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Since M (s, 2#) denotes the number of s xXs upper triangular matrices
such that rank (B4 BT) = 2r, it follows from Theorem 2.5 that

= sls+1) {821
{(4.7) N,(R,0)q 7 q-‘if’ﬂ-nw) 2 M(s 2?,)( 2(s-r))g
Fenll

From Lemma 2.1, it follows that

a{g-+1) faf21

(4.8) No(B,00g * =070 Y@ Lo(s, 20) (P60)0

el

This comopletes the proof of the following theorem.
TuroREM 4.1. Let A be an n X n aliernate matriw of rank 2 ¢ over GF(g).
The number of s x n matrices X over GT(q) such that XAXY =0 ¢s

g.!.‘r(n+1) [872] ‘
S Z Lo(s, 27) g~

2 rei
q

Ne(4,0) =

where Lyls, 29) is given by (2.8).
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Slowly growing sequences and discrepancy modulo one
by '
R. C. BAsxer (London)

§ 1. Introduction. Lebt #.,¥%,, ..., ¥; ... be numbers in the interval
[0,1) = {&: 0 <& <1} -

We say that vy, ¥e, ... 8 a wuniformly distributed sequence it for any

[a, b) (0 < & < b < 1), the number k' of yy, ..., ¥ falling in [a, b) satisfies
(1.1) K = (b—a)k+o(k) a8 k- co.

One can prove [3] that if (1.1} is trueforalle and b (0 < & < b <3),
it holds uniformly in @ and b: that is, the discrepancy D(k) of the sequence
(¥3)5uy, defined by

*

(1.2) D(k) = sup E_——(b—a) ,

1 a<bsy

satisties im.D (k) =
k—co

The behaviour of I)(L) is closely related to that of the exponential
sums

k
{1.3) sk, h) = lZijh

Je=1

(=1, A1),

It can be shown that

ke, 1
(1.4) lmD(k) =0 iff lim S0

] k~rco !

=0 forall h=1

and, more precisely,

1 (k, h) Ok = s(k, h-))
(1.5) oo mp—Tgrm(k)gmo(mH +Z A

il

for all integers m = 1 ([7], Theorem III and. [1], p. 14).
Now suppose that

(1.6) zlgﬂzg...gz,,g...
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is an infinite sequence of real numbers, If

(1.7} Apir—Anze>0 whenever k= l@%ﬁkl) y =l

where ¢ = 0, 0 = 0 and a > 1 are constants, then the sequence of fractional
parts

{1.8) {Ad o}, {Agm}, ooy {2}, oo (2 real)

is uniformly distributed in [0, 1), except for a set of veal 2 having Lebosgue
measure zero. We call this sct B = #(4, L, ...).

Hardy and Littlewood [9] were the first to prove a theorem of this
“almogt everywhere” type (with A, = " b an integer = 2). The above
resnlt was discovered by Weyl [16] in 1916. Since then a good many
papers have appeared which give more information about the sequences
(1.8). Thus Cassels [2] and Erdis and Koksma [B] discovered indepen-
dently: that if (1.7) is strengthened to
(1.9) Lo g A e>0 (mo==1,2,.)
or
(L10) Ay, Ag, ..
then the discrepancy D (k; ) of the sequence (1.8) sabisties
(1.11) D(k; @) = o[k~ {log (k +1)p)

for almost all =, for every &> 0. If (1), is lacunary, that is

. are distinet integers, not necessarily increasing,
a8 b — oo

(L.12) M0, Apflzg>1 fora =12, ..,

then the term (log(%+1))**** can be improved [4], though not beyond
(loglog(k+2)}"* [10]. However, it is known that (1.12) also implics
(1.13) dim & = 1

where ‘dim’ denotes Hausdorfi dimension. {Hee [67).

Suppose we make a growth assumption on A, which prevents lacu-
narity, e.g. -
(1.14) Apm On¥  (moe 1, 8,0,

where 0 > 0, p = 1 are constants. Salem [14] and Lrdés and Taylor [6]
discovered independently that (1.10) and (1.14) together imply

(1.15) C dimE < 1—1/p.

This estimate is stated in [6] to be sharp.
In [1] I studied the larger sety

(1.16) By = {we(—ococ, co): D(k, #) is not o(k~%)}.

icm
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We have of course E < B, < B, for 0 < g<r, and, if we assume (1.9)
or (1.10), we have by (1.11):

{1.17) . " Hyis mull (0<g< ).

In [17 T gave the estimatc

(118) . amB,<1- 7% g _ogcy)
pri

agsuming (1.10) and (1.14).
This was rather an uneconomical estimate, and the method of 1]
may easily be sharpened to give ‘ ‘
1—
r+a

(1.19) dim#, <1— (0<g<i.

- (My estimates were for capacity dimension, but this eqﬁa;ls Haunsdorff
* dimension for Borel sets [15], such ag E,). In particalar (1.19) gives the

theorem of Salem and Erdés-Taylor (since B < E, for every ¢ > 0).
The method of [1] was essentially a refinement of Salem’s argument.

By adapting the method of Erdss and Taylor, I have now improved
(1L.19) to : )

1—
1.20 imE, <1
(1.20) am B, < p+2¢q
under either assumption (1.10) or (1.11); since p+5¢ >'1 this is @ definite
improvement on (1.19). But I cannot show dimE, <1 for I<qg<i
under these conditions. The proof of (1.20) will be given in § 5.

This method can be suecessfully applied to rather slowly gruwing
sequences, e.g, :

(0 <g<i)

(L21) en™ "<y —Ay, Ay = Om?) 0<e<lLpzl—a)
or

log®(n+1
(1.22) G—O—g_;—“f_)\ Tnir—hny 2= O[log?(n +1)|

(a>1:fp>1+“)-

{For such sequences, the capacity dimension approach fails). I shall show
in§d that {1.21) yields:

. 1-3¢—0n 1—a
1.23 dmpb, <<{1-— 0 -
(1.23) im F, < PRy (0 <qg< 3 )
and thus
(1.24) dimB<1— 228

»
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In particular, if 1, roughly resembles #'7% (0 < @< 1) in the sense that
alar, if 7

(1.25) e(8)n 0 K hpgr— A € cdn " (n=12..)
for every 4 > 0, we obtain from {1.24) that
(1.26) dim® = 0. o )
¢ we assume {1.22), then we obtain the similar inequality
—1
(1.27) dimA <1~ —Eﬂ-

' ther with other deductions from
i he proof of (1.27), together wi ducti

; sh;ﬂ ‘{1)111?1;1 ’ ;I‘ (l)?s 1much space will be devoted to ‘logarithmic growth
(L2 3’ 1 the ‘method is essentially the same here ag for the cage (1.21).
b 8 I have no idea whether an estimate such as (1.20) or.(1.24) is
sharp. At present I cannot congtruet any sequence (4,),., for which I can :
show B, 2 B for some ¢ < 3. |

§ 2. Notations. Throughout the regt of this paper (4,)5.; 18 a sequence
of real numbers such that
(2.1) A€hh<a S, <y <0
(2.2) ik — Ay €> 0 whenever Fzfln),nz1.
Here ¢ > 0 is a constant and (f(n))3., is a positive sequence that 1s mono-
tonie nondecreasing for k3 &y = ky(f). Hence
(2.3) sup fO) < Of (k) (B =1,2...),

r=k

0 = C(f)

where e.g. ¢ = {max f(k))/(]g:g;? f(k)). | | I
‘We ghall use I:ﬁcg denote a reaal pumber in a fixed but arbitrary interva
A <2< B. We write

b4 o "
(2.4)  s(k, k) = s(k, ;@) = 1 D eﬂﬂwﬁﬂ (b1, k31 integers),
el

I
(2.5)  8y(k, h) = 8,(k, h; ) =L2¢3052nkﬂw1 (I, h ay above),

J=1

ke
(2.8) (K, B) = 8,(, h; @) -_—|Zsinznzjhm| (k, b as above).

=1

.We write D (k) = D(k; x) for the diserepancy of
| {1}, .y {ina).

Thus (1.5) remains true in this notation.
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We shall also consider a positive monotonic nondecreasing sequence
(Q(B))7-, and the functions

Q(k)

I TR Ly LI RV,
h=1

, .
(Throughout, 3 y, means 3{y,: n<n< v} if % and » are nonnegative
="t '

reals. The empty sum is 0.) We observe that by (1.5), with m = Q (k)

1 y(k;w))
. D(k; o) < . g FEE)
(28 59 <200 g+ 408
and so
(2.9) Dik;a) = 0@~ (&) if g(k;2) = O(1) as &k — oo.

We shall write
(210) @k, @) = (e [4, BL: lg(k, o) > d}  (k>1,d > )
91(k), g2(k), Gy (%, @), Ga(k, ) are defined similarly using s, and s, instead
of 3. We note that, k> 1, d > 0,
(211)  (By(k, 2d) UG, (R, 2d)) = Gk, 2d) = (G (F, d) UG (, d))

I F is a function in Z*(4, B), we shall write
B B o
(@12 ML) = [F@)a, M) = ( [ (2@
i

o

We note that M,(F) < M,(F) (B —A4)" by Canchy’s inequality.

We nse |W| to denote the Lebesgue measure of a measurable set W
of real numbers. We note that

(2.13) 6k, ) < d*M(g(k))  (k>1,d> 0).
If W is any set of real numbers we define for 0 < ¢ < 1
HY (W)

= lim int { E 1% I, I, ... are intervals of length < r covering W} .

r—+0+ =)

The Hausdorff dimension of W is

AW = supfo: HY(W) > 0}.

We shall use 4,, 4,, ... for constants which may depend on ¢ 4, B,

the sequences f or @, but not on « or on integer variables such as h, j, k, m,n,
unless otherwise stated.

Finally, we agree that min(1/0, a) means a if a iy a real number.
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§ 3. Integrals of exponential sums.
TEMmA 3.1, With the hypotheses and motations of § 2,

(- 1?_8_"(_’:_“*:32)

, AI) < Ao kf (k) (L + (%> 1)

* . 1
3.1) Z min ( o
ISm<i<k e m

where A, 18 independent of ¢ if A, ts.

log (% »{ﬂ
h

C{3.2)  M3(s(k, h))gAﬂkf(Ic)(H— b=l h21)

where A, depends on ¢. o
Proof. To obtain: (3.1) it-suffices to prove that givem m, 1< m < &,

log (%
(3.3) > min(l ja ) Aof (1 )( + O—g(':—“l)

m<j<k
We may assume 1, = 0 (add a cons’nanﬁ to each A, if need be). To see (3.3)
let p, be the number of terms A; (m < j<k) falling in the interval
[ne, (n-+1)e) (n = 0,1,2,...). X 4, is the greatest and A, the least of these,

A< e, 80 r—8 < f(8) < mémxf(r < Of(k);
and,
' B, =+ —g+1 < Of(k).
Thus
s 1 o P P
@4 D) n;m(lj_ ,A) 1?0-1—2 <04 (k) +Z
m<j<k =1 FE) )

where M is the largest integer with pn 54 0, Glearly there are at most k
integers Wlth P, #0, 8O

.M ) k

$ 2 O (i log(k-+1)
35 jﬁc‘{‘ f{g ) é’_}_\ A, f(¥) cg .

Tuem] FEN

(3.3) follows from (3.4) and (3.5); cleaxly A, depends only on 4, and O(f).
To see (3.2), we write ‘ ‘ :

E B S
(3.6) Mg(s(k, h)) m 2 f eZﬁf(lj—lm)de
: m,j=1d ‘ .
-
<k(B— in | e B
?G.(B A)L+2 mm(l;h——lmb B A)

vemajk
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since
f e27IPE F pXinE __ amipd
————— if 0.
4 2 mip P #*

‘We now apply (3.1) to the sequence (Zj i1, replacing ¢ by c¢h, to
get (3.2).

Note. The enumeration of constants 4., 4,,... beging anew for
each lemma.

Levma 3.2. With the notations and hypotheses of § 2,

log* (@ (k) +1) +log (k+1))

a1 i) < BB (E>1.
Proof.
( )
Q 4 9
Ml(s (k, k)s(k, r)) Q2 k) ZZME s (k% h)Mz( . 7))

h=1 r=1
(by Cauchy’s inequality) _
2Qi’(k)f(k log?(k+1) log? (ke -+1)
AL 30 33 ) oy R
h=1 r=1

(using (3.2) and (u—}-v)_m w0 i u, 0= 0)

A,Q° (k J(k) y 2 Iog“2 (E+1)  log'*(k+1) .log(k—l—l)
oL kr hrd? rh* % RE

< A, Q* (B)f (k) (IOgE(Q(

< = k) +1) 4+ log(Q (%) +1)log™* (% —|—1)+10g(k—i~1))

(=]

1 1
(using eonvergence of 2 7.3/2’2: 9_2).
Pe=
?Dhls completes the prooi (since the product term

uv < w2+ 2).
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Temma 3.2 and (2.8) may be combined to yicld

2 A A,k
D () < g (20 0 1)+ M0 ) < (L4 M3 g )

& ()
;;‘)123(7{,2 {1 A2 __kf__.. ([og (@ (&) +1) - log (k + ))} (k=1),

T D{m, k; 2) denoles the diserepancy of the sequence
{1}y s @}y oo i hmanls (M2 0,52 1)

we have Ayipin > Apen i B2 f(m-4-n) (n2:1), s0 wo replace f(a) by
f(m+n) to estimate M3(kD(m, k). We notiee that

sup f(m+r) < G(f)f (m-+ ).

<k

80 we deduce the ostimate

A | ;
6.9 D on, 1) 1+ < COLOE (o011 -41) +10g 1)
‘ (k2= 1, mz 1),

We ghall refer to thiz again in § 5 and § 6.

§ 4. Lemumas on interpolation.
Levma 41 If 1<k <., i8 an inereasing sequence, k, — oo
and by, jlm =1 a5 m — oo, then

" - .
(4.1) 8, 1) =0 as m — oo implies s(ky, Y, 0as kb — oo

i

(h 3 1).

Proof. This iz given in Weyl [16] but we repeat it here for conve-
nience and to motivate Lemmas 4.2 and 4.3,

Let kp, < b < k. Then
1
S(?Gm, h)—‘[—-ir(k km)

m T,

%
4 .
eEﬂ'l.ﬂ-ﬂm

sk, h)
‘ I

1 N
<o {plms 1)
j“km‘1‘1
(?"1111 h) km | 1 mm .

< -
< - km

=
sl"‘

Both summands in the last expression tend to 0 a8 m — oo, and so a8
b~ oo,

@
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1
Leania 4.2 Suppose 0<g< 1 and 1 <7 <-q~ Then, if Q&) = k*
;=1
(4.2) g(m’) = 0(1) as m — co implies g(k) = O(1) as k — oo,

Proof. Let &k, — o', and &, £ k=< k,;. Wo have

xZ

K ’ “m
iy = gt N1EE Ry N1 8, B
gl —glltn) = Ra™t D2 gy Y12
h=1 ho=l
4 K, H,
_ s(k, ) wkit ﬁ)} $(kyy h)
— k2! ! _ el g—1
{y % R ) 3
h=1 A==l h=1
Thus
& 1s(k, B)— sk, B)| T I
- 1a—1 s m? g1 m? m_
<k Z h +h Z T KZE g (km)
A=l he=k?
L s Bk
S Y5 =)+ g )+ (1— xt ) 9(km)
. A=l ‘- T

< A B0 (B +1) (Bapgr — B} + 0 (1) g (K ya) +0 (L) g (F)

To ecomplete the proof we use the first Mean Value Theorem;
Fmss— o = (1) —m" = r(m+ 87 < r(m 417" (0 <8< 1),
Bl B = meY, log(k+1) < Ayrlog(m 1),

and, since #(¢g—1)+r—1 =rg—1 < 0,
C gty (m41y7"Yog(m+1) -0 2as m - oc.
Henee
| lg (k) — g (b}l = 01} 4+ O(L) g {Kprn) +0(1) g (Fn) -
Lovwa  4.3. Suppose q>0 ond 0<r <!I_:*L|:1_ Then, if Q&)
= logd(k+1) (k=1),

{4.3)  g(e™) = O(1) as m — oo implies g(k) = O(1) as k — oc.

Proof. Let &, = e™ and k,, < k< k,,,. Exactly as in Lemma 4.2,
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we obtain

k.
log?(k4-1) B S

k Ld
h=1

g (B) ~ g (Fy)] < & T Fn) + 0 g (Rs) +0 (1) g (R

It is thus a question of showing that

-
(4.4) log?(k+1)loglog (k--2) —(—’%—Gm) = o(1).

Now for 0 < 61,
T R L o)
B %

< r(m A1)y e 2p (m 1)

< ,.(m_i_l)rwle(mq-l)"—m"

for large m.

Also log*(k+1)loglog(k+1) = O(m™**), any & > 0. Since rg--e+r—1 < ¢
for sufficiently small & > 0, {4.4) is proved.

§ 5. An estimate of the Hausdorff dimension of Z,. In this section
we assume that f(k) = 4,1% 0 < a < 1.
Thus 4, < A <... a60d

(5.1) Anpi— 2 6> 0
The hypothesis is fulfilled in particular if

when k> 4,n" (n=1).

(5.2) Anp1—2y 2= ¢n"  (n = 1), where ¢, > 0,

since n+(n+1)"%+... 4+ (n+ k)%= 27% it k = »n% We introduce (8.1) ag

it allows for more irregular growth than (5.2) and seems to lead to the

same estimates. The same remark applies to the use of (2.2) in general.
Under the hypothesis (5.1), Theorem II of Cassels [2] (combined

with Lemma 3.1), yields

(5.3) D 2) = o[k~ 0~ log (k +1))e)

for almost all », for every e > 0. This ca'.n‘ also be obtained from (3.8}
by arguments similar to those of [5]. In fact, choosing @ (k) = k=9

M3 (D (m, k) < Ay E(m+ k) *log? (k -+1)
which implies (5.3) (ef. Theorem 2, [8]). Thus
l1—a

9

It is of interest to note that if 1, = #'~* (a special case of (5.2)) then
for all & 0, D(k;u) = O(F"™) with b =max(s,1—a) (sec [13]).
Disregarding the exceptional set, this is better than (5.3) for a > } only.

(5.4) B =0 for 0<g<

"
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. To return to the problem of this section, (5.4) suggests an estimate
of dim¥,. To avoid lacunavity we assume 4, = O(»®) for some p > 0.
We shall prove

TeeoreM 5.1. If 4, << ... is a sequence satisfying

Ipsp— Az >0 if k=dn® (n=1,2..)
where 0 < a <1, and

A, < Apn® (v =1,2..) where pz1—a,

then, in the notation of (1.16),

1-3¢—a
»+2¢
We need only show that the set

(5.5) dimqul—««( ) (0<g<}€i).

(5.6) W, = W,(4,B) = {we[4, B]: D(k;z) is not Ok 1)} _

. e . 1-3¢—a
fies dimW, <1 —|————|. F 1
satisfies dimW, < ( P12 ) or then elearly
; . 1-3¢ —a ,
dim B, Nn[A4, Bl < dlqu:{lmW for any ¢ > 4y

a_nd this leads to (5.5).

- LemmA 5.1, Let @Q(k) =%% let 0<r<1lly and 0<a<1, where
0<g< 1.
Suppose (I(k, j))f-\;"l and (J (&, j))i’“l are finite seis of intervals cover-
tng Gy(k, 1) and Gy(k, 1) respeciively. Let :

Ny " N
(5.7) w(k) = DI o) = X 1Tk HE.

=1 Je=1
If the series 3 u([m’]) and 3 o([w']) converge, then

m=l Myl
(5.8) dimW, < a.
Proof. Let
X= M U &, 2).
n=1 m=n ’

Then W, c X. For if e W, D(k; 2) is not O(k™9), so g(k; 2) iz not O(1)
by (2.8) and g(m”; #) is not O(1) by Lemma 4.2, and finally ze G{m", 2)
for infinitely many m. . o
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Thus we need only show dimX < o. Now for » = 1,

Ce U G, 2) U YU (!, 1),
m=n
by (2.11). We can thus cover X with intervals I, I,, ... such that
(5.9) Srrs S futm) otmry.
' Kl mmu

The right hand side of (5.9) femds fe 0 a8 % -+ co. This shows that
H,(X) =0 and dimX < o ‘
Proof of Theorem B.1. We again take (k) = kA Lot
1—-3¢—a g —
(5.10) 1>a>1- 2224z het My ~-Lﬁ —

Thus e(Z2g+p)—(4g+p+a—1) > ¢
Choose r g0 that

. ; 1
(6.11) wmin (1, a(2q+p)—(4g-Fp+a~1)) > =>4
, We now find a covering of &4 (&, 1) of the type required in Lemma 5.1,
Firgt of all, by (2.13) and (3.7),
(5.12) Gy )] << 24, K274 log2 (1) (> O, 3 1)

where 4, is independent of d (and%!). Alﬁb, excopt at the finitely many
‘corners’ of g,(k; @),

Ll Il

a | 1 <
513 R t = 8 "(’[—-1 o
(5.13) I o gi(k; 2) | < 2n ke E h > hidl

Jhenl FEN)

k
) 2anl NV -
< Ay kY )_{ J*

gl
(using 4, < 4,0%)
LAY (k= 1,2,..).
By the fundamental theorem of caloulus, _
9185 ¥} — g1 (s @)] < AP |y ~| (2, y rveal).

Thus if we Gy (%, 1) and ye [4, B], ly—o| < FA7B727, then ye Gy(k, 3.
Now &, (%, 1) is a finite union of closed intervals oJ. Startmg from the

left endpoint of each J, cover it with closed intervaly of length + A7 1g—%-?
as economma]ly a8 posgible. Thus no two intervals overlmp in more than
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one point and all are contained in &k, §). The total number X; of inter-
vals required to cover G4(k, 1) thus satisfies

;o Gk b
(3.14) A V==

oy I(k, Ny) is the covering system, by Holder’s inequality,

+1 g A B e g0 (E 1),

I I(k,1),
Ny Moo N i
515)  w(k) =Zrz(k,j)1“<{21} {Z TGk, )] }

< NG (K, 31 < A Rlatp-ital-alate) o021 1),

using (5.12) and (5.14). Tt is easy to sce that > w{[m"]) converges, since
=1
rdgtp—1-+a)—ar2q+p)<
Thus dimW, < ¢ by Lemma 5.1 and dim%, < a. This completes the
proof, since
1-3g—a

I1>a>1—
r+2¢q

is the only restriction on a. :

Of course (1.20) follows for a sequence satisfying (1.9) or even a weaker
hypothesis An.,-— 4, 2 e{log(n+1)}% b > 0, If we assumed (1.10) instead
we would arrive at the same estimate using M2 (s(k, h)) = k(B—4) for
k=1 (after expansion of [4, B] to have integer endpoints) instead of
TLemma 3.1.

We now state the result analogous to Theorem 5.1 for sequences
growing “like log®*'a”. :

THEOREM 5.2. If 2, < A <<... 8 o sequence satisfysng

) Ain

5.16 = A 2 k= /W =

{ ) Apip—lmze>0 if k > Togo(n 1) (n=1)
and

(5.17) Ao AglogP{n+1) (mE=D{pzatl,a> 1),
then

. Ta—1
(5.18) dmB <1~ 5

a—2
If we further assume thet a> 2 and a> 1w~-—-5-~‘, then

{ a—2—p(l—a)

(5.19) Diks = }+)

Sor every £ > 0, except for a set of dimension < a.

z) = o((logk)
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Note. (i). If we have a sequence satisfying

Al A1 log®*{nm -1 .
Mggnﬂ_%ggzw (€15 63 > 0)

1 n e

for » = 1, then .
&log™ (n+1) < 4, < cdog™ (k1) (m > 1)
since the derivative of log®y is (a-1) (log™y)/y. This i the reason for
agsuming p > a-+1.
(ii). There is & discontinuity between (5.19) and (6.20) in that dimE

<1-— = is all that follows from (5.19). Tt seems to be difficols to

improve Weyl’s estimate D(k; ®) = o(l) a.e. for 1 < a < 2.

The proof of (5.18) is earried out in two stages: first we agsume
Ayy Aay ... ave integers. TE
' s(k, h)

8(k, b, d) = loe [4, B]: - 2

>d= (d=>0,k215b=21)
then
st 5= 0 O O s nd) o<r<n,

]L-l fesl fesl M=n

Provided ap+a—p > -y We can show that

(5.20) () U 8™, h,d) =0

Nom] MWm=ii
by @ process exactly analogous to Theorem 5.1. It is important to use the
estimate
' Ak
log*(k 1)
which is better than (3.2) because Ay, 4,, ... are integers. (5.20) implies

(6.18), which thus holds equally if i, 4,, ... are fractions with the same
denominator,

'Mz( s(k, b)) < (k>1)

In the second stage we asswme Ay < Ay, < ... axe any reals satistying

- (5.16) and (3.17), and uge an approximation argument identical to that
of Weyl in ([16], § 7) to deduce that (5.18) still holds.

The proof of (5.19) is even more closely allied to that of Theorem 5.1.
- We simply apply Lemma 4.3 instead of Lemmsa 4.2. Details are left for
the interested reader to fill in. Tt is worth noticing that (5.19) leads to

. (2-2)

(5.21) Diks0) =of(logh)” 7 ")
for almost all #, Actually one can prove this with the assumption (5.16),
that ig, w1th0ut (5.17), simply by applying the Borel~Cantelli lernma. The
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method of Cassels [2] gives an estimate similar to (5.21) with (¢ —5)/2
instead of ( —2) /3; while (3.8) and [8] yield (a—4)/2. The latter result
is better than (5.21) for a > 8.

For further information about the simplest case, 4, = log®*'(n +1),

see [12], p. 89, and [13].
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