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1. Introduction. Four years ago, Baker [1] gave the first effective
solution to the Mordell equation, : :

(1) ¥ =" +k,

where & is a non-zero integer. Namely, if ® and y are integral solutions
to (1), then
(2) max (|a], ly)) < ¢,

where ¢ = 1019, The proof involves reducing equation (1) to an inequality
involving linear forms in logarithms of algebraic numbers all but one of
which are in fact units. Since then, the results on linear forms
have been considerably improved and Siegel [5] has. given improved
estimates for units in algebraic number fields. These results enable us to
congiderably improve (2) and we can now prove

THEEOREM 1. Given &> 0, there is an effectively computeble consiani
¢ = e(s) depending only on & such that if © and y satisfy (1) then

| max (o], [yl) < e

To put this another way, (2) implies that if o and y are positive
integers with #® s y* then there iz a constant ¢ = o (xy (effectively
computable) such that

lo® —4*1 > ¢ (log)”
where » = .000L and by Theorem 1, this is now true for any » < 1.
Ag is well known, to prove Theorem 1, one first reduces equation (1)

to a diophantine equation of the form f(a, ¥) = m where f(w, ¥) is & homo-
geneous binary cubic form with integral coefficicnts. To solve this equation
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one needs an effective improvement of Liouwville’s theorem on approxi-
mations of algebraic numbers by rational numbers. When one is interested
only in improving Liouville’s theorem, it i3 usgefnl to consider linear
forms in logarithms of algebraic numbers with one algebraic number
having a large height and the others faken ag known, Tn this case the
essentially best possible results have obtained [3]. Flowever, in the typical
diophantine equation, the known logarithms ave as large as the unknown
logarithms and [3] is unsnitable. For this purpogse we need fhe rosulg
of [7] which iy the fivst general improvement of Baker [2] and is
particularly well suited to the problem at hand.
If ¢ is an algebraic number, we let

h(a) = max|al®)
[<]

where o/ runs through the conjugates of a. Then if @ is the minimum
pogitive rational integer such. that go is an algebraic integer we define
the size of a to be the maximum of a and kh{a).

TaworEM 2. Let oy, ..., a, be non-eero algebraic numbers of degrees
less than or equal to d and sizes less tham or equal to A,, ..., A, respectively

where A,z e (1<i<n). Suppose B,,...,pH, are algebraic numbers of
degree < & and sives less than H'YPE guch that

0 < |Blogay+...+B,loga,] < et

where the logarithing have their prinoipal values. Then given &> 0, there
ewisis an effectively computable constant ¢ = c(n, d, &) such that

H<o (I logAi)1+°.

This is Theorem 2 of [7] except that it is formulated in [7] in terms
of heights (the maximum absolute value of the cocfficients of the minimat
defining polynomial) rather than sizes. However the transition from one

formulation to the other iz easy and sizes are more convenicnt here.

Using Theorem 2 we can now prove

TrmoseM 3. Let f(m, y) be an wrveducible binary form of degree m >3
with integral coefficients of absolute value loss than or equal to A. Given

€> 0, there ewists an cffectively computable number ¢ = c(n, &) depending
only on n and s such that if &,y and m are integors with

flm, y) =m
then

(3) max(la, ly}) < exp (o[ 4" (4" 4 log m|) 1}

This representy a considerable improvement on [1]. However (3)
can often be further improved if one has a knowledge of the regulator
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or discriminant of the field generated by a root of f(x, 1) = 0 as will be
apparent from Lemma 8. In particular, we see from the regulator form
of Lemma 3 that we have improved the recent result of SprindZuk [6]
(however, his result is p-adic and allows m to be multiplied by high powers
of fixed primes). It is the discriminant form of Lemma 3 that is most
easily applied o Theorem 1.

2. On the units in algebraie number fields. In this sectlon, X will
be an algebraic number field of degree #» whose discriminant has absolute
value D). We suppose that there are », real conjugate fields to K and 2r,
complex conjugates to K and that they are chosen in the nsual manner:
i ¢is in K then o iz real 1<i<<ry, o™ = o ry+1 i<y 41,
If # = ¢, +7,—1 then there are units e, ..., & such that every unit of K
may be written in the form el ... &r where { is a root of unity in K
and @y, ..., &, are integers. We define fhe regulator E of K to be

R = |det(logle?)) (1<i<r, 1<i<r).

" Here it is convenient to leave out the factor of 2 that sometimes a.ppears'

when ¢ > 7, and hence when 7, > 0, R is 2'7"2 times the regulator as given
by Siegel [5]. Siegel gives the estimate

(4) < o (log D"V D

where ¢, is explicitly given in terms of », 7y, v, and the number of roots
of unity in K and hence may be effectively estimated from above in
terms of n alone. The numbers ¢, ..., ¢ in this section are likewise cifee-
tively determinable and depend on n alone.

Consider the ¢ linear forms

(8) Y = ijloglsf)l, igigr.
=1

If 5 is a unit of K we let L{n) = max llog |5*]|. When we apply Min-
LGy

kowski's theorem on eongecutive minima to the system of linear forms (3),
we get a set of » independant units, n, ..., n, such thab

(8) D) .o Dn) < B

Siegel uses (4), (6) and a lower estimate for L(z,) to geb estimates for
L(n;), 1< j=<n However, due to the form of the result in Theorem 2,
the estimate (6) iz more useful than an estimate of each L(z;) separa,tely
and indeed gives us bebber results since there is necessarily some loss in

going from (6) to each L(z) and back to (6). .
- It @ is an algebraio number, we let M(a) = max|log|a‘?|| where
o) runs through the conjugates of a. If % is a unif in K, we get M(x)
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from L(n) by estimating [Log [n®*Y]| which, since the norm of 4 is -1,
gives
M(n) < (n—1)L(n).

Tt follows from (6) that
M () ... M(n,) <R

Thus for any ¢ and A between 1 and » we have

' SN
- M( ). () <vom s an
T r
with ¢, = 2" ¢,
If a is a non-zero algebraic integer which is not & root of unity with
gize 4 (which is here = k(a)) then

max(1, log 4) < ¢, M (a)

where ¢, depends solely upon the degree of a. This is because we may
effectively bound M (a) away from zero. That this may be done is shown
both in [57 and [7] but the best known bound appears in [47. Let A; be
the maximum of the size of 5 /»(™ and e. From (4) and (7) we denve
immediately

Luvma 1. There exist independent wnils 7y, ..., %, in K such that
SJor any g and h befween 1 and n,

nlogAj < &R < eg(log DYDY,

F=1
where A, is the grester of e cmd the size of nf 4.
Let B = (log|y{)) (1< » 1< j< ) where the x; are the units
above. Set H' = (o). We need a.n estimate for each |eyl. This will be

worse than what Biegel gets for the units that he has choosen hut it comes
at a point that is not harmful.

Lmnvowa 2. There are independent unils vy, ..., 1, satisfying Lemma 1
such that ey < e, for all i and j.

Proof. We caloulate B from the adjoint matrix to H. We note
that |detZ| > R. Since for each J,1<J <r we have e Li(ny) =1, we

" gee that
n L) <
J;&J

and thus
leyl < (r—1)1o < ¢y

with ¢; = (n—2)!¢,.
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3. Proof of Theorem 3. Let f(#,y) be an irreducible binary form
of degree n =3 with infegral coefficients all of which are bounded in
absolute value by 4. In particular we let ¢ £ 0 be the coefficient of z™.
Let a be a root of f(z, 1) = 0 and K = @{a). We let D be the absolute
value of the discriminant of K and we namber the conjugates of K as
in Beetion 2. By Lemmas 1 and 2, there are  independent units 44, ..., g,
of K such that for each g and %, 1<g<n, 1<b<a,

(8) H logd; < ¢ R

=l

where 4; is the maximum of ¢ and the size of #{? /3., We note that
nd iz a trivial upper estimate for the size of a.
Suppose that =, y and m are integers such that

flzyy) = m.

By changing signs we may assume @, y and m/a are non-negative. If we
set § = o — ay, this may be written as

(9) BN ™ = mfa=m,.
We assume that
(10) Y > 0| m| AW,

The constants ¢, ..., ¢, are dependant only upon # and will be assumed
fio be sufficienfly large (where “sufficiently large” is effectively  com-
putable); e, and ¢, will also be dependant upon an & > 0 to be introduced
later. Now af? —al? £ 0 if ¢ 27 and

(11) la® — o g 2nd

so that since a{al —a) is an algebraic integer,

(12) | — o 2> (AN 24 DT

Let & be chosen so that [f¥W| < 89 for all 5. Then for § # k,
(13) 89| > ety A0,

Therefore from (9),

(14) 189 < < ey M) APy,

iy
[cﬂll ?]A—2n(‘n-- 1)]@—1
Thig, (10), and (11 give us the estimate for all j,

189 < 189 — g+ 18P < 010 dy.
There exist integers by, ..., b, such that for 1<i<r,

: 1)
(18) . |bJog|p®|+... L blog Iﬁ“)[—Hog (1‘8 | ) < €y m?.x L) < euR.
1<isr -
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Let
y = Byt
Then (15) says llog (@ fmi™)| < e R for L< i< and since [y ... )
= 1;, We see that

(16) [log (i@ /mi™| < ey, 1<i<m.

We may also get bounds for the integers by, ..., b, Irom the equations

("»)
8 (13)

(1)J
b, log 7| ...+ blog 5P| = log = log( m) - logm, —log|pt].

The absolute value of the right side is less than
1 -
o+ ™ llogm,| -+log (¢;5 Ay) -+ [log [my/(cya 4y)* ]
80 that by Lemma 2
(17) |b)| < 01( K 4 log|m|4-log A +logy).

We nge the identity,
(o — o) ﬁ(k) ~ (o — gty ﬁ(a) = ( al® — oy gt*)

with ¢ 25 5 k £ ¢. -‘This gives
- d) —g® g

b B i .
ol 1 = ™ ﬁ(p‘)
where
7 i, Clisr
a® . o (%)
% = ¢ L4 i =r-1.

A q® @
By (11), (12), (13) and {14)
(18) 16l ... aray,—1] < 6, A% |mly" <y *
Let ay = —1, 4, = ¢. We gee from (18) that
(19) 0 < |bologag+Dbilogay ...+ b loga, - 10g 0y | < 0167 < 6;103”,

whera b, i3 an integer and malkes up for the fact that log denofes the
principal value,

|bo[ < byl 1Bl

and so :

(20) B < oip(R+loglm| +log A +logy), 0<i<r.
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We have everything we need except for an estimate of the gize of
tpy1- For this, we see from (11), (12) and (16) that if o7, is a conjugate
of a,,; then :

]aﬂl] & Cgg AT exp(2e;; B).
Now

aa?) — go®
aat™ — qa®

multiplied by the norm, N of aa®™ —aa®™ is an algebraic integer. We
see that

|V << (2ndzno-n,

The same holds for ay™ fay®; 4y is an integer of norm < A% m/|. There-
fore if 4, i3 the maximum of ¢ and the size of g,,; then

(21) A, < 0y A2 | m|exp (2e;R).
Let B = ma'.x]bﬂ. To estimate B we need to estimaie B and hence
D It '
fl#,1) = ea™+a 2™ ... +a, _
then aa is an algebraic integer gencrating the same field as o and. is a root of
gl@) = "+ a,8" ... Fa" g, = 0.

The maximum abgolute value of the coefficients of g(x ) is A’ < A" Balker
[1] gives the following estimate for the discriminant of g () which there-
fore certainly holds for D,

(22) D < o (A P2 0gp AW,
It follows from (4) that
< GQSA”Q
and now from (20) and our assamption (10),
| B < 0, (A" +logy) < 26,y < (logy) Y.

Hence by (8), (21) and Theorem 2, given &> 0, there are constants
Casy Gy DA ¢y (the latter two depending upon e also) such that
(23) logy < ¢[o5R- 6y (B +log A -+ log | m|) [
< Oy [DP(DY L 1og A +Tog |m|)]'+e
This hag been derived under the agsumption (10) but (23) is clearly true

if (10) is false. We also get precisely the same bciund_. for @ by starting
with a root of f(1,y) = 0. Thus we have proved

v
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Lumma 3. Tet flx,y) be an irveducible binary form of degree w3
with integral coefficients whose absolute values are boundod above by A,
Let o be & root of f(w, 1) = 0 and D and B be the absolute value of the dis-
criminant and requlator respectively of Q(a). Lel @,y and m be integers
such that _

fla, y) = m.
Then given e> 0, there ewist effectively compuiable constants ¢ = ¢(n, &)
and ¢' = ¢'(n, &) such thut
max(|z], |y} < exp{c' [&(R-log4d +log |m|) T}
and
max (2], ly]) < exp{c[D* (D" log A 4 log [m|) ]+,

Theorem 3 follows from Lemma 3 and {22).
4. Proof of Theorem 1. Suppose
gy =a’+k
where &k 7= 0., We set
X, Y) = X3 32XV -2y V*

and suppose f(X, ¥) iy irreducible.

The diseriminant of f is —108 % and if « is a root of f(X,1) =0
then « is an integer and hence the absolute value, D, of the discriminant
of @{a) is bounded above by 108 k|. Baker [_l] &.110“% that there is o sub-
stitation

Xy (v \(X, _
o @ pYE e
such that
(X, Y) =fi(Xy, Vo) = a X3+ 0X Y, + X, ¥} - 4T3
with :
(25) max(jal, [b], le], |d]) < (108 k[)""2.

Further, replacing X, and ¥; by +(sX —q¥) and (—+X +p¥) respecti-
vely and identifying the coefficicnts of X* gives
fl('g: _7") = 1.

There is a root of f,(X,, 1) == 0 which generates the same field Q(a)
and thus we have an estimate 108 k| for the discriminant whereas if we
used (25) and (22) we would have the much worse result D < g |%[5.
This takes a factor of 6 out of the 10000 all by itself. By Lemma 3,

max (|7, |s]) < M = expleki*te).
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Further, Baker shows that
max (|, [§]} < o kM < exp (5 K] +°)

and this completes the case that f{z, %) iz irreducible. The cage that
f(=, ¥) is reducible is much simpler and what Baker does already suffices
to prove much more than Theorem 1.

Added in proof. The estimate for D in (22) is needlessly high. It is betber
to nse the estimate eyp{4/|a])?2 for the discriminant of a—lf{w, 1) and use the
fact that the diseriminant of ¢(») is ¢~ times this. This gives

(22’) D < 022_4_’1(91—1)

and improves (3) of Theorem 3 to

(3" max (i), |y]) < exp {c[AMP—D2(AMR—1IL 4 Jog |m|)]1+ 4}
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