most ¢* % such that A is contained in the set S,,, where the sets 8; (i = 0,1,
o, m) are defined inductively by

8y = By,
) 8= U (S +b, i= 1.
byel;

Proot of Lemma B. We apply Theorem A with ¢ =.q;. Then we
have k, == k* such thas if & = k,, the sequence A iy contained in &, with
8, defined by (2). The nurhber of choices for B, {1 = 0, ...y ) 18 &b Mot nt
Thus the total number of choices for 8, is < »*. Now the number of
choiees of A corresponding to each choice of 8, is < (c k)it Therefore, the
total number of choices of A is

< w2 (e* Byt g e,

where «, depends only on g, if we choose n = n(k, a).

TrmorEM 6. Suppase 0< s<< 1 is given. Then there cwist ky(e) and
ng(ky) such that if n = ny, there ewists a sequence A of 41 positive integers
consisting of oll the odd indegers < 2n and 1 positive even integers < n, where
U= [nt*), such that there are at most T (6) =1 dmtegers

bl: (RN b.’ru(s)--«l

oll whose sums b0, (1< i< j<<ky(e)—1) are in A,

Proof. Let « = [2/¢]+1. We apply Lemma B with ¢, = at Lot
y = Yayak,, where %, and «, arve the numbers in Lemma B corresponding
o0 o, = a2 I‘Inﬂlly let #g = ng(ky, @;) be the choice of n, in Lemma B
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corresponding to k == &, We shall establish the theorem with these choices
of ky and n,. Accordingly let n > n, and wo proceed to establish the 6x-
istence of & sequence A with the desired property.

We determine first the number of choices of sequences B

bl<...<bk0;\j%

s0 that the number of distinet even sums b;+b; is < ake. We lot; B*, B**
denote the subsequences of B consisting of respectively the odd and even
integers of B. Further we denote by 7'(B*), 7(B™) the number of dis-
tinet sums (taken two at a time) formed from the integers of B* and B**
respectively. We have

T(B*) < ak,,

T(B*) < ak,.

We consider two cases according as both B*, B* have each > a1k, > Iy
integers or otherwise. Take the first case and let M 1 denote the number
of ohoices of B in this ease. Then

T(B) < & |BY| = a,|B"|
and similarly
T(B™} < ay B,
Sinee |B"| > &, and |B™| > k, we may apply Lemma B to B* and B*
0 conclude that

M, < nPoe.

‘We next consider the second case. Let M s denote the number of choices
of B in this case. One of the sets B*, B*™* has < a~' %, integers and thus
the number of choices for this set is < #*/*. The number of choices for
the ofher set iy < n°2, by an application of Lemma B. Thus

M, < 2mFor rag,

Thus the number of choices of B each with < ok, distinct even sums is

3a—1p
a fnu

—1
My - M, = 0?2 - GmFee™ o oo ;

since &y = 2a,ak,.
Bach such sequence B determines at least ky—3 even sums, so cor-

responding to a given B, there exigh < (9: _]‘Tf 0 ‘"33

Ty —
these sums. Let ¥, denote the number of choices of A corresponding to
these B. Then ‘

. 3 3
w—lo4-3Y 59 o
(3) Nos{i )t

)choiees of 4 containing
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We now consider sequences B having each at least ok, distinet even
sums. Each such sequence determines at least ak, distinet even sums and
thus the number of choices of A containing these even sums is at most
(”’: ”[[a;:"]]). As there are =< (;: ) choices for such B, the nnmber ¥, of

— ey i 0 ’ .
choices of A corréesponding to all such B satisfies

S n—{aly]\ [ n
{4) N (t——[ak;]) (ic[,)'

-Since the total nomber of possible choices of 4 ig (?) we have our theorem

if we can prove
HES S
‘We ghall estabilish this by showing that
N, < %(?), Ny %(f)
We have |

3 =i
Y Sin—ko+3) ek t0@) ~y 92" 0
(t)/(z—knw)?'”’ = 2m

on recalling o = [2/e]-+1 and ¢ = [#'~°]). The above inequality implies
N, < %(f)m view of (3).
Next

n ’me.'[ﬂk()] saleg+0(2) (”)
(t)(t—{ak0])>n =2y,

on using & = [2/¢g] +1 and ¢ = [#'~*]. We have N, < 1}(?) in view of (4).
This completes the proof of Theorem 6.

2. In this section we consider the question of estimating the number of
integers that can be chosen from a given sequence so that all smms, taken
two atb a timne, should appear in the sequence. We ghall prove thltee theorems
(Theorem 7, 8, and 9) of which the last depends on the following theorem
whicl. has just been established by Szemerédi, ]

TuwoREM B. For any given inieger k> 2 let r,(n) denofe the lm"ge‘st
nwmber of imiegers that can be chosen from 1,2, ..., n with no k lerms in
arithmetic progression, Then w 'r,(n)—+0 as n—co.

We further remark that Theorem 7 wonld alse follow from Szemerédi’s
result though we give a proot which uses only a theorem of Varna.vides.
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TewoREM 7. For any given &> 0 and any integer k > 1, there exists
nol(e, k) so that if n = n, and A is a sequence of t integers not emcedding n,
where t 2 (3 +e)n, then we can find T integers

Byy Toyeney (273

in A whose sums a;+a; (L<i<j< k) are all in 4.

Proof. Sinee t = (%-+ g)n there exist s infegers, where s = & #, in the
sequencsd A, say ag, . - such that 2a,, 2a,, ..., 2a,are also in A. By a theo-
rem of Varnavides (qee [4]) there are ¢, n* triples @, , a,,, @, which form
an arithmetic progression. Thus there 1s an integer, say ab , for which

there are > e,n integers wij’s 5o thatb
%f(a"il + a"l:j) = a”l[!

but then a; +a;, = 24, 1s also in 4. Now repeat the same argument with
these s,% u, 8, and 5o on In this way one canfind integers a; , a;,, ..., a;
in A such that a; +a;, (1< u<v<k)areallin 4.

The followmg theorem is & refinement of Theorem 7.

THEOREM 8. S.wﬁpose I ig given. Then there emists g, > 0 such that if
NNy le, B) and A is a sequence of t inlegers mol exceeding w, where
2 (2 —ep)m, then one can find k integers in A

Qpy oy vevy O

whose sums o;+ & (L <i<j< k) are all in A

Proof. Let ¢, = 0 be o sufficiently small number. In view of Theorem
7, we may assume there are at most ¢, n integers a in A such that 2e is also
in A. Thus there exists a subset B of 4 with at least (§ —2¢)n integers and
with the property that whenever a belongs to B then 2a does not belong
to B. This property is crucial in our proof and we ref.er tio it as
property P

For j =1,k let

I = (n2~7, n27*,  IF = (a2 7, m2 ),

B, = BnI;, Bj =Bnl}.

As property P implies that
B+ IBl<27%% (j=1,2,...,k)
and as
|B| > {3 —2¢,)n,
we conclude that
(8) | ] |B;| - [B;[ = (2"j —2e)n
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Further, by repeated application of property P and using (5), we may assert
that for each j =%k, %k—1,...,1, and ¢ =0,1,...,k—4, B, contains
all but at most 2(¢ +1) s, # integers of type 4°a (where » iz odd) in I,. By
now choosing s; small enough, we can find an integer b, of fiype 2, in By, an
integer b, of type 4w, in B;_,, ..., and an integer b, of type £ 'z, in B,
where @, ..., @, are all odd, such that b,+b; (1<i<<j<k) gre all in
B and thus in 4. This completes the proof.

THREOREM 9. Lor any inleger v = 2, and any integer k, there exist 8. > 0
and nol0,., k) such that if nzn,(d,, k) and 4 is o sequence of ¢ posiiive
tniegers not exceeding w, where t 2= (1 8,)n, then there exisls a subsequence

<< ... <<
such that all sums of the form

k
Z’ejaj (5 = 0,1;1< Zk‘s]

L f=1 J=L
are i A.

Proof. We choose 4, = 1/(27%) and suppose n =
exist & = n/(2r?) and a subsequence of 4

fy(d,, k). Then thers

By < ... < O
in [(r—1)7r"%n, 7 "n] such that ey, 3a;,...,7re; {j =1,2,...
in A. By Theorem B, we can find an arithmetic progression

Uy Gbtby ey -t rl{k-—1)20

, 8} are all

within a,, ..., a¢,. Now we take

by =a, by=a+trb, .., b, =atri(k—-1)b.

& 3 _
Clearly 2& b;, subject to 1< Ye; <7, are all in 4. This completes
1 i=1

=

the proof of the theorem.

3. In thiy section we consider zome aspects of the multiplicative analo-
gue of the additive problems in §1 and 2. Theorems 1012 below repre-
sent the type of results that can b established by probabilistic arguments.

TuporeM 10. Suppose ¢, ts any positive integer and n = ny(c,). Then
there emists o sequence A of k posilive integers nol exceeding n, where
T 2 n(1 — ¢ ClosWIORIRRY gy oh {hat for amy s, where § is an inleger or the
regiprocal of one, there ewist at most t < 'EIOS18™ injeqerg

b <~ <bh

where ¢, depends o'nl'q on c,l, sueh that all pm&ucts s7ih;b; (1<
are in A.

<j<h
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Proof. Let t = [¢5"0F108n] 1 where ¢, is a sulficiently larg
constant depending on ¢,. Let &k = n— [nm™'], where m = gfalosniloglogn
Suppose ﬁ is a sequence of ¢ integers

(6) _ by << ... < by.
We first estimate the number of sequences 4
< o <N

whieh contain all produets b;b;s™" {1 <4< j < t) for a given s, where s iy
an integer or the reciprocal of one.

Sinee d(1) < gratortilozlost pop ] = 7 (), where d(I) denotes the divigor
funetion, the number of distinet products b;b; determined by (6) is

o 2_1’5(3 _1)2—(1+E)10gﬂ/loglogn +05(1) = 33/2’

if ¢, is chosen large enough. Thus, if A containg all s b;b; for a fixed s,
at least b = [#*?] of its integers are fixed by B and thus the number of
choices of 4 iy at most :

n—h

b—h}"
Hence, on allowing s to vary, the number of possible choices of 4 corre-
sponding to a given B iz at most

5 (1R
w (Ta—h)'

The number of choices of B is ? . Since the number of ehoices of A (Witho.ut

restriction) is (;:’), the theorem would follow if we can prove

o )= (e )

We have
(”) / (“ ""’b) e (n—ht)
Rl \Ne=bl 7 k. (b—h1)
For each i = 0, ..., h—1, _
(-9 (k=19 2= (n—h)(m—20m~ " = 1+m™,
Therefore,

wy ffe—hd . 1y Tf(2m) 48
(Fc)/(7a—h)¢(l+m ) = e > ¢ :

sinee i =[] and m = e4losnozlosn o yogdes T Byt (:")W? < ninl < et

Thus we bave (7) as required.
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The following lemma, whose proof is somewhat involved (see [4])
enables us to strengthen Theorem 1¢. 7

Levua C. Suppose & is any positive integer, and 3> (log,n), where
logyn denotes the logarithmic function to the base 2. Then for amy Sequence

G < ... HER

of t positive integers, there are at least ck?t distinct products a, all<i<j<t)
where ¢ i8 a posthive absoluie constant.

Using the above lemma we obtain the following

TumorEM 11. Suppose 0<< a<< 1, and n = n,(a). Then there ewists
a seguence of k posilive integers nol emceeding w, where k= an, such
that for any s, where s is an integer or the reciprocal of one, there exist at most
f = [6c§(10gn)1f2luglogn] — [(10g%)66{logﬂ)1/2] integers

by < .. < by,

where ¢, depends only on a, such that oIl products s™'bb, (1 <i<§<1)
are n A.

Proof. Arguing as in proof of Theorem 10 and using Lemma ¢
ingtead of d(l)< att+dlogllozlos! ~ve naad only prove that

h w— [e7 {(logn)t] 9 (n
([a%])/ ([a'n] e [y (log ) t]) =W (t ) '
We note that theleft hand side is > 18 Felosn which is greater than

72 (q;“), it ¢, and hence also ¢g i large enough in terms of «.

It seems quite plansible that the following conjecture is true:

Suppose a, < ... < @, < 0, t = (log,n)*. Then tlere are (1-4-¢Yf dis-
tinet produects a;ay (1< ¢<Cj<Ct), where ¢ is some positive abgolute
congtant.

The above conjecturs, if frue, would imply the following

TomoreM 12. Suppose 0< a<l and n = nyla). Then there emists
o sequonce A of k positive integers not emceeding n, where & = an, such that
Jor any s, where s is an {nteger or the reciprocal of one, there exist ai most -
¢ = [g(ORIBm fytoners

by < ... by, ,
where ¢y depends only on a, such that bybs™ (1< 1< j < 1) are all in A.
The proof, which we omit, is an adaptation of the probabilistic argu-
ment used in the proof of Theorem 10. The theorems in this paragraph can

undoubtedly he sharpened considerably. We hope to retwrn to these
questions at another occasion. L
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Brun’s method and the Fundamental Lemma, =
by

H. Havsersram (Nottingham) and H.-E. RicaERT (Ulm)

To the memory of Yu. V. Linnik

1. Introduction. Let o be a finite sequence of (not necessarily digtinet
nor necessarily positive) integers, and let 3 be a set of primes. Let ﬁ denote
the complement of P with respect to the set P, of all primes, and let

(d,P) =1 signity that d has no prime factors in P. For any real numbers
w and z satisfying 2-< w < 2z define

P): = [[p, Py, =P)/P(w)
n<e
peP

and .
S(U; B, 2): = |{a,: aei)I,(a,,P(z)) = 1}|,

“where [{...}| denotes the cardinality of the set {...}.

Let w(d) be a mon-negative multiplicative arithmetic function on
the sequence of square-free integers d which satisfies the following con-
ditions:

olp) =0 #  peP;

there exists a constant 4; > 1 such that

o{p) 1
O <1-———
(£2,) r i

there exish constants = > 0 and 4, > 1 such that

w 1 )
(€2a(%)) z ———(—g-)—logpgxloga +42, 2..<Ew.;<\z.‘
wLp<E

* This paper'is a sequel to [1]. A briet announcement of its results was contained
in [2]. :



