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Introduction, A Gayssian integer is o complex number @ 4 b in which &
and b are ordinary integers; a Gaussian prime g 18 a Gaussian integer
with lg} > 1 which i3 divisible only by = or ¢ where ¢is 1, —1, 4 or —9¢
(gp i called an associate of ). In Hardy and Wright [5] it is shown that
the only Gausgian primes ave 1--%, and ity associates, real primes of the
form 4n -3 and thew associates and the factors ¢ +4b of real primes of
the form 4n--1. Chulanovskii [1] (see algo [4]) obtained the following
expression for the number of Gaussian primes ¢ in an expanding domain L
in terms of the nuwmber-of Gaugsian integers » in, D and the radins I of D:

2
2 1= N140 ~—_~3~R —w_m)
e mlogh & log RVloglog &
a8 R—co. The form of the domain I has beern discussed by the author
in an earlier paper [2]. Chulanovskii’s result wag obtained using elementary
methods only. Kubilius [6] had previously .obtained a better result (for
homothetically expanding domains) nsing eomplex variable methods.

In this paper, we introduce simplified methods for finding 2 number
of results akin to the celebrated Selberg Formula, which is the basis of

-all elementary proofs of the Prime Number Theorem and extensions of

it. See, for example, Erdds [8] and Wirsing [8]. Unlike Chulanovskii,
we fivgt find such o formuls for the Gaussian integers in a disc and then
apply this to the more general problem of an arbitrary domain. The
former may be obtained us a direct analogue of any of thoe methods used
in the ease of real integers; we use o method of Smith-White [7] in which
only simple manipulations of the Mobius function x and its associated
inversion formulae ave used. '

. Notation. Unleys stated otherwise, the words “inbegers” and “primes®
in the following shall refer to Gaussian integers and Gaussian primes..
Lower cage Greek letters (except m and &) always denote integers,
with ¢ reserved for primes and e for the integers 1, —1, 4 or —i; § is
any complex number; € ig a veal constant.



386 @.T. Cohen

Differing slightly from Chulanovskil, we shall understand D to be .

a domain in the complex plane, of radius

B = suplé],
feD

such that the boundary comsists of a bounded number of simple closed
rectifiable curves, of total length I and snch that the ratic }/E remains
bounded. Without loss of generality, we shall further assume D to be
syminetric with respect to rotation through 90°; that iz, if fe D then
also efe D.

By Dy (v # 0), we shall mean the domain defined by: £eD/v if
and only if fve D. Then D/y is also symmetrie, and has rading R/»] and
bhoundary of length I/{v|. The domains D and D/v arve geometrically similar.

‘We ghall denote by d(D) the boundary of .D and by « (D) the area of D.

Preliminary results. We assume the result
(1) M1 =nR+0(R), .

foe| <
from which :
N1 =0(Ry.
borys3
Define the domain D, by
= {{;‘: ]E—E’l< r for some &« G(D)}.
Then we show that
(2) ' Z 1< Br(l+7),
’ we ),
for some posn‘,we condtant B.
Suppose that 3(D) consisty of a single closed curve. Lot m satisfy
0<m<] and divide 8(D) into {lfm]-+1 sections, each having length
at most m. If D, there is some &'« 9(D) for which [£—&'| < r. Hence .D,

is contained in the union of eircles of radius r--m with centres at the
division points of 4(D) and so there is a positive constant B 8o that

51 < (E;] +1) 2w

Ifl < v, wetake m =1, whileif7 > r, we take m = 7, in each case obtaining
(2). If (D) consists oI a bounded number of c]osed curves, we simply
add the above results together for the separate pieces.

It follows from (2) that

’ 1 R
(3 1= ¥'1 0(_,m)
) u;.’“ iﬂzxsﬂ " Ivl ’
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where 1«5 |v| < B, For clearly
).m’(l))— Mg 3 1=004+V2)
xe D "EDV
%0 that
A (D) = Y 14+0+1).
xe D
Then

D S 1
o (__) - Z 140 (—w— + 1)
v He Lfr |7’l
while also

" ﬂ(ﬁ) = (D).

A [v?

These lead to

\‘1

:hs_[),’v

Y.H-o(i +1),
T vl

wel)

since |v] 3 1, which is a stronger result than (3). However, the equation (3),
which we obtain by putting ? = O(R) and requiring |»| < R, is more useful
for our purposes.

The function corresponding to the ordinary Mobins funetion u is
the function ¢ defined for all a 5 0 by

1, if o=,
0, it ¥a for some #, [v| > 1,
gle) = (—1)", i &= 010z... Om, Where no two of the primes
Q1 Oy +++y Om OT0 aSBOCiGtes.

We may readily prove, as for real integers, that

' it xo=e,
) ;,,Z,; ala ‘ 0, otherwise,
~4loglel, 1 % == s¢" where o is @
Eg(a)loglm = positive integer,
uln 0, oftherwise.

Define _ _
\logm], f v = sp® where a is u positive’ integer,
A(p} =

0,. otherwige.
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Then
(5) AP = —1 Y qla)loglal,
afvy
(6) logh| = § Y A(e),
alw
(") | 2, A = 0(&).

|vi< e

The following transformations of sums are used extensively in the
sequel. For convenience of notation, we now specify that henceforth |he
origin iy always excluded from our summations.

Dlflam = > 2 flasm = D' N fla,n)

Jar| <& lal < B {»! <Rf[a <R Ja]<R|#|

sz( )= 220t
= ) Dfwn = > M)

me.’D |l <22 ve Dja 7| <R aeDfv
\ ! 4 v\ »®
=D Dl Z) = X N2,
i od o ed d ¥
xel}  ulw #eld  wa

-We make considerabie use of the following inversion formula:

2, q”)a(wt)

(R
G(R) = _S_;F(m) it and only if 167(R) =

|#]| < R i'”l |v|<R
Proof. Suppose G(R) = y ( ) Then
M<R
Zvelii) = Zaw X w() = Saor( L)
P id w%‘feqm lﬂ\-:ZR}IVI o] av%;q ||
- 3 Sror(2)- 52 San
2| <B sl x| <l #ik

=-4%1ﬂ(m) = 16F(R), -

using (4). The converse is similarly proved.
- If F and & are two functions satisfying this formulm we shall call
them a Mobius Pair and clenote thig by {F, G}, an ordered pair.
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Let the functions ¥, ¥, 8 and I be defined for B> 1 by

Ny = D1, N1)=0;
|9 B
. Rz )
(B = X v = o
=t v ;
S(R) = D Ap), S1) =0;
[ 2
L(R) =4 >'loghl, .L(1) = 0.
! <R )
According to (1) and (7),
N(R) = =B O{R), 8(B) = O(R").

We see that {1, N} and {R?, V} are Mobius Pairs. Using (6),

|§es(£) = 2 D An = 4p)

|af

lal<B [v]< B af lowl < it
= ¥ MA@ =4 Y loglx| = L(R),
2| <R #|x [ECRE

so {8, L} is also & Mbbius Pair.
Applying the inversion formula, we have

" B
® 16 = q(v)N(W)
|1\<.1? '

(9 16F — Zq (M)

Pl

Riemann-Stieltjes integrals may be used to simplify the evaluation
and estimation of sums, since & partial sunmation is then replaced by
an integration by parts. Integrators such as N, § and ¢, defined for & > 1
by

QE) = > gla), Q) =0,
|e|<i .
are all gbop functions, continuwonsg from the left at their points of disconti-
noity., A change of dummy variable from % to » ‘will always e via the
subsbitution o == I ju. ’l}h‘m,
I
N(uw) .
T (R) = 3 log |v] = flogudl\?(u) iz [N(u)]ﬂgu]n fw%—ldm&
|v|<:f€ 1

i
= mhtlog B - O(Rlog R) — j Z‘_"i_‘*%;__@i) du
a l : .

= nRlog R — }nk -+ O (Rlog ),
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g0 that

(10)

Likewige, we obtain

L(R) = 4nR*logR —2nR’ 4 O(Rlog R).

G. L. Cohen

R RO ORMY, a< 1,
2—a
. mR+ O(logR), a=1,
(11) 2%:["”&”: T preggql),  l<a<?,
=t [} / % Ty 2—a )
2rc10gR—|—O+O(—E), & =2,
0(1), a> 2.
In particular,
12) V(R) = 2nRlog R+ OR +0(R).
Wiiting (8) as '
R .
B
16 ﬂIN(—a—) a0 (u),
we have
YR 40 () AW ()
2 D e ——]
16 :f (m—ﬁé—%—O(—))dQ(u) R lf o +o(Rf -
50 that, by (11),
. . o
(13) dQ(:ﬁ) _ _Q(aq) —0(1)
% =t [ex)®
Since {8, L} iz a Mobing Pair,
‘ =
i B g’
& R
' R e [ A8 "~ A8 (w)
*lfzv(mg«)dﬂ()_wﬂif_? o(le - )
and since
R
as A
(14) . f_.__(_)_ = \? (T) (R),
: i Y = S
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we obbain, Substituting from (10),

(15) f Z i|2 = dlog B--0(1).

| I8

The Selberg Formula for a dise. For any Mbébius Pair {F, &}, we
have

16 F(R)log R ~ Zg(v)a(_l‘%) log

|| < A%
= Daio( g+ S a6(E) 0.
1:;<~1§: <z
But
. \ R
WW(M) loglvl = D gtwloglsl ) r(w)
i‘%f . MJ\&R %m lar|
Y B
= Z g(»)loglr [P(TT)
lav|< Bt
- R B
- 5 7() Suomene -« Sir{Z)an
% [ET 2
by (B), s0

Eq(w)@ (E) logmli.
Plf il

vl <?

(18) 16 F(R)logR--4 E () (I !)
|*| <R

In a particular case where G(R) = O(RlogR), we would have
G(R)logR = O(RVE) and |

Y ('u)G( )1ogﬁ - 0(133#' S .1f.2.) — O(RY),

3
sty I ey

by (11), and in this case

| 1 S Ey
@ | AP (R)log It -+ l%ﬂxx(x)ﬁ(lxl) = O(BY).

Now congider in conjunction the Mébius Paivs {1, ¥}, {8, L} and
{B% V}. The “smallert posgible” linear combination of ¥, L and V is .

il
the fanetion @ == L—2F 42 (:1. + EJ~~)N ; In fact Go(R) = O(RlogR).
. - ;

¢ ) ;
{Fy, o}, where Fy(R) = S(R)—2R*+2 (;L + ﬂ), will be a Mébiug Pair
and. (17) may be applied. | ‘
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Substituting F, for I in (17), we get - _
B
wonfE}-

¢
R 2 .
458 (R)log R 8K 10gR—|—8(1-{~ ﬁ)logR+ § ]

[ESE

_ope SAH E) N A(w) = OB
r 2R [,%; i +2(1+ﬁ M%,% () = O(R.

Using (15) and simplifying, we get

(18) logR Y A()+1 D,

|v| <R faew] <R

S A(x) A() = 4R log B+ O(R?),

which is the required Selberg Formula for the integers in the dise 1§| < K.
Substituting {8, L} for {F, @} in (16) and using (18), we obtain

(19) Dl (n)log - D logl = 16R"log B+ 0 ().
<. vl |l < Bf|#]
Tt ig the analogue in D of this result that is the basis of our method for
" finding a Selberg Formula for the integers in D.
Finally in this section, we prove that

20) 2 a0) logﬂg - %log..R—}—O(l).

| AW
From (9) and (12},

R
168 = » V(m—)
!é;q( (s
—onm D01 B o 3140 +O(R Zi)
i, ol 2] it vl vk Y]
80, by (11) and {13),
T 4() R
21 - log - — O(1).
- . M%g pp 08y — O
Substituting (10) into (19):
16R*10g R+ O (Rﬂ) |
' ~ B vi. R
- R ) ) logr . ) +o(1&z o Bm)_,
i B iy o ol Z el
g R 2 32 ) l .
2 resq ooz Zﬁ“

. and (20) follows, using (11) and (21).
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~The Seiberg Formula for D. Sot

P Zq('u log ™ 2_; logix|.
Ir|<E xeDfy .
On the one hand,

S e B
re D go)ogos >

i
(105 (log |2¢| —log —
(v na v I I

»!
] E (1})105}2.,‘. \ 1”1_

LR m‘D}v

W I. 1g_21 Inv[

!w[{lff xe,D/v
. Yy
o |)) ;

> g(»)l og"l I(WZ
<ol Z )

where

By (3) and (20),

IVIaR

N |w|2 Z

BREE uel

=m~10gR2‘ 1-+0(E 1B,

wel2

% log-wlog-l-?i’il- -«% % og—lo —ll%l— ‘
2mﬁzq
asD ¥l

~logR ) log Py \jlog

(log B —1log lv])

L > aoogh

wel) "lﬂ #la . .
= —16log? R ~ 4 > 1og~—’?~ = O(log >~“~'0( 2, Ata)log R)
nlIJ ! 1 . RSy i l

308

using (4) and (8). We have assumed hore that 1e.D, Hut clearly this is

not necessary. Now,

¥

F
B R R
2 Ala)log -~ = lf log — a8 (u) m[ﬂ(%)iog J1 b '1[

] 7
R
= O( , udn) = O(R*,
/
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s0 B = O(R? and
16
I = —logR 14-0(REh.
(22) L logTe D 14 OLE)
On the other hand, notice that, by (6),
B
4 log |x] = Aw Alw (%) 1.
ek R A0 = J A= 0 g
Then, _ |
¥ 1 ¥ al
41 = b3 q(»log - A(x) 1= g (v)log —- A (%) 1
Ivlz-:‘lli lﬂ [u|<21?/ y%:v jn;.? Evl e Dfwy
- R
= > £1(x) Z g lorr—— 1m VA(:%) Z g{#)log —
I I eve Dfn |’J[
|n|<R i< Rf|%| e Dfsy 1=t I /. .
—
~logR ZA(%) DD b~ ZAM D X gttogh
|#j< 3 aeDfx vl 2| <@ acDix v|a
—4logR2J/l )4 FA Z
M(R aeD/fx
aneD
v 3
= 16log E *, Ay 4 A(s).A(a),
xel) axe D
using (4) and (5). Thus
I'=4logR )_;A(MH %A(M)A(a).

(23)

wlogR Do),

From (22) and {23),
Ala) A(z) =
xe D

(24) | logRZ A(x)—f—éfz
axely

»elD
which is the required Selberg Formula for the infegers in D
obfain some alternafive forms and

Fur!lzher formulae. We next
Afa}A{x)

extensions of (24).
Firstly, since :
Y Aa) A = 3 Al@ A+ D) A@d — )
axeD axel) : axe 2 axeld
lo] <V E |2 =V B lal<VE
[V R

! w>+0<R2),

=2 > Ala
xeD,’a

n|<l/1—'

4 -l
%) = —log 0gR D 1+ 0(RY).

(24) may be given equivmlently as
—

Afa) B

#elD

(28) logh 2 Alx
' [al<'I/R ”SDi"
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Secondly, we show that
Y 1 \7 e 4 R*
26 A — =— 3 14 ,
(czx.") f?ff g 4 Ti)’j' 10”|%W| T D ) O(IUER)
Vi
Introduce as an integrator the function §,, defined for Rz 1 by
3 Aty A( 8, (1) = 0.
|| FE
By (24), 8,(R) = O{R*log.R). Then
S\ Ay, B [ L8B4 ()
et log |m]| bxp| ) " logw t
Ve || < 2B va
- R
Iog(R/%)]R 8y {u)
= Rl logR | =
[ () logw vz g fulog%d%
2
— 0 (log R) +0(10gR [ ——_du) O(RY,
and so
1 A () . A(2)
Aln —{-a
% DT 24 ogtl |
Vz-{jmq ) - .
1 A(x) A() ¥
pa %)/1 v —_— = log ——
%4 élogRZ 410g.R ,;: log || foewi
V||
____i v ) L0 "1 - A(M)A(’u)lo B )
Tt s logR logR & loglwv| - {aev|
#a.i) Vi< .
4
%%%(mg
O(R*log R) in (26) by

by (24). Xt will bo convenient below to replace

0 (E*/log 2R).

Our next result is:
3 1 ~y A(a A(v )
27 3\ . L
er) 31 Ae) DA D) SosE M
i<V R ua.Dfy Vaig|w< VR .D/cw
| ..mm1001321 L O(Bloglog B).
veD



396 G. L. Cohen.

This is & special case of the following: Let 4 be a real-valued funetion

defined on the positive real numbers, and suppose that the funetion H,
given by
H(R) = > h{al) (R>1), H(1)=0

. IMj<R
- gabigfies the condition H(R) = O(R*. Then

1 N Al
L \ A
o8 3 ao) Supn+ > I S i)
‘."l<1/ﬁ ne D ]/2&;13,,J<]/R se Doy

A Z b M Y1|1 + O(RzloglogR)

T 2|2
VB <R "D

To derive (27) from (28), we simply note that it is valid to put b ({x]) = A(x)

and we use (15).°
The proof of (28) requires the estimates

;‘1 Afzx) A

lo
l/"<|xvl-’]/R g[”ﬂ

W _owm),

- easily proved with §; as integrator,
h

!
\x|<R

easily proved with H as integrator, and
- h(lftl)
ik WlPlog GR) —

proved as follows: : . |

N Bl _f dH (u)
‘,ﬁé’% ||t log (2R {|e]) o 1:22‘10@‘(213/%)

=[ Hw) ]R —f—fRH( | 2log(2R ) -1

w?log (2R /u) | T uslogt(2R/u)

= O (loglog &),

I du A du ‘
=0(1)+O(1f Mlogpgﬁf)*'o(if éc_léé”é?ﬁﬁ?))

'_0(1 O(F do J‘Of_d'v_
=0+ . vlog2v ' ] vlogt2v

= O(loglog R).
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Then,
\ ! 1 Alayd(y)
1 S — RNl 20
Z_z (v )xg_; (1%)) I- 2 e 2 {1}
| <VR i/zéla-p]<vR #eDjap
- Saped N Ao
|u]<R vel),lu ﬂmﬂ ].Og Ia’Vl
: pI<VE Vzggm.[.::}/ﬁ
\ % Aoy Ale)d(y) .
== h il RS DI
PRI PWIEEED ).
VR <R vefx ,:/x:uf;xl
25| oy
_}‘0(2“'%])( vy }1 Ala)A(y }
_ < log [ay]
I <VE "l-:l/R V-%Iavlm/ze

- V (mn(% 21+0 (—L)) + 0 (R?)

V:z<|x|<R veDx |22|*log (2.8/|x])
4 X 1 B
= Z FL(I%I)(ngmlaO(T;T)) +

VR <R
Lolm WV B N e
| (1 2 TeElog (SR TI) ) +OIE)

. 4 a )
== > ]T 21-|—0 (F*loglog R),

VR<|n|<R

in which we have also used {26) and (3).
Subtra.c‘rmg & quarter of (27) from (25) gives nus a formnula of Selberg-
type which is bagie to Chulanovekii’s method:

(29) logREA( !~-—~~ S‘ Z () —

i mqm weDfy
LN A@Ap)
e > o)A () N ()

18 e Iog[awpf )

Vel Vi welav

= 2 10gr ¥V 1.+0(Bsloglog B).
™ <5

i — Acta Arithmetica XXVI4
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Finally, in this section, we show that

AN Ao Az)

L loglov|
Viglar|<VE

(30) Z 1= SlogRZ 1+0 R”-loglogl?,)

»eDlay »eD

Pubting (=) = 1 in (28

4
2 e

) and rearranging, we have

Vigio|<VR ueDfor
16 - i
T Z ZI ¢ ZA 21+0Rluglogﬁ:)
V’R-{Eu|<R ve Lt |"|<]/R ne Djy
= 1 A) 1A () .
- 1610gRZl—4 ‘}J— R Z 1+ O(R Z 1) +0(Roglog B
veD <V R xe =k

='810gR2 1+ 0(Rloglog R),

ve D
using (11), (3), (15) and (14).
The remainder term % (D). Chulanovekii egtimated the number of

primes in D by obtaining a satisfactory estimate for the remaindler term
# (D), defined by

' al 2
31 —
(31) %M) .ﬂy;lww).

We conelude by deriving a fundamental inequality satisfied by %(D).
This is a consequence of substitfuting from (31) into (29).
Under (31), we have

Z A 2/1(%)

M.{y’ﬁ e Djy

= D' 4ap ( 4w __-)

| <V It MDII’ .

Q A(w} ( 1 A» ) N7 D

= 3 1rofr M2 L M Ame ~«~)

* 1s]<1/13 % = id mer® v
=WIOURZ 1+ 2 u)ff( )—f—O(IﬁB),

pl<VER
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by (8), (14) and (15); and
0 A@AR
_deed_ loglaw]  aed
Vo o<V se Diar
_2 Z Ala) A(r) xﬁ 14 >1 Aa) A () @(_12)
S 10g|aﬂ b log ar| ay
Vaejw|<V R s D)y Vi iu“[\-l/l“
16 b .(/. (l ‘.'lv‘ D N ;
e | 1+ - 4 L I Riloglog R
= QgRZ t > loglawl J(cw) - O (R loglog RY,
veld )/2<gm|(1/1.>,

by (30). Henee, carrying out the substitntion,

1 D 1 -
[, e [ S .
@ {D}log R - < Ef« A(w).ﬁ( - ) 6 N )
[#] <V I8

Vg o] < T

Alay A(») (,D
log |aw| oy
= O (R"oglogR).
The terms in » 1 cancel out, accounting for the method of formation
ve D

of (29). The regquired. inequality is

SN r]:‘ 24 A0)| 9 ( )'

1 I) ( R*loglog R
- _....Jl,‘,‘,.w 21 A S v) -+ O (m 0g70¢ )w
l6loghk loglaw log B

Vasg|ar| <V T

(% (1)
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Absolutely continuous distribution functions
of additive functions f(p) = (logp)™% ¢ >0
by
G. Joowrsit Bano® (Caleutta)

Introduction. The following question was raised by Brdés in a private

‘communication to the author. Suppore fis a real-valued additive arithmetic

funetion such that, for all primes p,
(1) ~ fp) = (ogp)™

for some a > 0. Tor which values of ¢ > 0 does f have an absolutely
continuous distribution? In the same communication Frdss pointed out
that f has absolutely continuous distribution for a = 1. '

In this paper it is shown that f has an absolutely continuous digtribution
if0<a<2.

Notations and definitions. An arithmetic function f is said to be
additive it '

J(mn) = f(m)+f(n)

whenever (m, n) == 1. f is called strongly additive if, In addition, fsatisfies
F(@" = f(p) for all primes p and for all positive integers k.

A real-valued arithmetic fuunction % is said to have o distribution
if there exists a distribution function & such that the density of {m = 1:
h(m) < ¢} oxists and equals G(e), whenever ¢ iz a continuity point of @.

Throughout this paper we let p denote a prime nwnber.

The result.

Tunorem. Let f be o real-valued additeve arithmetio function satisfying
for «ll primes p, ‘ _
f(p) == (logp)~*

Jor gome 0 < << 9. Then f has an absolutely comtinwous distribution.

Prool Thatl f bag a distribution fqllows from Brdss-Wintner theorem
(see [2]). From the results of [1] it follows that the distribution of f is
abrolntely continuous if and only if the distribution of the corresponding

* The auwthor is currently a Visiting Member at the TIFR, Bombay.



