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ACTA ARITHMETICA
XEVIT (1975)

Brun’s method and the Fundamental Lemma, =
by

H. Havsersram (Nottingham) and H.-E. RicaERT (Ulm)

To the memory of Yu. V. Linnik

1. Introduction. Let o be a finite sequence of (not necessarily digtinet
nor necessarily positive) integers, and let 3 be a set of primes. Let ﬁ denote
the complement of P with respect to the set P, of all primes, and let

(d,P) =1 signity that d has no prime factors in P. For any real numbers
w and z satisfying 2-< w < 2z define

P): = [[p, Py, =P)/P(w)
n<e
peP

and .
S(U; B, 2): = |{a,: aei)I,(a,,P(z)) = 1}|,

“where [{...}| denotes the cardinality of the set {...}.

Let w(d) be a mon-negative multiplicative arithmetic function on
the sequence of square-free integers d which satisfies the following con-
ditions:

olp) =0 #  peP;

there exists a constant 4; > 1 such that

o{p) 1
O <1-———
(£2,) r i

there exish constants = > 0 and 4, > 1 such that

w 1 )
(€2a(%)) z ———(—g-)—logpgxloga +42, 2..<Ew.;<\z.‘
wLp<E

* This paper'is a sequel to [1]. A briet announcement of its results was contained
in [2]. :
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We sha.li write

140 =n(1_ ”;p)).

<z

We postulate the existence of & real number X > 1 and an arithme-
tie function w of the above class such that the ‘remainders’

RS w(d)
Ryt = Z 1- 22X

el .
amimod d

are small on average, in a sense o be made precise in the next section.
In an earlier paper bearing the same title (see [1]) we established a gen-
aral form of Brun’s sieve, and derived from it a rather sharp Fundamental
Lemma (that is, an asympfotic formula for S(U;P,=)/(XV(#) valid
in an extensive region of the X —=z plane) under the hypothesis (L),
(Qa(x)) and :
(R) Bl < Ko(d)

if  p(d) #0,0d,P) =1,
for some real number K 3> 1. In this note we shall replace (R) by a much
eruder upper bound condition together with an ‘average’ condition of
Bombieri type (ef. condition (R(x, ) in [3] or [4]); and we shall indi-
cate how the method of [1] leads, with very little modification, to an
¢ven more general form of Brun’s sieve. We shall derive from this form
a new Fundamental Lemma, and we shall apply thig, by way of illustra-
tion, to prove the following companion result, for polynomial sequences
with prime arguments, of Theorem 5 of [11:

TaEOREM 1. Leb fi(n), ..., ,(n) be distinct drreducible polynomials
with integer cogfficients, and suppose that

(L) L fdmy s (E=1,..,0).

Write F(n) = fu(n)...f,(n), let & denote the degree of F, wnd let o(p) ="gp(p)
be the number of solutions of the congruende

Pn) =0modp, 0Ln<p.

Assume that
(1.2) o(py<p for all primes p
and that '
(1.3) elp)<p=~1 if ptP(O),
and define

elp)—1, pIF(0)
(1.4) o'(p) = ’ ’

o(p), pTF(0).
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TLet v and @ be real numbers such that v >3 and 2'° > 23 and let ¢ = gz, v)
{with or without suffices) denote a number (usually referred to as a gquasi-
prime) having no prime factor less than 2. Then we have

(1.5) Uprp<a,fi(p)=q for i =1,..., ¢}

s (Ii m) jY (1 — %ﬂ) llt_]_OF(g—%v(logv—zoglog2lv—lug.%g—2)) +0F( 1 )},

e loga

moreover, the expression on the right is equal fo

=252 )

% {1 +OF(&—iv(logv-log]ogzv—logsg-—-2))+O _?_m}
"\ logz /1
2. Bran’s sieve. Tt will serve us best to begin with a statement of
the form of Brun’s sieve that is implicit in [1], in which the remainders
R, ave still explicit and which is therefore free of the condition (R).

TEROREM 2 (), (Qq(%)): Let b be a positive integer, let A be a real num-
ber satisfying

(2.1) D<A <1,
and let

Ag
(2.2) B o= A, 1+ A % .

log2
Define ,

22 i 1

2.3 : A= —_—
(2.3) % lie = 2008"

and let the sequence

2=z<g_<..<H <8
be given by
(2.4)

logz, = ¢ ™loge (n=1,...,r—1).

Forv =1 or 2, for each n = 1', ..., ¥ and for each positive divisor § of P(2) put
1 if ”((da Pzws)) <2W—v42n—Lforn=1,...,r,®

2. _
(2.5) x(a) \0 if d|P(z) otherwise.

Then

2b4-1 ;24

| B
(2.6)  S(U;P,2) < XV (2) {1 +2 {7 g OXP ((21’ +3) Tiogs )} +

+ D (@Rl

d)P(z)

{*) Throughout, »(n) denotes the number of prime factors of .



b4 H. Halberstam and H.-E, Richert

2]

and

2b ;24

S ‘ B
(20 S%, 2> XV {1 2 S OXD ((2_5 ) T ogz )} a

- E xe(d) 1Byl 5
dFE .
moreover, for any constant A =1, we have

ghe b i
(2.8) N g (@4 = 0(s 1),
A\ B ‘

where the implied O- consmm, while it may depend on A,, A;, x and A, does
not depend on b and A

Wo now introducs in place of (R) a pair of new conditions on. the re-

mainders R;. We sghall ruppose first that there exist a real nuwmber
K =1 and a congtant 4,2 1 such that

Xlog X
(Rg) R < ( £

+1)Avw> for  w(d) £0, (d,) = 1;

and we shall suppose also that for some constant o (0 < @< 1) there
exist corresponding o any given comstant ¢ > 1 constants C,> 1 and
0, =1 such that

' x
(Ro(x, a) S i< < iyor
deXxfog—Cox -
(@ By=1

It is clear that {R,) is, in general, much weaker than (R) (take, for example,
the common case when o(p) < A4, for all p), and that (R) implies a condi-
tion of type (R,(x, 1)). We shall gee in Section 4 that both conditions are
satigfied in the case of Theorem 1.

We shall now apply the new conditions (R,) and (R, (x, u)) in sonjuric-
tion. with (2.8) fo the remainder terms in (2.6) and (2.7): we have, for
y =1 and 2 that N

1 _1 ‘ > {XlogX wd)
Z £ (@) | By] < Z [Bal + K Z ( T ] ) AN o ()

4IP(e) d<x®op-%x L)
(@ F =1 d=X%log—C0x

< Cipirgs +REX ™ logh X 3 A1y (4)

a1 F(z)

u+f_’,’X

b L 2. 01
_ (logfcx +KX1 ap PUES B 2/1,'«_.11 gco'”X)

Brun’s method and the Fundamenial Lemma, IT igts)

If now we adopt the convenient notation
log X

H =
' loge

3

and. it also we recall from [1] (inequality (2.5)) that

(2.9) 1/¥(2) = O(log*z),
we arrive at the estimates

210 3 5 (@R

-d|B(z)

o
—x — i b 204 1 v 4 ;'01

: U AR : Y
<.XV(3){1 ox tE L :z};

(» =1,2).
From Theorem 2 and {2.10) we now obta;ixf
TEEOREM 3 (Q4), (Qu(%)], (Re), {Ra(x, a)): Let b be a positive integer,
let A be a real number satisfying (2.1), let B be as defined in (2.2) and wrile

(2.11) u = log X/logz.
Then
S(U; B, 2) 3201 24
agy SRR e b exp((2643)- '
@12 e ST o (( b3 Sregs) T
—au-+2h4- —;:leﬂ‘
+0(Kz S ot ogBt tiz) £.0 (ulog =0 X)
and A
Q[ SB} z) l2b623. B
2.1 218 2b--2
‘ (.ld) TETG) 1 T O5P (2b4-2) Mogz +
—au+2b 14 2231
+O (K e et iopCot sy L0 (v log Y X)),

where the O-constants, while they may depend on A,, A,, 4,, %, a and 0,
do not depend on A or b.

To illustrate the effectiveness of Theorem 3, let us apply it to the
‘prime twing’ problem. We take U = {p+2: p <o} and P = {p: p > 2},
50 that P = {2}. Then if @ is square-free and odd,

liz
Z 1 e Z 1 =um(x;d, —2) T—W“j‘*-FRd;
el foe p(d)
amimodd pe-3modd
acoordingly we take X =liz, o(p) =0if p =2 and o(p) = p']il th

P is odd, and we find that () is then satisfied with 4, = 2, (Q,(x}) with.
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#=1=4,, (R with X =2 and 4, =1, and (Ry(L,q)) holds with
o = % {and €, = ('413) by virtue of Bombieri’s theorem (for the version
used here, see Montgomery [5]). With this choice of parameters we take
b =1 in (2.13) and obtain (note that now B < 2 by (2.2))

S(3; B, %) 2 i
214y — Z1— |
S < N vy exp(llow)T
—MMH 2L )y
+0(z 251 uCt Mgty )4—0(%"“1105_22_(’3:)-

To ensure that the right hand side is positive for all large enough values
of x we must choose positive numerical values for A and w so that

72 6211
{of course, (2.1) must hold too!) and
) 4.02
(2.16) W > 2+ o -

the quality of our resuli will depend on choosing # as small as possible,
and therefore 1 as large as possible. The choice ¢* = 1.288 just satisfies
(2.15) and (easily) (2.1); and when substituted in (2.16) permits a choice
of u <0 9. It follows at once that p +2 is infinitely often & number having
at most eight prime factors (counted according to multiplicity).
Actually, it is clear from the proof of Theorem 3 of [1] that our estima-
tes for S(U; P, 2) can be improved by separating the term corresponding
to n = I before embarking upon the various approximations that lead
to the relatively simple forms (2.6) and {2.7) above (see the calculations

following (8.17) in [1]) -~ this is the usual procedure in most classical

formulations of Brun's sieve. In particular, the first two terms on the right
of (2.14) can be replaced by, essentially

18 A2g?t

1—212 + 3 1 12 2+24

- (we may jgnove the exponential term in this application, as we did earlior,

becauso 2 Is a numerical constant and » = XY iy therefore large) and this
exprossion exceods 0.04 with the choice &' = 1.203. Now this choice aatis-
fies (2.1) and allows us to select a value of  satisfying (2.16) which is less

than 8. Hence we may conclude thaot P42 is infinitely often o number

having at most seven prime factors (counted aecording to multiplicitiy).

The refinement indicated in the second footnote in.Seetion 3 of [1],
possibly combined with a weighting procedure (see [4]), should lead to
further improvement,

icm
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3. A Pandamental Lemma. We may now deduce from Theorem 3
THEOREM 4 (Q.), (Qu(x), (Ry), (Ry(x, @)} Let X =2 and write

log X
logz

Thfm
S (A5 P, 2)
— XV(G) {1 e O(8—au(10gu—lnglog3u—log(x,‘a)—g)) + 0 (Kng_O.X)},

where the O-constanis depend at most on Ay, A, Ay, %, a ond C.

Proof. We follow the argument of the proof of Theorem 4 of [1].
The result is of interest only if #—>+ oo, and we concentrate therefore on
the case of # large (although we can deal also with small % as in [1]).

For » 2 logs, that is to say, for logz < l/logX we can easily check
that the analognes of Theorems 1 and 2 of [1] are respectively

1 (Qe ()]s (Ro)y (R (22, a)):

S(Q{;ﬁ}, g) = XV z) {1 +O(10g_CX) +0(KX““]OgUQ+”X.(1 _I_Aﬂ)n(z))}
and .

) (Qz(”))a (B}, (R:.(M, a)}:

S(A; P, 2) = XV (2){1+0(log~? X)} + O( K_Xl_glogch)-

and that both these are better, in thelr limifed ranges of effectiveness,
than the stated result.
Thig allows us to gsuppose that

u < logz,
and here an application of Theorem 3 with “
ex logw
P IO PR
2 2 logw a . %
leads readily to the result,

4. Proof of Theorem 1. We take U to be the sequence {F(p): p < #}
and B to be the set P, of all primes. Then, if x{d) + 0,

@
F{p) = 0 mod d}.l e 2 2 1

1= |{p: p<u,
aeil I=1 PET
. p==imodd
as0xood 4 P 1
d a
o
= > mimd,h= D al@d,)+0(d),
=i =1 :
* Fle=0modd (1, d)=1
F(l)=0mod &
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writing
lizw
-_E(wi d, 1) = n(x; d, l)"‘my:
we obtain
. hw o
Zl: ZEmdl+Bg()
et
a=0mod ¢ (1,4
F(i)Enmodd
liz d@’(d) P
@ {E’m a1}, 161,

where ¢’ (d) is the number of solutions of

F(n) =0modd, O0<n<d, (n,d=1

50 that 0'(d) < o(d), o' (p) satisties (1.4}, and where

B{ws d) = max |E(x; d, D).
i<isd
Ld=1

It is not hard to prove that o' ig a multi phcatmn function, and therefore
an appropriate choice of X and w here is

(4.1) X =lig,

we may clearly assume that X > 1. It follows that

(4.2) Bl < {B(w, d) -1} o(d

In order to apply Theorem 4, we must check that the basic condi-
tions are satisfied. From a well known elementary result we know that

whenever ¢(p) << o, Whence, by (1.4),

wlp) o (10) B
p p—1 0 T4

for all p;

hence (Q;) holds with A, = k+1. Next, (Q,(x)) is satisfisd with = =g
and 4, = Op(1) by virtue of a classical result of Nagell [6] (see the proofs
of Theorems 4 and 6 in [4]). We come to verify (R,) and. (R, (x, @)}, and here
we base ourselves on (4.2). Since o(d) < F*® for square-free d, the second

Bruw’'s method and the Tundamental Lewmme, 1T A9

of these two -conditions follows from (4.2) by Bombieri’s theorem (a8
is demonstrated in full detail in the proof of Theorem 6 of [4]), with =
= g,a = % and taking (as we may do) ¢ = 1. Ag for the first condition,
we have '

Ryl < {B(w, &) +1} 5D <{ +2} T 2{

Xlog X
dg +l} B,

go that (B,) holds with i = 2 and 4, = k.
We may therefore apply Theorem 4. Here we take z = 2%, 5o that
by (4.1) and because > 2° = 8 by hypothesis,
log X log (1
v ogX  log{liz)  logleflogs) (0
logz loga loga

logloga 2
. S [N
logw ) s
hence, by (4.1) again, (1.5) follows at onee from Theorem 4.
Ag for the 1ast statement in the theorem, we have

L 2w ;(ji)—l(l_ @'(pm)
p—1 P P ’

and therefore the product cn the right of (1.5) iz equal to (see [3], Lemma
2, (2.12), noting that condition (Q,) on p. 244 with w(p) = p'(p)+1 is sat-
isfied with 2 = ¢g+1 and 4, = 0x(1), L = Ox(1))

- o' {p)+1 1\~92 gyl o )
Ig(l_ P )(L“F) Tog' {1+OF(logw)}’

this completes the proof of Theorem 1.
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