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Proof. By Lemma 6, we have

J, < Nlﬂ_s/m[ f ) f ” 18( ;) | L (@) {da} 4

Iy Jo
|8y )| <8 (g )|

+ [ I-I[S(aja)ll)(a){drx}].
#2

Hy 1
A (]

Applying Holder’s inequality and Korer’s theorem {[2], Satz b), we
obtain, as in [3]), for s—1 3 9™ thut J, € NIF-0y pe-1-midion’ yrpin
provided that P is large enough (te ensure that P axcoods o certuin
power of logP) and Lemma 7 iy proved,

As mentioned on p. 501 Lemmas 3, 4 aud 7 togother with (3) for
d < 1/4 and large P, prove our Theorem.

Remark. It seoms reasonable to expect that the condition ¢ 5 2™ -1
in the Theorem mwy be improved to ¢ ¢'mlogm (for largo m) By in,
Davenport-Roth [1].

References

(0] H. Davenport, Analylic Methods for Diophanting Bguations and Diophantine
Insqualities, Ann Arbor 1962. '

(1] — and K. I. Roth, The solubility of cerlain Diophantine inequalities, Mathomatika
2 {1955), pp. 81~96.

[2] O. Kérner, Uber Mittelwerte trigonomelrischen Swmmen und thre Anwendungen
in algebraisohon Zahlkorpern, Math., Ann. 147 (1862), pp. 205-339,

(8] 8. Raghavan and K. G. Ramanathan, Solvability of o Diophantine tneguality
in odgebrads number fields, Acta Axith. 20 (1972), pp. 299-315.

[8] C. L. Siegel, Sums of m-th powers of algelraio integers, Ann. Math. 48 (1945),
pp. 313-339; Gesam. Abhandlungen, 1966, vol. 3, pp. 12-38.

(6] — Generalization of Waring’s problem o algebrads wuwmbor fields, Awev, J. Math.
66.(1944), pp. 132-136; Gegam, Abhandlungen, 1968, vol, 2, PP, 405420,

TATA INSTITUTE OF FUNDAMIOINTAL RESHARCLH
Bombay, Indiu

Reooived on 21, 2, 1973 (375)

ACTA ARITHMETICA
KXIV (1974)

On the theorem of Gauss-Kusmin-Lévy
and a Frobenius-type theorem for function spaces

by

Eovarp Wirging (Marburg [Lahn)

1. Introduction. It one wants to investigate the distribution of values
of @, in the regular continned-fraction expansion
1
a = [0 @y, 8y, ...] i1 = —————

Gt Qo +...

where o vavies randomly through the interval (0,1), one is readily led
to congidering the (Lehesgue-) measure m, (@) of the seb

_ {a5 [0y typys Opypy -+ I << x}, _
where 0 < @ < L {see for ingtance Khintchine [3]). Gauss [2], in a letter
to Laplace, stated that :
log(1+ )
log2

W () — 7 — oo.
The fivet one to publish a proof of thix theorem was Kusmin [4] in 1928.
Actually he proved that if we pub
 log{l+w)
log?

-+ T (.’E )

then 7, (@) = O(g" ﬁ) ay n-»o00, whore g is some constant, 0 < ¢ < 1. Lévy
(6] independently proved
o (@) = 0(g") |

by a different method (using probabilistic notions). As Sziisz [6] has
shown this same vesult can also be obtained by Kusmin's approach.
Sziisz’ proot iy easier than the two earlier ones and appeats to give a smaller
value (g = 0.485) than Lévy’s ¢ = 0.7 if one aceepts the tronble of some
caleulation. Te doos not give all details though.
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In the present paper we shall first show that Szisz’ proof itsell can
be simplified considerably. Without any numerical work wo ghall gec that
¥, (2)] < 6,27 or rather

finding at the game time a gorresponding lower estimabe

O .
7 ()] 22 i @l —a),
which limits the range for possible improvements on the value of ¢. By
more effective choices of a cortain auxiliary function we can narrow the
gap to
6‘2(0, 29)".’.6(1 -—.{B) = ( —'1)”'}"1&"%({1’1) < 01(0, 3l)nm (1 - .’L‘)
and

2,(0, 302)" (1 — 2) < (—1)" 7, (@) < e,(0, 3055 (1 — »)

respectively, the first line being within reach of paper and pencil while
for the second one o small computer is more adequate.

Given these results an obvious target emerges: To actually close
rather than narrow the gap. The fiool that serves this purpose is a theorem
(formulated in 3.0) about the specirum of certain positive linoar oporators
on spaces of functions. Here we call an operator positive if it takes nonneg-
ative functions into nonnegative funetions. The ecorresponding theorew
for finite dimensional spaces, due to Frobenius [1], states that o matrix M
of positive elements has an eigenvector of positive components with
a positive eigenvalue A and that all other eigenvalues of M are of lesser
moduluy than 4. The straightforward generalization of Frobenius’ thoorem
to infinite dimension is false. Our theorem thereforo necossarily comtuins
further conditions. These are boundedness below of the operator by some
positive linear funetional and the oxistonce of w sufficiently good “wpprox-
imate eigenfunction”. On the other hand the theorem gives an explicit
(and best possible) bound for the remaining spectrum. In thig regpoect
it may be new even in the finite ditnensional cage, whore the extra condi-
tions always hold. ‘

For our problem the theorem yields (seo 4.0)

() 7a(t0) == (=) W(0) + O ({1 —2) "),
where 1 and u are constants, 0< p<< 1, and ¥ in the tirst instance is

& realvalued function on [0, 1] with a continuous second derivative and
zeros at 0 and 1.
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Both A and ¥ can be computed by aniterative procedure but for neither
can we give an ¢xplicit oxpression in terms of known functions or constants.
We have

A == 0.3036630029 ...

In the rest of the paper (5.1 —5.3) we show that ¥isin fact holomorphic
and {hat it can be extonded holomorphically info the whole complex -
plane with o ent along the negative real axis from —1 to co. [f 2 approaches
any raional point on the eut, W{#) becomes logarithmically infinite.
The eub i# therefore the natural boundary of ¥, Furthermore ¥ ig subject
to the functional equation

1 1
Wig)—~W(e+1) == —¥ .
p(e) - le+1) = 29

The following problem is left open. Iy it possible to extract further

Hmain terms?? from the “error term?” O{p™)?

2.6, Like Kusmin and Szisz we bage our proof on the recursion

o= S 2525

which follows easily from the definition of m,. If we infroduce a linear
operator 8 Dby

(3) (Swne) (:1;} = Sj (m (%) - Y ( P -|j:w ))

fe==1

we can simply write

Moy = Sty
One seos casily that § has the eigenfunction ljog(l +2) with the eigenvalue
1. It m’ oxists and is bounded then (3) can be differentiated term ‘?ay
porm and (S@m) 8 also bounded. Since mg{x) = ¢ has these properties
g0, by induction, do all m,. For the new functions

Tula) s== (1) Wﬁ;,(ﬂ;')
one Lindy in this way

f,wﬂl wE Tf%!
where .
' 9?"1 1 /.( 1 )
(4) (Tf) (@) &= % Vi@ (br1ta) " \k+w

This substitution improves convergence and gimplities the ]11-&?11 terlp
by taking log(L--a) into 1. So the constants, a8 can be eheckecl_ 11tnmec11—
ately, ave eigenfunctions of 7. We can exploit this by differentiating our
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recursion again, because if the constants are eigenfunctions of an operator
7 then {Tf) is linear not only in f but even in f” (assuming that f hag
a contimuous derivative):

(Lf) = %T (f(0)+ j?f’(y)dy) »;;g—i’ ff’(y)d’y.
0 1]

(This was already used in passing from § to T.) Mence, if wo sob

1)+ == fu ()
we have
Ipr == Ugn,

where U can be defined by
(8) (Lf) = —U{f).
(We write — U/ rather than U because this way U will turn out to be

positive.) The essential point now is that by our sequence of substitutions

the main term —Ew +w)
log2

is taken into zero and only the remainders are

left in the recursion:

(6 o) = [(Akamya)) = (@ +ar o).

Though g, is essentially the gecond derivative of r, estimating g, is a8
good as estimating 7, since m,(0)= 0 and m,(L)=1 {(seo the definition
of m, or (2}), whence

(N ra(0) = Tn(l) = {.

To obtain an explicit expression for U we mot f ==:¢ and insert
(4) inbo -(5) noting that

I
Bt *

Y _ %
(o) {k+1-tw)  kt+Lltw

We find

(Ug)(e) = ""%- (Lf) (%

-_-,__Sj( k=1 k N
: CEXOL (754—1--90)“)[(?5““5”)Nl"

Io=1
1.- I-m ' 1.
+2 (k+ %) (k-1 +m) g(?c»l«m)'

icm
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The firgt sum afber partial summation becomes

2 (k4 101-50 ((kiw) f(rc+:1L+m))’

fora ]

henco
(8) (Ug(@)
1/ ki

Sk | 1o ( 1 )}
- — 1 () A 4 s .
fom -1+ 1/:.:4«11.4‘@0(‘]) v (7‘7“!‘-’“)3(754“14‘”)9 ko

i 3

p=

The representation shows that U is positive, as stated above. This implies,
of course, that
Up<Up, U gr<s9s-

2.1. In order to estimate g, = ( — U)*g, we need a function ¢ with
a poritive lower and some upper bound,

0<a<spa)<h
and sach that

(9) sp << Up <ty
with pogitive constants s and ¢ Given such a funetion we note that
tg(®) == and therefore
1 1
gole) =1, FWQQ'O‘{«'E‘P?
and apply U vepeatedly
1. 1.
. TB—U”QJQ(—U"%S.EU Py
1 1
(10) =" < (=1 < — 1,
7t 7 ﬂ e
— " (—1) gnégt .

To tuym this into an (hﬁtlmddﬂ of 7, let &:==log(l--o) and write
(o) =1 g, (£). Then, _

en(4) == (L+0)7, (),

o (£) = (L) {(L+a)ry (@)
and by (10)

(11) @ (—apels) <2 b

= (L42)gate),
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Trom (7) we see thaf
0n(0) = pp(log2) = 0,

henee, by interpolation for 0 < £ < log2,
(12) 0ul8) = — E(log2— &) g (&),

where 0 < & < log2. The factor &(log2 - &) as & funetion of @ has siwople
seros ab 0 and 1 and is positive in boetweon. Combining (11) and (12) wo
therefore obtain

(13) ea8"m(l—m) = (- 1)ty (@) = 6 3wl — @),

2.9, Tt remains to find a funetion @ sueh that (9) holds with roasonubly
good, constants 8, ¢. Bince (8) appears too complicated to behandled directly
we turn back to considering 7. To minimize compubation we wish to
uge funetiong y for which the right hand side of (4) can be pub into some
tinite form. Such functions can be found by formally inverting 7' Let
x be a given function and let us look for a funetion y voch that Ty = g
We assume that y is defined for 0 < # < co (nol only iv O <L @ = L) and
that (4) holds there. Then

rle) _glite)  F (_;1; |
142 2 ¥ ?

TUTR e e \lte
which gives

1 1 I AR, -
w(m)m(;—kl)x(&mwl)*gx(zj-) for  0<z<d.

It yin) = o'(zc) as @+ oo then the function ¢ defined in this way indeed '

folfils Ty = g:

1/ 1 1
T Y o= (1 ! 73 [ O — VY B
(L) (&) = (1+4) ’21 (k_m b= Lba) = gt o)
- @), ) )
= 1+® (1+w PR SR ) = xla).

The particular functions that we ghall employ are

. (5) = 4o . i
bl = e T (a+ Lo

which are obtained from
1

T e
( wa)(m). R

where @ is some parameter.

icm
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We return to U via (0). Tf we set

; 1—a 14a
(@) == () = T awy T (l:—m)m)z
thon
P ICOR o  pp— —
(L-+atz2)?
Tiooking in particular ol g = ¢, we find
o) = opapa |

and therelfore
L <o Ten
i< Up < do.

Thus (13) is proved with s = 3,1 = 1. The caleulation is equally easy
for @ — L hut gives only & = §, 1 = ;. Values of @ in 0 < & < 1 give better

bounds but require move computation. The extremals of

P
Uy, 7

“ean e determined explicitely and there is at most one of themin 0 < s < 1.

Tor a == 0.31266 very noarly

o 10y o Ve
Uy, Uy

Computing theso values and the minimum that the quotient takes in
hetween yields '

(1).

“0.29¢, < Up, < 0.3Le,;

proving (13) with ¢ == 0.29, ¢ = 0.31.
Turther improvements can be made using linear combinations of
diftorent ¢, Thus
& == By == Ty,
with @y« 06247 and @y = 0.7 gives
' g = 0,3020, 1= 0.3043.

2.8. The question naturally arvises whether U has an eigenfunction -
with eigonvaluo A between ¢ and t. X am not aware of any known theorem
that would apply here. On the one hand, due to the diserete component

T 1+ ( 1 )
24 (}’a—_i--m)*’(i’c—i~1—1—w)g k4]’
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T is not eompact, On the other hand TFrohening’ theorem does not readily
generalize, in fact there are operators of a quite similar appearance that
do not possess eigenfunctions {see 3.3). The property of {7 fhat we shall
he able to exploit is that it can be split,

U=10-1,
into two positive operators of which ono, I, is wetually n functional,
which means that F takes svery function into a constaut. Wo shall prove

this assertion now.
Lot @ = 0. Then

== . 1ile4 1
oY ’i;; -

o)) Y e [ gty = [ Kiamotnay,
rc%l (7 +1 +a)* W14 b

where

57

E(o,y) = s
([;. - J;J TP 1)
Y

and where [ ] denofies the integral part. Leb 4= 4 Then [L wm] =2
Y

and since #(f--&--1)77 ag a function of f decreasey for
that

w2 it follows

1 L ’
il — 1

1 ]

E(x,y) 2 i/' ;> ]J -

(_..'. + 1) (.'.'_ o 1)

¥ Y

L -9

K ) 2 —(‘i_\—?;'“); .

It f<y <y thon K = (24+-0)% ov K = 2(3-}a)7%, in any eoso K > §. '

Therefore .
(14) Upz Fp il @0
where
. - 113 1%
: YL --9) 1op \
(15) YRR f ”(“iqj“;'r'/‘)g"'ﬁ”(?/)dw + "Z)"J wly)dy.
¢ v s

n 3.0. As Dbefore we write Uz 0 for an operator on u funciion gpace
it (Uf) (o) Z 0 for every non-negative real-valued function f and every w.
Accordingly U, » U, means U, — U, = 0.

An operator that takes each function into & constant is called a fune-
tional. : -

icm
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TrroriM, Let B be the space of condinueus complen vabued funciions
over some compact sot and et ||| denote the supremum-norm. _
Tet T be a bounded lncar operator of B into iteelf and F' a linear functional
on B such thal :
(16) U =0,

Asgwme thot there are o funcion pe B and two constants s, §, 0 << s <1
auoh bhot

(17 gy =0 for all w,
(18) sip s U <2 b,
and

g

Then U has a veal-valued elgenfunction @ with

(200 inf®({x) >0
with an elgenvalue
Aels, t],

and for each g B, as % -+ oo, we have

‘ bl I
(21) [y = i DG g)+ 0 ((’“W) ngu)

where G is w positive bounded linear fundtionol. Moveover

T -y Iy

T tts

2 e 2 -
22) w17 i

which by (19) is positive. ‘ .

Wa can (essentially) restate (21) by saying that there is a projection.
PP res G that comurutes with U and that U, := U(1-P)has spectral
radius = A - I |

Remarks. 1.1 oquality is allowed in (19) one ¢an no 1011;;@17-1)10%
the oxistence of an oigeninuetion. Wa ghall give & counterexammple.

I1, The estimato of the error term in (22) is best possible in the sense
that thore are oxamples for which 4— |16~ cannot he replaced by
a smaller value, ‘ : ‘

ITL. In applications the assertion of the theorem. can help‘ to estn,.bl}sh
the assumptions; for if the tlieorcm applies although no ¢, ifulf'llllng
(18) and (19 are known thon iberating U on an essential}y afrbltrz.mry
function g (with G(g) % 0) will produce an approximate eigenfunction
which can be usod as ¢.

6~ Acia Avithmetlcs XXIV.5,
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IV. Though we have formulated the theorem for spaces of confinnong

funetions over compact sets the proof in fact makes use of the following

properties only: B ig o vecbor space of real or complex valned functions

over the real or complex nunibers respectively, B ig completo with respect

te the supremuni-nornm, B contains the constant functions and, in the

complex case, fe B implies fe B,
V. Instead of the functional I one can wore gonerally use an operator

that takes each funciion into a multiple of some fixed function f 0.

Ingtead of (17) we would write

(23) UzfFz0

where ¥ again is a functional. The space B would have to De understood
with respeet to the norm

' | ()]

Flay

Thig generalization is easily obtained from the theoren. itself by the
isomorphism ¢ : = f~'p, U : = 7 Uf, F : = Ff.

Il : = su up

3.1. C_onstrucl:im of the eigenfunction. Set
ppi= Ulp
and choose s,, t, optimally such that
(24) SnPu

One can agsume 8y = 8, Iy =1, Since U is positive we mway apply it to

each ferm in (24) and find 8,01 < ¢pis € gy, therefore s,,.,> s,
and t, ;< {, are obyvious. We have to improve upon this.
From (24) and (16) we deduce

Prp1 S by @

Pryr—SnPn = 0,
Prre — SaPry1 = U(%;,.u ~ ) 2 -F((f’nq«l = Sn )

Z Py T By 13
41 ”‘,7’;4,..1.1“ ekl " n‘?”n):
(25) 'S:VH 1 / L ""E ((ﬁﬂ -1 snlpn) "
o H‘Pn 1 1||
Similarly
‘ bty = Py 22 0
aPuir = Fnps = Ut~ gnp1) 2 Tl gy — oy
(Pn-l 17 _P( P~ ‘Pn-l-l)i
| [z HH
(26 . §
} tn+1 by, — ( P %1.4-1) .
: prm 1”
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The combination of (26) and (26) gives

Fo,
tqwl - Sn-z-l = (tﬂ. e Sn) (1 - _n_),
‘ H(Pn-;_ln
or shortor
(27) dn-l-l (1 Qaz)
where
) Fy
R A A A
”‘Fn-;—i”

Now {24) implios

'Zﬂ(’nﬂ,-{—l =5 F'S'wff’n e 37:,1"1(%’91. and “fpn-m” < “tn+1‘ﬁf’n+1{[ = tn.mllfpn“ll-

Hence

Sn
(28) foy1 2

Gy -
tasy

Whether (28) will keep the g, large enough to foree the d, by (27)
towards zero iy a question of the initial values. In fact our assumption
(19), which we may rewrite as

d
(29) qo———-t—“—> 0,

0

ensures exponential decrease of the d,:

tn‘-{-'l Uy — n-l-l Spln— (1 - ‘Lz) = lpQn— dn:

(30) by — > Tao — dy,
1 dy
&= (toGo— o) & Go——,
'5':1 tﬂ
- ap\"
(‘?’1) n Ry dO (1 da + —) d’n - 0.
Iy

The common limil of ¢, and {, a8 % —> oo shall be called }t “Next we define

- nwl)“l-

Bt =y = Py Put = Pul(808) -

d,\. d,
i’L }}'jn - (-L i - n) (1 + __M)
Sn 5y 3o

Beeauso of (29} and (31)

JThis tueng (24) into

o e o
P 5 Py "
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hence
. -1
N A
o [ (1 2o
L &
g
Furthermore
. dy .,
0= ¢, +1 (f’u ‘n P S dn """"" U

0 a0
thus Y [Ppe—
n

S Pr=limae,

]

exists. Letting n pags to oo in

n‘?n U tn‘)’w
we obtain
Ud = AD.

~

Because of %H Z @y ... =@ =¢ we have

1. 1
@?rw}»tw UqJZ)TIf’r/J> 0,
which proves (20).

3.2. Estimation of the remaining spectxam. To prove (21) it obviovsly
suffices to consider real-valued functions ge B, Set

o 17 Ung
Because of (20) we can determing wu,,, v, such that
(32) _ Uy A" D L g, L0, A D

where %, I8 maximal and o, minimal. From the left hand inequality we
deduce

& -_33— I'g

gn+l - unﬂn+1 D == U(gn — Uy, At (ZJ) = lﬂ(gn Uy, Ar lf)) [@”

= U A d)) '

- 1.
Uy gy 22 Uyt TG B (g, =, 4" D)

in partwulm Uy 22 Uy, Similarly

0 Flo " d~g,),

k1 5 Uy

o) H @li

‘whenae
Vg1 Uingy S (0 — 1hy,) (1 - *3{”““&3*”“)

@u)| converges and by the complebeness of our space B

icm

On ihe theorem of Gamss~Kusmin—Lévy 519

Concerning the right hand factor wo refer to (30): Since

Ty, B ‘%n
oy == == =
1Tl [Tpyll

we seo that
o P Fo  Fyp
e s SR | N W A= dyy — it
BT AR T e e o> e T

which is (22). T now by @& (g) we denote the common limih of the %, and

7, wo have

' I "
v, = G(g)- _ ( ,w_*)
Uny Oy (4) FO((% o) {1 TP );

therefore by (32)

. Fdr»
Oty e A“@G(g)w(m—uo) (-2 )
llogh
From the definition of 4y, v, we see [uy], o] < 2 gl (inf @)= So wp—uyg

in the O-term can be roplaced by gl proving (21). Fer the same reagon
G{H/llgll is bounded. The linearity and pesitivity of ¢ are obvious con-
gequences of (21).

2.3. Proof of yemarks I and XI. Let B be the space [0, 1] of continuous
functions on [0, 1] and define the operator U by

(Ug)(w) = g{0)+ag(z),
the funetional I by

Apparently U = F. The only functions @ that are continuons on [0, 1)

and fulfil UP = AP with some 2 are eagily determined as the multiples of

wharo 4 == 1. But ®¢ [0,1] and ko U has no eigenfunction. However,
puotiing
S N | - S Ry o
puo) =1
L if l—e<agl
&

we have

(U)o =172
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Thas s = 1,% = 1-¢,

I 8
St I .S

[Upd — 1te i

which proves remark I Tt is not accidental, by the way, that in this example
. & . . n
there are functions p, for which 1~——%~ becomes arbitrarily swmalls if

equality holds in (19) one can still prove d,, -» 0, since obhorwise d, = 6 > 0
and by (30) and {27)
&

. 8 . ”
Gz — =y & d§lL o] =20,
t ty

tngngdnz ‘57 "
o o

Th is the later steps of the proof therefore that brealk down in the presont
Cage.
Now we consider B = ([0, a] where ¢ << ¢ << 1 and define U and I

as before. This time @(#):= T ig indeed an eigenfunction (with
—_r'

A =1}, Iteration of U iy easy:

- 0 ;
A(Tg)e) = (Lt+a+ ... +a")g(0)+a"g () = :[ﬂf.l)? -1~w“(g(m) 751(-9); ,

and we see that the remainder in (21), whieh is O (a®|lgl}, cannot be improved
PO,

4.0. To apply the theorem to our problem we conld wse the function

pq 2 considered in 2.2 with ¢ = ¢.31266, for which we have § == 0.29,

t = 0.3L. Because of its slightly simpler exprestion, however, we use Ugp,
ingtead, for which the same values of s and ¢ apply. That iy, we havo

1
I T
7 () (1 -+ a<b-w)?
The functional ¥ Iy the one given by (15) which after vlementary ealoy-
lation bhecomes

_ ek ded1) L L 2 !
) 20(3a

PTG T @ 0(%a 1 3)

Because of Up <ty we have

icm
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Since thig is greater than t—s = 0.02 the theorem applies: U has a contin-
nous positive valued eigenfunction @ with an eigenvalue le [0.29, 0.31]
and Tor g, = (— ) "gg, n > oo

o = (— 'J“)ﬂ(wl(go) @--0(u™)

with
(33) s A—0.003.
By o new normalization of @ and G woe can make
G(g,) = 1.
Now wo define the function ¥ by
(34) (L+a) P (@) = B(w), ¥(0) = P(l) =0.

By the relations between &, I' and U we have
(L+2)(8P) () = —(UD)(z) = —iP(a),
which together with (S¥)(0) = 0, (8¥)(1) = ¥(1) = 0 implies
BW = — AW,
The proce.flm'o of 2.1 now yields

log{d. o)
) s et e A= — AV P (@) -+ Ol (1 — o) 6"
My () lop? - )* () ( ( i );
which is assertion (1) of the introduction. _
Working similarly on the function ¢ — U (8¢, — Tpq,) With the
values of a,, ay gpecified at the end of 2.2 we ean improve (33) tio

(35) us A—0.031.

4.%. The theorem algo provides the means for eomputing A to any
given aecursey. Tlandier than U for actual compuiation ig the operator 7.
The influeneo of the constant eigenfunction can be eliminated by renor- .
malizing afior each sfep of tho iteration. That is, it we consider a sequence

_f())f.’l’-- ( ) f(o)
) —Tn
ol s A0

50

thown from the theorem and relation (5) it is easily seen that

.fn: == 17?:-13

[T —5i0) = (=268 | P@)an-00)

¢

wani}
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and therefore

The value of 1 given in the introduction was determined this way, The
functions f, (%) were caleulated for @ in steps of 0.0L from —0.02 to 1.05.
The additional points outside the interval [0, 1] allow the use ol centered
fifth-order interpolation in compnting f, (7{%7) Tor wll these @ and all &.

The first hundred terms of the series {4) wore sompuled individually
while for the remainder the Huler-Mae Laurin sum formula wus appliod,
replacing f, Dy its interpolation polynomisl. The program wag checked
by starting from fo(#):= L-a—(L-4-@)"" (the Tunction y, of 2.2}, The
table of fi did represent the function 2Ze(L-4-#)~' within the corputing
accuracy of 10 digits.

The cotapubation was carried further by I Steinbach who found

A = (0.3036630028937326h80G0 ..,

5. In thig paragraph we show the eigenfunctions @ and ¥ of U and
& respectively to be analytic. Their analytic continuations are holoxorphic
in €%, the complex plane with a cut along the negative real axig from oo
to -1, which constitutes the natural houndary of these Lfunetions.
Because of (34) it suffices to deal with any ono of thom,

5.1. Analyticity of @ in some rectangle. Lot ¢ > 0 and
D,i={w+iy; 0<a<<L, |y < e}

If ze D, then (24 %) ‘¢ D,. We consider the functions

‘Po(z) = 1! P == U""Po

on D,, where U is defined by formula (8 )' with z Inwtead of @ and the
integraly being taken along any pathsg inside JI,. All ¢ aro Dolomorphic

in D,. We know that
@) = lim —({—43/,{»(-,)‘: for 0

o0

s <L

We shall show that the right hand side converges uniformnly in D, if e
iz small enough and thereby provides tho analytic continustion of ¢
Let

By our theorem

(36) Iﬁﬂ(m)ls\ﬂl(%) Cdor b<a<l =012
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with gome constant ¢ and 0-< g << A Assuming, as we may, 4> 1 wo
shall prove ‘

'u‘ "
(8,) [8,(2)] = 2¢, (l) for 2eD,,

if & i sufliciontly small. This will of course establish wniform convergence
and thorefore holomorphy of limd™%g, . Formula (8,) is proved by induction
togother with

{(8) : “’591(3“ Ty hiﬁnlz ("1) for re D,

with suitable J
Tuking K sufficiently large we satisfy (8;) for all e<C1
By (36), (§,) hwplies (3,):

v
Syl +iy) = b, (2) + [ 8 lwit)ids,
0

| n.(’]'; e ’-“'!/)I ((31. 1”‘i'!}']1{) (ai) g(crl-cff)(%) < %, (%) ,
provided
87 Y (A )

1 .
From (3,) and (5;) we prove (8,,,). Dilferentiation of d,,, = T Ué,
produces

, 1
(38) bugs = 5 (Vo + W0,
where
2 142 L )
s ]
(o) % (B 42)* (k41 -+ 2) (k—{—z

and the oporntior ¥ is bounded, suy

(30) (V) (w) £ eysup [§(2)]  for  weD,,e<1.
o
From (8, it todlowsy that
K [u\* T 142 P
7 «
(W ) ()] 2 [1 I”’!g( ) % (68} (% 1+ 2)
Bince .
e Eik—1)\!
1 -2 o (2_?‘;_1_5__ _(E___).)
(B z) (o~ 1+ 2) 241
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and
he( | kw(l-"- ﬁ'l'-))“ 1] il ez
R
we have
4 - 1 1
| D e B
2) d (2P 4 I
_ ]{ A
(40) CZATCIER (””)

Sinece furthermore [1+4-2*= b in D, if &«

(39), (3,) and (40)
, 1 If # "
M?Hd(z)’ 7 (20 0y |L I“”| )( )

1 ye H . e 1 r”'w’
< (e e <

1 wa Bioally oblain from (38),

provided

(41) O A0e0, < LK.

e 1)
Because of our assumption x 2§ this proves (8,,,).

Ax (87) and (41) can be arranged by tuking K big wad & muall all (5,)
follow now by induction and our proposition is proved; that is @ (@) has
a holumorphic extension @(2) into D,. Farthermore @ is eigenfunetion
of U on D,: ' ’

U® = UlimA " p, = UmaA™" Ug, == limi g, == ALMA"" g, o e A0,
n ki i T

5.2. Continuation into the skt plane. Since @ is holomorphic in D,

80 iy the function ¥ defined by (34). As in the real case wo conclude that
S¥ = - 1¥, that is

(42) v1e) “1,5:(‘”“ 1)
Tl

and '
" (L
Rz

for ze D,. The boundedness of @ on B, implies boundedness of ¥ and
therefore convergence of these series. Tterating n times leads to

(43) W (z) :(%:L)“ Z (q _‘;}m-;&mmﬂ) lﬂ(qr )
: (IS (T

Tepy ooy figm=1

Iyr

W (g) ==
A,c,...z (]r,ul
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where
l P ¥
P “ e TO ke ]
"["n,("l') L |0? lul’ Lty lﬂn~17 ]‘;H—‘I_z]’
(111, ‘ T ®

and the p, = p,(k, ..., k), q, =
woll-known .blgmnhr.n.

4,(ky; ..., k) are determined by the

?""-H b kv\l?" ! .. a1y P E
Bopr v IEM-L 4t oy Gy =

7P0 =10,
0, qp = 1.
So far (43) hag boon proved Lor ge ), ouly., Wa shall see, however, that
{he right hand side makes sense and defines an analytic function for =z
ranging through a much wider region.

Lot

Wy o {oy -8« mige < n—06 or Res > —146}.

The half plane Rog —1 is mapped by T, onto the interior H,; of the

cirele that intorsects I.Tm real axis orthogonally atb

w0, b, — L p,.. e
p”’1 anl 'T'IL( -'L) = lpn Bu = ( )i% ! +p 2 .
Fn-1 Ho ™ Gu-y {Fp—1 1+ Gus

H n 34, both points ave situated in (0,1). Since the latter one lies

_’Irn( QC)) ant

1;;1

betweon - Pu-z Eoand - -and since g, 2> 2'%, whatever ki, ky, ..., k,, the dia-
gn»«‘:'. =1
moeler d, of the disk H, ix
d, < Puey  Po—a | 1 < %
Gpr Gn-z Tn—19n—2
and thevefora
(44) H, e D,

i only » ig gufficiondly large. _
Shinilarly 1, muaps the domain -~ n-f 8 < arge < =— 4§ onfio the union

of the two dikks My, I, the honndaries of which meet the real axiy at

4 { . o r I

To0) w P and P, (@0 o Frd ot an angle 8. The diameter d, of these

I Yo

digla is

1

1 Zl < .
sin s

Pa o P
qﬂ,.]'n 1hlné

In ff] ]

for large m. Sineo the points of intersection have af least distance 1/g,
from the ond-points of the interval (0,1) we see thatb '

(45) H,wH, = D,

iy
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By (44) and (45} all terms ¥” (Tn(z)) are defined nnd uniformly hounded
for z¢ B, if m > n,(e, 6). To prove uniform convergence ol (43) we note
that if #¢ B, then either —n+d < arge < w—8, amd then

]gn + gﬂ'n~1[ = Q‘nﬁm 57
or Reg > —1+4, and therefore
|G+ 21| 2 Qn-—lﬁ’@z &y = Py (1 ) 2 { .(]n(]- (S) ™ ’3:

hence in any case

- ".'__,, W T” 2)) < ._._:',,. £ s
) ( L( )) ([:in QM(Q'H,'[”\(IWWI.)

(fi’w ”%""Qrz 1
Finally
3 1 -l
[ “"’":: 'In(%m -+ - 1) o
since
1 .
= 005 gy vony gy Ry L1 (05 gy o0y B 1

QR(Qﬂ + g’n—-])

Thus for % = #,(e, 6) formula (43) provides the analytic continuation
of ¥ into H,. As § — 0 the regions By exhaust the slit plane €. Therefore
¥, ¥ and @ are holomorphic in €™

Analytic continuation algo validifies (42) for all ze €. A functional
sequation iz easily deduced from it :

veor—vira =3 M) v lp) - 5 (vl v,
(46) S?’(z)—‘ﬁ’(l%—z)w%il"(ﬁmg)_

5.3. The singularities. In what follows it is necossary to kuoow that
the zero of ¥ at ¢ is simple. Indead by (46) we have

w(0) = (1-3) v,

by (34) on the other hand
. 1
29 (1) — W' (0) = f ®(2) do
" together '

1 1
“l—mi‘w’(o) —"L“Of D(z)dw = 0.

On the theorem of Gauss--Kusmin-Lévy 527

Tt ig possible, theretore, to normalize in such a way, changing ¥ into ¥,
that

(47) o0y = —1.

With this normalization for 4> 0, < =/2, we show

(48) W(e) == loge+0{1) a8 2- oo, largz| << n—90,

. -1
(49) (=1 = g logw++0(1), ax  w-0, |argw] < m 4,

and for every rational v 1,1 = [a; 44, ..., 6,], 82y, where g, ..., @,
are natural numbers, @, > 2, :

. 1
50y . Wol =t ot 1) == -(1+ - pu logw--0(1),

a8 w0, d< Jargw| << w—4d,

By (50) the cub from --1 to oo is natural boundary of ¥,
Proof, I |mge| < m— 4 then |k--2! = ksind. Thus, from (42) and

(47) it follows that
1 i} 1
( e == .
)(Tcﬂ)) %(]E L—{—z)+ &),

W(a) o y ( L

;’(' ]‘, “'l -

35 (48). From this (46) leads

which by a
tio (49):

. 1 1 1 . 1
Y i) == W (a0} »%A-A—‘F(E) = 0(1)+710°“@F {w—0).

1‘]

Next follows (50) with # = 2 (that is % = 0, 4, = 2}):

. 1 W
L’/(»~1+w)—|~—;3[’(m1— )

Y(—2w) == T
R ~1
Tilogw I+ w—e—log( 1) 4+ O (1),

Kinally the remaining cases of (50) are obtained by induction with
pespect to a and ay: I8 ¢ 2 1, w-> 0, then

1 i
El’( (21‘ - “}) 2 ) W(-"—-—”I- )*I- 0 5?’( —f— 1 __W))

and .
'P(—« (r--1) fw) o= YW —rp-rw)+ % ‘lf(w-—»—) = W(—r+w)-+0(1).
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Notes on small ¢lass numbers
by

T T Mosraomury and P. 4. YWmNperezr (Aon Arvbor, Mich.)

1. Entroduction. In this paper we study the problem of obtaining
lower bounds for the class number b = h(—d) of an imaginary quadratic
field Q(T/ —d), d > 0. ' We recall that Siegel [18] has shown that h > dt~*
for d - dy, and that his argument does not permit one to determine all
fields with given cluss nmmber. Recently the problem of obtaining effective
lower bounds for & hay receivod considerable attention (see, for example,
Baker [1], [8], and Stark [16]).

Ivom the Devring-Tleilbronn formulae it may be shown that if
hoes dt? then all von-trivial zevos of certain L-functions are on the
aritical line, at loust up to a height depending on &, on &, and on the L-
function. Tf the elags mwumber is somewhat smaller, h-< @*%, then the
imaginary parts of these zeros can also be described; it is found that the
zoros are quite evenly spaced, so that two zeros of the same L-function
canmot be very close together. To state this more precisely, let o = $+4y
and ¢’ = §-+iy’ bo consecutive zeros on the eritical line of an L-funetion
L(s, x), where x is a primitive character (mod k). Put

. 1 . .
AE) == mm-%gly —~y }logfx,

where the minimam is over oll &< K, all g (mod %), and all ¢ = 44y
#21. In this range the average of |y—9'| 18 2nfloghk,
g0 trivially T A(K) = 1 Presumably A(K) tonds to 0 as IO increases;
if this could be shown offectively then the effective lower bound & > ar-s
wonld Tollov. Tn tach the weal inequality A(K) < §— 6 for JL > K, implies
that b= @ ® for do O(K,,); the function C(IK,, &) ean be made
oxplicit, Jven A(A) < § —0 hos atriking consequences.
The initial vemark of the previons paragraph makes it clear that in
bounding A(K} one may asswme that all the zeros of the L-functions under
consideration are on the critical line. In this situation the techniques.




